Math 60330: Basic Geometry and Topology Problem Set 2

1. (a) Carefully prove that the following are covering spaces (in particular, give explicit trivializing neighborhoods for an arbitrary point in their base). Recall that $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$.
i. The map $\pi: \mathbb{C} \rightarrow \mathbb{C}^{*}$ defined by $\pi(z)=e^{z}$.
ii. For $n \in \mathbb{Z} \backslash\{0\}$, the map $\pi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ defined by $\pi(z)=z^{n}$.
(b) Prove that the map $\pi: \mathbb{C} \rightarrow \mathbb{C}$ defined by $\pi(z)=z^{2}$ is not a covering space.
2. Let $\pi: \widetilde{X} \rightarrow X$ be a covering space such that $\pi^{-1}(p)$ is finite and nonempty for all $p \in X$. Prove that X is compact Hausdorff if and only if \tilde{X} is compact Hausdorff.
3. Let X be a Hausdorff space and G be a group acting on X. Assume the following two conditions hold.

- The action is free, i.e. the stabilizer of every point in X is trivial.
- The action is properly discontinuous, i.e. for all $x \in X$, there exists a neighborhood U of x such that the set $\{g \in G \mid g(U) \cap U \neq \varnothing\}$ is finite.

Prove that the action of G on X is a covering space action.
Remark 0.1. The second condition is immediate if G is finite, so this implies that all free actions of finite groups on Hausdorff spaces are covering space actions.
4. Let $f: \tilde{X} \rightarrow X$ be a covering space.
(a) If $g: Y \rightarrow X$ is a continuous map, then define

$$
g^{*}(\widetilde{X})=\{(y, p) \mid g(y)=f(p)\} \subset Y \times \widetilde{X} .
$$

Also, let $g^{*}(f): g^{*}(\tilde{X}) \rightarrow Y$ be the restriction of of the projection $Y \times \tilde{X} \rightarrow$ Y onto the first factor. Prove that $g^{*}(f): g^{*}(\tilde{X}) \rightarrow Y$ is a covering space.
(b) If $g: X \rightarrow X$ is the identity map, then prove that $g^{*}(\tilde{X})$ is isomorphic to \tilde{X}.
(c) If X^{\prime} is a subspace of X and $g: X^{\prime} \rightarrow X$ is the inclusion of X^{\prime} into X, prove that $g^{*}(f): g^{*}(\tilde{X}) \rightarrow X^{\prime}$ is isomorphic to the restriction of f to X^{\prime}.
(d) If \tilde{X} is a trivial cover of X and $g: Y \rightarrow X$ is a continuous map, prove that $g^{*}(\tilde{X})$ is a trivial cover of Y.
(e) If $g: Y \rightarrow X$ and $h: Z \rightarrow Y$ are continuous maps, prove that the cover $(g \circ h)^{*}(\tilde{X})$ of Z is isomorphic to $h^{*}\left(g^{*}(\tilde{X})\right)$ of Z.
(f) Let $g: Y \rightarrow X$ is the constant map that takes every point of Y to a fixed point $p_{0} \in X$, prove that $g^{*}(\widetilde{X})$ is a trivial cover of Y. Hint: You can prove this directly, but it is better to deduce it from the last two parts of the exercise.

