Math 60330: Basic Geometry and Topology Problem Set 4

1. Construct the universal cover of the following space:

$$
X=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\} \cup\left\{(x, 0,0) \in \mathbb{R}^{3} \mid-1 \leqslant x \leqslant 1\right\} .
$$

Hint: to prove that the resulting space is simply-connected, you will need to use the next-to-last exercise from the previous problem set.
2. Let X be the subspace of \mathbb{R}^{2} consisting of the four sides of the square $[0,1] \times[0,1]$ together with the segments of the vertical lines $x=\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ inside the square. Show that for every covering space $\rho: \tilde{X} \rightarrow X$, there is some neighborhood of the left edge of X that lifts homeomorphically to \tilde{X}. Deduce that X has no simply-connected covering space.
3. Let Y be the quasi-circle shown in the following figure:

Thus Y is a closed subspace of \mathbb{R}^{2} consisting of the union of the set

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x \leqslant 1, y=\sin \left(\frac{1}{x}\right)\right\}
$$

the set

$$
\left\{(0, y) \in \mathbb{R}^{2} \mid-1 \leqslant y \leqslant 1\right\}
$$

and an arc joining the point $(0,0)$ to the point $(1, \sin (1))$. Collapsing the segment of Y in the y-axis to a point gives a quotient map $f: Y \rightarrow S^{1}$. Show that f does not lift to the universal covering space $\rho: \mathbb{R} \rightarrow S^{1}$ even though $\pi_{1}(Y)=0$. Thus local path-connectedness of Y is a necessary hypothesis in the lifting criterion.
4. Let X be a path-connected, locally path-connected space with $\pi_{1}(X)$ a finite group. Prove that every map $f: X \rightarrow S^{1}$ is nullhomotopic.
5. Let $f: Y \rightarrow X$ be a simply-connected covering space of X, let $A \subset X$ be a path-connected, locally path-connected subspace, and let $B \subset Y$ be a path component of $f^{-1}(A)$. Prove that $\left.f\right|_{B}: B \rightarrow A$ is the covering space corresponding to the kernel of the map $\pi_{1}(A) \rightarrow \pi_{1}(X)$.

