Math 60330: Basic Geometry and Topology Problem Set 1

- 1. Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$ be a function. Prove that the following two definitions of f being continuous are equivalent.
 - The function f is continuous if for all open sets $U \subset Y$, the preimage $f^{-1}(U) \subset X$ is open.
 - The function f is continuous if for all $\epsilon > 0$ and all $p \in X$, there exists some $\delta > 0$ such that if $q \in X$ satisfy $d_X(p,q) < \delta$, then $d_Y(f(p), f(q)) < \epsilon$.
- 2. (a) Let ~ be the following equivalence relation on \mathbb{R}^2 : $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1 + y_1^2 = x_2 + y_2^2$. Give \mathbb{R}^2 / \sim the quotient topology coming from the projection $\mathbb{R}^2 \to \mathbb{R}^2 / \sim$. The space \mathbb{R}^2 by ~ is a familiar one. What space is it?
 - (b) Repeat part a for the following equivalence relation: $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.
- 3. Let ~ be the following equivalence relation on $X = [-1, 1] \times \mathbb{R} \subset \mathbb{R}^2$:
 - $(x_1, y_1) \sim (x_2, y_2)$ if and only if one of the following hold:
 - $x_1 = x_2 = 1$, or
 - $x_1 = x_2 = -1$, or
 - $-1 < x_1, x_2 < 1$ and $(x_1^2 1)e^{y_1} = (x_2^2 1)e^{y_2}$.
 - (a) Draw the equivalence classes for \sim .
 - (b) Prove that the quotient of X by \sim is not Hausdorff.
- 4. Let X be a CW complex.
 - (a) Prove that if X has finitely many cells, then X is compact.
 - (b) Let $C \subset X$ be a compact subset (not necessarily a subcomplex). Prove that C only intersects finitely many cells of X.
- 5. Construct CW complex structures on the following spaces.
 - (a) An *n*-dimensional torus.
 - (b) Letting $\{p_1, \ldots, p_n\}$ be *n* distinct points on S^2 , the quotient space of S^2 that identifies all the p_i to a single point.