Math 60330: Basic Geometry and Topology Problem Set 5

1. Let Σ_{g} be an oriented genus g surface with a basepoint $p \in \Sigma_{g}$. Assume that $g \geqslant$ 2. Prove that $\pi_{1}\left(\Sigma_{g}, p\right)$ is not abelian. Hint : find a surjective homomorphism from $\pi_{1}\left(\Sigma_{g}, p\right)$ to the dihedral group of order 8 .
2. Let X be a connected graph with vertex set $V(X)$ and edge set $E(X)$. Assume that both $V(X)$ and $E(X)$ are finite sets.
(a) If X is a tree, prove that $|V(X)|-|E(X)|=1$.
(b) For $p \in V(X)$, prove that $\pi_{1}(X, p)$ is a free group of rank r with $|V(X)|-$ $|E(X)|=1-r$.
(c) Let F_{n} be a free group of rank n and let $G \subset F_{n}$ be a subgroup. As we showed in class, G is a free group; let m be its rank. Assume that $r=\left[F_{n}: G\right]$ is finite. Find a formula for m in terms of n and r.
3. Let $T^{2}=S^{1} \times S^{1}$ and let X be the quotient of $T^{2} \sqcup T^{2}$ that identifies the circles $S^{1} \times 1$ in both tori homeomorphically. Calculate the fundamental group of X.
4. Let $W=S^{1} \vee S^{1}$ and let $p \in W$ be the wedge point. Identify $\pi_{1}(W, p)$ with the free group on a and b, where a goes around one S^{1} and b goes around the other one. Construct three connected 4 -fold covers of W that are distinct up to covering space equivalence, including at least 1 irregular cover. For each of these three covers, describe the covering map, say whether or not the cover is regular, and give a free basis (in terms of a and b) for the corresponding subgroup of $\pi_{1}(W, p)$.
5. Let $\left\{p_{1}, \ldots, p_{n}\right\}$ be a set of n distinct points in S^{2} and let X be the quotient space of S^{2} that identifies all the p_{i} to a single point. Let $q \in X$ be a basepoint. Calculate $\pi_{1}(X, q)$.
