Math 60330: Basic Geometry and Topology Problem Set 8

1. (a) Let $U \subset \mathbb{R}^{n}$ be an open subset and let $f: U \rightarrow \mathbb{R}$ be a smooth function. Prove that

$$
\operatorname{grad}(f)(p)=\frac{\partial f}{\partial x_{1}}(p) \frac{\partial}{\partial x_{1}}+\cdots+\frac{\partial f}{\partial x_{n}}(p) \frac{\partial}{\partial x_{n}},
$$

where $\operatorname{grad}(f)$ is the vector field on U defined in class.
(b) Regard S^{n} as a submanifold of \mathbb{R}^{n+1} in the usual way, and write $f: S^{n} \rightarrow \mathbb{R}$ via the formula

$$
f\left(x_{1}, \ldots, x_{n+1}\right)=x_{1}^{2}+2 x_{2}^{2}+\cdots+(n+1) x_{n+1}^{2}
$$

Calculate $\operatorname{grad}(f)$ (warning: you can't just regard f as a function on \mathbb{R}^{n+1} and take its gradient - the result will not even be a vector field on S^{n}).
2. Let M be a smooth manifold and let ν be a vector field on M. Recall from the previous homework that given a function $f: M \rightarrow \mathbb{R}$ and a tangent vector $\vec{v} \in T_{p} M$, we can define $\nabla_{\vec{v}}(f) \in \mathbb{R}$. Given a smooth function $f: M \rightarrow \mathbb{R}$, we define $\nu(f): M \rightarrow \mathbb{R}$ via the formula

$$
\nu(f)(p)=\nabla_{\nu(p)}(f) \quad(p \in M)
$$

(a) Let $\phi_{t}: M \rightarrow M$ be the flow generated by ν. Prove that

$$
\nu(f)(p)=\left.\frac{\left(f \circ \phi_{t}\right)(p)}{\partial t}\right|_{t=0}
$$

for all $p \in M$.
(b) Given vector fields ν_{1} and ν_{2} on M, prove that there exists a unique vector field $\left[\nu_{1}, \nu_{2}\right.$] on M such that

$$
\left[\nu_{1}, \nu_{2}\right](f)=\nu_{1}\left(\nu_{2}(f)\right)-\nu_{2}\left(\nu_{1}(f)\right)
$$

for all smooth functions $f: M \rightarrow \mathbb{R}$.
(c) Prove that if ν_{1} and ν_{2} and ν_{3} are smooth vector fields on M, then

$$
\left[\nu_{1},\left[\nu_{2}, \nu_{3}\right]\right]+\left[\nu_{2},\left[\nu_{3}, \nu_{1}\right]\right]+\left[\nu_{3},\left[\nu_{1}, \nu_{2}\right]\right]=0
$$

3. Let G be a Lie group. A vector field ν on G is said to be left invariant if for all $g \in G$, we have $\left(m_{g}\right)_{*}(\nu)=\nu$, where $m_{g}: G \rightarrow G$ is the diffeomorphism that multiplies by g on the left. The set of all left-invariant vector fields on G is a vector space called the Lie algbera of G.
(a) Letting e be the identity element of G, construct a vector space isomorphism between the Lie algebra of G and $T_{e} G$.
(b) Prove that if ν_{1} and ν_{2} are left-invariant vector fields on G, then $\left[\nu_{1}, \nu_{2}\right]$ is also a left invariant vector fields on G.
(c) Look up the definition of a Lie algebra (say on wikipedia) and verify that with the aforementioned bracket operation the Lie algebra of G is indeed a Lie algebra.
(d) Prove that the Lie algbera of $\mathrm{GL}_{n}(\mathbb{R})$ is precisely the set of $n \times n$ real matrices with the bracket

$$
[A, B]=A B-B A
$$

