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CHAPTER 1

Smooth manifolds

This chapter defines smooth manifolds and gives some basic examples. We also
discuss smooth partitions of unity.

1.1. The definition

We start with the definition of a manifold (not yet smooth).

Definition. A manifold of dimension n is a second countable Hausdorff space
Mn such that for every p ∈ Mn there exists an open set U ⊂ Mn containing p
and a homeomorphism ϕ : U → V , where V ⊂ Rn is open. The map ϕ : U → V
is a chart around p. We will often call V a local coordinate system around p and
identify it via ϕ−1 with a subset of Mn. □

Remark. We require Mn to be Hausdorff and second countable to avoid var-
ious pathologies, some of which are discussed in the exercises. The existence of
charts is the real fundamental defining property of a manifold. □

Our goal is to learn how to do calculus on manifolds. The idea is that notions
like derivatives are local: they only depend on the behavior of functions in small
neighborhoods of a point. We can thus use charts and local coordinate systems
to identify small pieces of our manifold with open sets in Rn and thereby apply
calculus in Rn to our manifolds. As a test case, we would like to say what it means
for a function on a manifold to be smooth. On an open subset of Rn, the correct
definition is as follows.

Definition. Let U ⊂ Rn be open. A function f : U → Rm is smooth if it
satisfies the following condition. Let f = (f1, . . . , fm) be the component functions
of f , so fi : U → R is a function for all 1 ≤ i ≤ m. We then require that the mixed
partial deriviatives of all orders exist for fi for all 1 ≤ i ≤ m. □

If we tried to use charts to use this to say what it means for a function f : Mn →
Rm to be smooth, then we would immediately run into problems: different charts
might give completely unrelated notions of smoothness. To fix this, we will have to
carefully choose our charts.

Definition. Given two charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 on a manifold
Mn, the transition function from U1 to U2 is the function τ21 : ϕ1(U1 ∩ U2) →
ϕ2(U1 ∩U2) defined via the formula τ21 = ϕ2 ◦ (ϕ1|ϕ1(U1∩U2))

−1. Here observe that
ϕ1(U1 ∩ U2) is an open subset of V1 ⊂ Rn and ϕ2(U1 ∩ U2) is an open subset of
V2 ⊂ Rn. □

Definition. A smooth atlas for a manifold Mn is a set A = {ϕi : Ui → Vi}i∈I
of charts on Mn with the following properties.

• The Ui cover M
n, i.e. Mn = ∪i∈IUi.

1
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• For all i, j ∈ I, the transition function from U1 to U2 is smooth in the
sense of Definition 1.1. Of course, this only has content if Ui ∩ Uj ̸= ∅.

Two smooth atlases A1 and A2 are compatible if A1 ∪A2 is also a smooth atlas.
This defines an equivalence relation on smooth atlases. A smooth manifold is a
manifold equipped with an equivalence class of smooth atlases. □

Remark. We will give examples of manifolds by describing an atlas for them.
However, this atlas is not a fundamental property of the manifold, and when we
subsequently make use of charts for the manifold we will allow ourselves to use
charts from any equivalent atlas. The first place where this freedom will play an
important role is when we define what it means for a function between two smooth
manifolds to be smooth. □

1.2. Basic examples

Here are a number of examples.

Example. If U ⊂ Rn is an open set, then U is naturally a smooth manifold
with the smooth atlas A consisting of a single chart ϕ : U → V with V = U
and ϕ = id. These can be complicated and wild; for instance, U might be the
complement of a Cantor set embedded in Rn. □

Example. An important special case of an open subset of Euclidean space is
the general linear group GLn(R). The set Mat(n, n) of n× n real matrices can be

identified with Rn2

in the obvious way, and GLn(R) is the complement of the closed
subset where the determinant vanishes. This is an example of a Lie group, that is,
a smooth manifold which is also a group and for which the group operations are
continuous (and, in fact, smooth). □

Example. More generally, if Mn is a smooth manifold with smooth atlas
A = {ϕi : Ui → Vi}i∈I and U ⊂ Mn is an open subset, then U is naturally a
smooth manifold with smooth atlas {ϕi|U∩Ui

: Ui ∩ U → ϕi(U ∩ Ui)}i∈I . □
Example. Let Sn be the unit sphere in Rn+1, i.e.

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x21 + · · ·+ x2n+1 = 1}.
Then Sn can be endowed with the following smooth atlas. For 1 ≤ i ≤ n+1, define

Uxi>0 = {(x1, . . . , xn+1) ∈ Sn | xi > 0}
and

Uxi<0 = {(x1, . . . , xn+1) ∈ Sn | xi < 0}.
Let V ⊂ Rn be the open unit disc. Define ϕxi>0 : Uxi>0 → V via the formula

ϕxi>0(x1, . . . , xn+1) = (x1, . . . , x̂i, . . . , xn+1) ∈ V ;

here x̂i indicates that this single coordinate should be omitted. Define ϕxi<0 :
Uxi<0 → V similarly. We claim that

A = {ϕxi>0 : Uxi>0 → V }n+1
i=1 ∪ {ϕxi<0 : Uxi<0 → V }n+1

i=1

is a smooth atlas. Since the Uxi>0 and Uxi<0 clearly cover Sn, it is enough to
check that the transition functions are smooth. As an illustration of this, we will
verify that for 1 ≤ i < j ≤ n + 1 the transition function τ from Uxi>0 to Uxj>0

is smooth (all the other needed verifications are similar, and this will allow us
to avoid introducing some terrible notation for the various special cases). Define
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Vij = ϕi(Uxi>0 ∩ Uxj>0) and Vji = ϕj(Uxi>0 ∩ Uxj>0), so Vij consists of points
(y1, . . . , yn) ∈ V such that yj−1 > 0 and Vji consists of points (y1, . . . , yn) ∈ V such
that yi > 0. The transition function τji : Vij → Vji is then given by the formula

τji(y1, . . . , yn) = ϕxj>0(ϕ
−1
xi>0(y1, . . . , yn))

= ϕxj>0(y1, . . . , yi−1,
√

1− y21 − · · · − y2n, yi, . . . , yn)

= (y1, . . . , yi−1,
√

1− y21 − · · · − y2n, yi, · · · , ŷj−1, . . . , yn).

This is clearly a smooth function. □

Example. Here is another smooth atlas for Sn. Let U1 = Sn \ {(0, 0, 1)}
and U−1 = Sn \ {(0, 0,−1)}. Identifying Rn with the subspace of Rn+1 consisting
of points whose last coordinate is 0, define a function ϕ1 : U1 → Rn by letting
ϕ1(p) be the unique intersection point of the line joining p ∈ U1 ⊂ Sn ⊂ Rn+1

and (0, 0, 1) with the plane Rn. It is clear that ϕ1 is a homeomorphism. Similarly,
define ϕ−1 : U−1 → Rn by letting ϕ−1(p) be the unique intersection point of the
line joining p ∈ U−1 ⊂ Sn ⊂ Rn+1 and (0, 0,−1) with the plane Rn. Again, ϕ−1 is a
homeomorphism. In the exercises, you will show that the set {ϕ1 : U1 → Rn, ϕ−1 :
U−1 → Rn} is a smooth atlas for Sn which is equivalent to the smooth atlas for Sn

given in the previous example. □

Example. Define RPn to be real projective space, i.e. the quotient Sn/ ∼,
where ∼ identifies antipodal points (that is, x ∼ −x for all x ∈ Sn). For 1 ≤
i ≤ n + 1, define Ui ⊂ RPn to be the image of Uxi>0 ⊂ Sn under the quotient
map Sn → RPn. Since Uxi>0 does not contain any antipodal points, the map
Uxi>0 → Ui is a homeomorphism. Clearly the Ui cover RPn. Letting V be the unit
disc in Rn, we can define homeomorphisms ϕi : Ui → V as the composition

Ui ∼= Uxi>0

ϕxi>0−−−−→ V.

The set A = {ϕi : Ui → V }n+1
i=1 then forms a smooth atlas for RPn; the fact that

the transition maps for the sphere are smooth implies that the transition maps for
A are. □

Example. For j = 1, 2, let M
nj

j be a smooth nj-dimensional manifold with

smooth atlas {ϕji : U ji → V ji }i∈Ij . Then Mn1
1 × Mn2

2 is a smooth (n1 + n2)-

dimensional manifold with smooth atlas {ϕ1i ×ϕ2i′ : U1
i ×U2

i′ → V 1
i ×V 2

i′ }(i,i′)∈I1×I2 .
An important special case of a product is the n-torus, i.e. the product S1×· · ·×S1

of n copies of S1. □

For our final family of examples of smooth manifolds, we need the following
definition.

Definition. Let X ⊂ Rn be an arbitrary set and let f : X → Rm be a
function. We say that f is smooth at a point p ∈ X if there exists an open set
U ⊂ Rn with p ∈ U and a smooth function g : U → Rm such that g|U∩X = f |U∩X .
We will say that f is smooth if f is smooth at all points p ∈ X. If Y ⊂ Rm is
the image of f , then we will say that f : X → Y is a diffeomorphism if it is a
homeomorphism and both f : X → Y and f−1 : Y → X are smooth. □
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Figure 1.1. On the left is a genus 2 surface (a “donut with two
holes”), which is a 2-dimensional smooth submanifold of R3. On
the right is a trefoil knot, which is a 1-dimensional smooth sub-
manifold of R3.

Example. An n-dimensional smooth submanifold of Rm is a subset Mn ⊂ Rm
such that for each point p ∈ Mn, there exists a chart ϕ : U → V around p such
that ϕ is a diffeomorphism. Here we emphasize that we are using the definition
of diffeomorphism discussed in the previous definition. The collection of all such
charts forms a smooth atlas on Mn; the fact that we require the charts to be
diffeomorphisms makes the fact that the transition functions are smooth automatic.
It is easy to draw many interesting examples of smooth submanifolds of R3; see,
for example, the genus 2 surface and the knotted circle in Figure 1.1. □

Remark. The charts in the first smooth atlas on Sn we gave above are diffeo-
morphisms, so we were really making use of the fact that Sn is an n-dimensional
smooth submanifold of Rn+1. □

Remark. In fact, all smooth manifolds can be realized as smooth submanifolds
of Rm for some m≫ 0 (in other words, all smooth manifolds can be “embedded” in
Rm). We will prove this for compact smooth manifolds in Theorem 3.5 below. □

1.3. Smooth functions

As we said before defining them, one of the reasons for introducing smooth
atlases is to allow us to talk about smooth functions on a manifold. The appropriate
definition is as follows.

Definition. Let Mn be a smooth n-manifold and let f : Mn → R be a
function. We say that f is smooth at a point p ∈ Mn if the following condition
holds.

• Let ϕ : U → V be a chart such that p ∈ U . Then the function f ◦ ϕ−1 :
V → R is smooth at ϕ(p). Here V is an open subset of Rn, so smoothness
is as defined in Definition 1.1.

We say that f is smooth if it is smooth at all points p ∈ Mn. We will denote the
set of all smooth functions on Mn by C∞(Mn,R). □

Lemma 1.1. The notion of f : Mn → R being smooth at a point p ∈ Mn is
well-defined, i.e. it does not depend on the choice of chart ϕ : U → V such that
p ∈ U .

Proof. Let ϕ1 : U1 → V1 be another chart such that p ∈ U1. We must prove
that f ◦ ϕ−1 : V → R is smooth at ϕ(p) if and only if f ◦ ϕ−1

1 : V1 → R is smooth
at ϕ1(p). Let τ : ϕ(U ∩ U1) → ϕ1(U ∩ U1) be the transition map between our two
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charts, so τ = ϕ1 ◦ (ϕ|U∩U1
)−1. On ϕ(U ∩ U1), we have

f ◦ ϕ−1 = f ◦ ϕ−1
1 ◦ ϕ1 ◦ ϕ−1 = f ◦ ϕ−1

1 ◦ τ.
Since τ is smooth, the function f ◦ϕ−1 is smooth at ϕ(p) if and only if the function
f ◦ ϕ−1

1 is smooth at ϕ1(p), as desired. □

Definition. If f : Mn → R is a smooth function on Mn and ϕ : U → V
is a chart on Mn, then the smooth function f ◦ ϕ−1 : V → R will be called the
expression for f in the local coordinates V . □

Remark. IfMn is a smooth submanifold of Rm, then we now have two different
definitions of what it means for a function f :Mn → R to be smooth:

(1) The definition we just gave, and
(2) The definition given right before the definition of a smooth submanifold of

Rm, i.e. a function f :Mn → R that can locally be extended to a smooth
function on an open subset of Rm.

It is clear that the second definition implies the first. This allows us to write
down many examples of smooth functions. For example, regarding Sn as a smooth
submanifold of Rn+1, the function f : Sn → R defined via the formula

f(x1, . . . , xn+1) =

n+1∑
i=1

ix2i+1
i

is smooth. It is more difficult to see that the first definition implies the second. We
will prove this in Chapter 3; see Lemma 3.4. □

Defining what it means for a map between arbitrary manifolds to be smooth is
a little complicated. Consider the following example.

Example. Define a map f : R → S1 via the formula f(t) = (cos(t), sin(t)) ∈
S1 ⊂ R2. We clearly want f to be smooth. Recall that R is endowed with the
smooth atlas with a single chart, namely the identity map R → R. The image of
this chart under f is not contained in any single chart for S1, so we cannot define
smoothness for f locally using this smooth atlas. □

The problem with the above example is that we really need to use “smaller”
charts on R. We now adapt the following convention to circumvent this.

Convention. If Mn is a smooth manifold with smooth atlas A, then we will
automatically enlarge A to the maximal atlas compatible with A (remember our
equivalence relation on smooth atlases!). In particular, if ϕ : U → V is a chart for
Mn, then so is ϕ|U ′ : U ′ → ϕ(U ′) for any open set U ′ ⊂ U . □

With this convention, we make the following definition.

Definition. Let f : Mn1
1 → Mn2

2 be a map between smooth manifolds. We
say that f is smooth at a point p ∈Mn1

1 if there exist charts ϕ1 : U1 → V1 for Mn1
1

and ϕ2 : U2 → V2 for Mn2
2 with the following properties.

• p ∈ U1.
• f(U1) ⊂ U2.
• The composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2
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is smooth at ϕ1(p); this makes sense since V1 and V2 are open subsets of
Rn1 and Rn2 , respectively.

We say that f is smooth if it is smooth at all points p ∈Mn1
1 . We will denote the set

of all smooth functions from Mn1
1 to Mn2

2 by C∞(Mn1
1 ,Mn2

2 ). A diffeomorphism
is a smooth bijection whose inverse is also smooth. □

Just like for real-valued smooth functions, this does not depend on the choice
of charts.

Definition. If f : Mn1
1 → Mn2

2 is a smooth function between smooth mani-
folds, ϕ1 : U1 → V1 is a chart for Mn1

1 , and ϕ2 : U2 → V2 is a chart for Mn2
2 such

that f(U1) ⊂ U2, then the smooth function V1 → V2 obtained as the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2

will be called the expression for f in the local coordinates V1 and V2. □
Example. It is immediate that the function f : R → S1 discussed above

defined via the formula f(t) = (cos(t), sin(t)) ∈ S1 ⊂ R2 is smooth. □
Remark. Just as before, if M1 and M2 are smooth submanifolds of Euclidean

space this definition agrees with the definition given just before the definition of
smooth submanifolds. This allows us to write down many interesting examples of
smooth maps. For example, regarding S1 as a smooth submanifold of R2 we can
define a smooth map f : S1 → S1 via the formula f(x1, x2) = (x21 −x22, 2x1x2). □

1.4. Partitions of unity

We now introduce an important technical device. In calculus, we learned how to
construct many interesting functions on open subsets of Rn. To use these functions
to prove theorems about manifolds, we need a tool for assembling local information
into global information. This tool is called a smooth partition of unity, which we
now define. Recall that if f :Mn → R is a function, then the support of f , denoted
Supp(f), is the closure of the set {x ∈Mn | f(x) ̸= 0}.

Definition. Let Mn be a smooth manifold and let {Ui}i∈I be an open cover
ofMn. A smooth partition of unity subordinate to {Ui}ki=1 is a collection of smooth
functions {fi :Mn → R}i∈I satisfying the following properties.

• We have 0 ≤ fi(x) ≤ 1 for all 1 ≤ i ≤ k and x ∈Mn.
• We have Supp(fi) ⊂ Ui for all 1 ≤ i ≤ k.
• For all p ∈ Mn, there exists an open neighborhood W of p such that the

set {i ∈ I | W ∩ Supp(fi) ̸= ∅} is finite.
• For all p ∈ Mn, we have

∑
i∈I fi(p) = 1. This sum makes sense since

the previous condition ensures that only finitely many terms in it are
nonzero. □

Theorem 1.2 (Existence of partitions of unity). Let Mn be a smooth manifold
and let {Ui}i∈I be an open cover of Mn. Then there exists a smooth partition of
unity subordinate to {Ui}i∈I .

For the proof of Theorem 1.2, we need the following lemma.

Lemma 1.3 (Bump functions, weak). LetMn be a smooth manifold, let p ∈Mn

be a point, and let U ⊂ Mn be a neighborhood of p. Then there exists a smooth
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function f : Mn → R such that 0 ≤ f(x) ≤ 1 for all x ∈ Mn, such that f equals 1
in some neighborhood of p, and such that Supp(f) ⊂ U .

Proof. We will construct f in a sequence of steps.

Step 1. There exists a smooth function g : R → R such that 0 ≤ g(x) ≤ 1 for
all x ∈ R, such that g(x) = 1 when |x| ≤ 1, and such that Supp(g) ⊂ (−3, 3).

Define g1 : R → R via the formula

g1(x) =

{
0 if x ≤ 0,

e−1/x if x > 0.
(x ∈ R).

The function g1 is a smooth function such that g1(x) ≥ 0 for all x ∈ R, such
that g1(x) = 0 when x ≤ 0, and such that g1(x) > 0 when x > 0. Next, define
g2 : R → R via the formula

g2(x) =
g1(x)

g1(x) + g1(1− x)
,

so g2 is a smooth function such that 0 ≤ g2(x) ≤ 1 for all x ∈ R, such that g2(x) = 0
when x ≤ 0, and such that g2(x) = 1 when x ≥ 1. Finally, define g via the formula

g(x) = g1(2 + x)g1(2− x).

Clearly g satisfies the desired conditions.

Step 2. Let C0 = {x ∈ Rn | ∥x∥ ≤ 1} and U0 = {x ∈ Rn | ∥x∥ < 2}. Then
there exists a smooth function h : Rn → R such that 0 ≤ h(x) ≤ 1 for all x ∈ Rn,
such that h|C0

= 1, and such that Supp(h) ⊂ U0.

Let g be as in Step 1. Define h via the formula

h(x1, . . . , xn) = g(x21 + · · ·+ x2n).

Clearly h satisfies the desired conditions.

Step 3. There exists a smooth function f as in the statement of the lemma.

Let C0 and U0 and h be as in Step 2. We can then find an open set U ′ ⊂ U such
that p ∈ U ′ and a diffeomorphism ϕ : U ′ → V , where V is either an open subset of
Rn containing U0 or an open subset of Hn containing U0 ∩Hn and ϕ(p) = 0. The
function f :Mn → R can then be defined via the formula

f(x) =

{
g(ϕ(x)) if x ∈ U ′,

0 otherwise.
(x ∈Mn).

Clearly f satisfies the conditions of the lemma. □

Proof of Theorem 1.2. Since Mn is paracompact and locally compact, we
can find open covers {U ′

j}j∈J and {U ′′
j }j∈J of Mn with the following properties.

• The cover {U ′
j}j∈J refines the cover {Ui}i∈I , i.e. for all j ∈ J there exists

some ij ∈ I such that the closure of U ′
j is contained in Uij .

• The cover {U ′
j}j∈J is locally finite, i.e. for all p ∈ Mn there exists some

open neighborhood W of p such that {j ∈ J | W ∩ U ′
j ̸= ∅} is finite.

• The closure of U ′′
j is a compact subset of U ′

j for all j ∈ J .
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For each p ∈ Mn, choose jp such that p ∈ U ′′
jp

and use Lemma 1.3 to find a

smooth function gp : Mn → R such that 0 ≤ gp(x) ≤ 1 for all x ∈ Mn, such that
Supp(gp) ⊂ U ′

jp
, and such that gp equals 1 in some neighborhood Vp of p. Since the

closure of U ′′
j in U ′

j is compact for all j ∈ J , we can find a set {pk}k∈K of points
of Mn such that the set {Vpk | k ∈ K, jpk = j} is a finite cover of U ′′

j for all j ∈ J .
For all j ∈ J , define hj : M

n → R to be the sum of all the gpk such that jpk = j
(a finite sum), so hj is a smooth function such that hj(x) ≥ 0 for all x ∈Mn, such
that hj(x) > 0 for all x ∈ U ′′

j , and such that Supp(hj) ⊂ U ′
j . Finally, for all i ∈ I,

define fi :M
n → R via the formula

fi(x) =

∑
ij=i

hj(x)∑
j∈J hj(x)

(x ∈Mn).

These are not finite sums, but because the cover {U ′
j}j∈J is locally finite and

Supp(hj) ⊂ U ′
j for all j ∈ J , only finitely many terms in each are nonzero for

any choice of x ∈ Mn and the numerator and denominator are smooth functions.
Also, the denominator is nonzero since hj(x) > 0 for all x ∈ U ′′

j and the set {U ′′
j }j∈J

is a cover.
By construction, we have Supp(fi) ⊂ Ui. Moreover, for all x ∈Mn the fact that

the cover {U ′
j}j∈J is locally finite and Supp(hj) ⊂ U ′

j for all j ∈ J implies that there
exists some open neighborhoodW of x such that the set {i ∈ I | W ∩ Supp(fi) = ∅}
is finite. Finally, for all x ∈Mn we have∑

i∈I
fi(x) =

∑
i∈I
∑
ij=i

hj(x)∑
j∈J hj(x)

=

∑
j∈J hj(x)∑
j∈J hj(x)

= 1,

as desired. □

As a first illustration of how Theorem 1.2 can be used, we prove the following
lemma.

Lemma 1.4 (Bump functions, strong). Let Mn be a smooth manifold, let C ⊂
Mn be a closed set, and let U ⊂ Mn be an open set such that C ⊂ U . Then there
exists a smooth function f :Mn → R such that 0 ≤ f(x) ≤ 1 for all x ∈Mn, such
that f(x) = 1 for all x ∈ C, and such that Supp(f) ⊂ U .

Proof. Set U ′ =Mn \C. The set {U,U ′} is then an open cover ofMn. Using
Theorem 1.2, we can find smooth functions f :Mn → R and g :Mn → R such that
0 ≤ f(x), g(x) ≤ 1 for all x ∈ Mn, such that Supp(f) ⊂ U and Supp(g) ⊂ U ′, and
such that f + g = 1. The function f then satisfies the conditions of the lemma. □

This has the following useful consequence. Just like for functions on Euclidean
space, if C is an arbitrary subset of a smooth manifold M1 and f : C → M2 is a
function to another smooth manifold, then f is said to be smooth if there exists
an open set U ⊂ M1 containing C and a smooth function g : U → M2 such that
g|C = f .

Lemma 1.5 (Extending smooth functions). Let M be a smooth manifold, let
C ⊂ M be a closed set, and let U ⊂ M be an open set such that C ⊂ U . Let
f : C → R be a smooth function. Then there exists a smooth function g : M → R
such that g|C = f and such that Supp(g) ⊂ U .
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Proof. By definition, there exists an open set U ′ ⊂ M containing C and a
smooth function g1 : U ′ → R such that g1|C = f . Shrinking U ′ if necessary, we can
assume that U ′ ⊂ U . Use Lemma 1.4 to construct a smooth function h : M → R
such that 0 ≤ h(x) ≤ 1 for all x ∈ M , such that h(x) = 1 for all x ∈ C, and such
that Supp(h) ⊂ U ′. Define g :M → R via the formula

g(x) =

{
h(x)g1(x) if x ∈ U ′,

0 otherwise.
(x ∈M).

Clearly g satisfies the conclusions of the lemma. □

1.5. Approximating continuous functions, I

As another illustration of how partitions of unity can be used, we will prove
the following.

Theorem 1.6. Let Mn be a smooth manifold and let f : Mn → Rm be a
continuous function. Then for all ϵ > 0 there exists a smooth function g :Mn → Rm
such that ∥f(x)− g(x)∥ < ϵ for all x ∈Mn.

Remark. If Mn is not compact, then it is often useful to require that ∥f(x)−
g(x)∥ < ϵ(x) for all x ∈ Mn, where ϵ : Mn → R is a fixed function such that
ϵ(x) > 0 for all x ∈Mn. The proof is exactly the same. □

For the proof of Theorem 1.6, we need the following lemma.

Lemma 1.7. Let U ⊂ Rn be an open set and let f : U → Rm be a continuous
function such that Supp(f) ⊂ U . Then for all ϵ > 0 there exists a smooth function
g : U → Rm such that Supp(g) ⊂ U and such that ∥f(x)−g(x)∥ < ϵ for all x ∈Mn.

Proof. The Stone-Weierstrass theorem says that we can find a smooth func-
tion g1 : U → Rm such that ∥f(x) − g1(x)∥ < ϵ for all x ∈ U (in fact, it says
that we can take g1 to be a function whose coordinate functions are polynomi-
als). Let C = Supp(f), so C is a closed subset of U . Using Lemma 1.4, we can
find a smooth function β : U → R such that 0 ≤ β(x) ≤ 1 for all x ∈ U , such
that β|C = 1, and such that Supp(β) ⊂ U . Define g : U → Rm via the formula
g(x) = β(x) · g1(x). Since Supp(β) ⊂ U , we also have Supp(g) ⊂ U . Also, we
clearly have ∥f(x)− g(x)∥ < ϵ for all x ∈ C. For x ∈ U \ C, we have f(x) = 0, so
∥g1(x)∥ < ϵ and hence

∥f(x)− g(x)∥ = ∥β(x) · g1(x)∥ ≤ ∥g1(x)∥ < ϵ,

as desired. □
Proof of Theorem 1.6. In the exercises, you will construct a smooth atlas

A = {ϕi : Ui → Vi}i∈I for Mn and a large integer K such that for all p ∈ Mn,
there exists a neighborhood W of p with |{i ∈ I | Ui ∩W ̸= ∅}| < K. We remark
that this is trivial if Mn is compact. Using Theorem 1.2, we can find a smooth
partition of unity {νi : Ui → R}i∈I subordinate to {Ui}i∈I . Define fi : M

n → Rm
via the formula fi(x) = νi(x) · f(x). We thus have∑

i∈I
fi(x) = (

∑
i∈I

νi(x)) · f(x) = f(x) (x ∈Mn).

These sums makes sense since only finitely many terms in them are nonzero for

any fixed x ∈ Mn. Moreover, Supp(fi) ⊂ Ui. Define f̂i : Vi → Rm to be the
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expression for fi in the local coordinates Vi, so f̂i = f ◦ϕ−1
i . Applying Lemma 1.7,

we can find a smooth function ĝi : Vi → Rm such that Supp(ĝi) ⊂ Vi and such that

∥f̂i(x)− ĝi(x)∥ < ϵ/K for all x ∈ Vi. Define gi :M
n → Rm via the formula

gi(x) =

{
ĝi(ϕi(x)) if x ∈ Ui,

0 otherwise
(x ∈Mn).

Since Supp(ĝi) ⊂ Vi, this is a smooth function on Mn satisfying Supp(gi) ⊂ Ui.
Moreover, ∥fi(x) − gi(x)∥ < ϵ/K for all x ∈ Mn. Define g : Mn → Rm via the
formula

g(x) =
∑
i∈I

gi(x) (x ∈Mn);

this makes sense because Supp(gi) ⊂ Ui, and hence only finitely many terms in this
sum are nonzero for any fixed x ∈Mn. The function g is a smooth function and

∥f(x)− g(x)∥ = ∥
∑
i∈I

(fi(x)− gi(x))∥ ≤
∑
i∈I

∥fi(x)− gi(x)∥ < K(ϵ/K) = ϵ,

as desired. □
The following “relative” version of Theorem 1.6 will also be useful.

Theorem 1.8. Let Mn be a smooth manifold and let f : Mn → Rm be a
continuous function. Assume that f |U is smooth for some open set U . Then for
all ϵ > 0 and all closed sets C ⊂ Mn with C ⊂ U , there exists a smooth function
g :Mn → Rm such that ∥f(x)−g(x)∥ < ϵ for all x ∈Mn and such that g|C = f |C .

Proof. The proof is very similar to the proof of Theorem 1.6, so we only
describe how it differs. The key is to choose the smooth atlas A = {ϕi : Ui → Vi}i∈I
for Mn at the beginning of the proof such that if Ui ∩ C ̸= ∅ for some i ∈ I, then
Ui ⊂ U . For i ∈ I with Ui ⊂ U , we can then take our “approximating functions”

ĝi to simply equal f̂i, and thus gi = fi. These choices ensure that the function
g : Mn → Rm constructed in the proof of Theorem 1.6 satisfies g|C = f |C , as
desired. □



CHAPTER 2

Tangent vectors

In this chapter, we will define tangent vectors on a smooth manifold and de-
scribe how to use them to differentiate smooth functions. We will then discuss
vector fields and show how then can be integrated to flows. Finally, as an applica-
tion we will prove that if M is a smooth manifold and p, q ∈ M are points, then
there exists a diffeomorphism f :M →M such that f(p) = q.

2.1. Tangent spaces on Euclidean space

We begin by defining tangent vectors on Euclidean space.

Definition. Let U ⊂ Rn be open and let p ∈ U . The tangent space to U at
p, denoted TpU , is the vector space Rn. One should view elements of TpU as being
vectors or arrows whose initial point is at p. □

Remark. The tangent space TpU is a vector space over R. For distinct p, q ∈ U ,
the vector spaces TpU and TqU are isomorphic vector spaces, but they should not
be thought of as being the same vector space; for instance, it does not make sense
to add a vector in TpU to a vector in TqU . □

This tangent space has the following standard basis.

Definition. Let U ⊂ Rn be open and let p ∈ U . Let the coordinate functions

of Rn be x1, . . . , xn. The standard basis for TpU = Rn is {
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p
},

where
(

∂
∂xi

)
p
∈ Rn is the vector with a 1 in position i and 0’s elsewhere. □

We now discuss the derivative of a function between open subsets of Euclidean
space.

Definition. Let f : U → V be a smooth map from an open set U ⊂ Rn to an
open set V ⊂ Rm. For p ∈ U , the derivative of f at p, denoted Dpf , is the linear
map

Dpf : TpU → Tf(p)V

defined as follows. Let x1, . . . , xn be the coordinate functions on U and let y1, . . . , ym
be the coordinate functions on V . Also, let f = (f1, . . . , fm) be the components of
f , so fi : U → R is a smooth function. Then Dpf is defined via the formula

(Dpf)(

(
∂

∂xi

)
p

) =

m∑
j=1

∂fj
∂xi

(p) ·
(

∂

∂yj

)
f(p)

(1 ≤ i ≤ n).

11
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In other words, with respect to the bases {
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p
} for TpU and

{
(

∂
∂y1

)
f(p)

, . . . ,
(

∂
∂ym

)
f(p)

} for Tf(p)V , the linear map Dpf is represented by the

m× n matrix whose (i, j)-entry is ∂fi
∂xj

. □

Example. Define f : R2 → R3 via the formula

f(x1, x2) = (x21 − 3x32, x1x2, x2 + 3) ∈ R3 ((x1, x2) ∈ R2).

Then for p = (p1, p2) ∈ R2 and

v⃗ = v1

(
∂

∂x1

)
p

+ v2

(
∂

∂x2

)
p

∈ TpR2

we have

(Dpf)(v⃗) =(2p1v1 − 9p22v2) ·
(

∂

∂y1

)
f(p)

+ (p2v1 + p1v2) ·
(

∂

∂y2

)
f(p)

+ v2 ·
(

∂

∂y3

)
f(p)

;

here y1, . . . , y3 are the coordinate functions on R3. The matrix representing the
linear map Dpf is 2p1 −9p22

p2 p1
0 1

 . □

One of the most important property of derivatives is the chain rule. Let f :
V1 → V2 and g : V2 → V3 be smooth maps, where V1 ⊂ Rn and V2 ⊂ Rm and
V3 ⊂ Rℓ are open. We then have the composition g ◦ f : V1 → V3. For p ∈ V1, we
have linear maps

Dpf : TpV1 → Tf(p)V2

and

Df(p)g : Tf(p)V2 → Tg(f(p))V3

and

Dp(g ◦ f) : TpV1 → Tg(f(p))V3.

The chain rule can be stated as follows.

Theorem 2.1 (Chain Rule, Euclidean space). Let V1 ⊂ Rn and V2 ⊂ Rm and
V3 ⊂ Rℓ be open sets and let f : V1 → V2 and g : V2 → V3 be smooth maps. Then
for all p ∈ V1 we have

Dp(g ◦ f) = (Df(p)g) ◦ (Dpf).

Example. Define f : R2 → R3 via the formula

f(x1, x2) = (x21 − 3x32, x1x2, x2 + 3) ∈ R3 ((x1, x2) ∈ R2)

and g : R2 → R1 via the formula

g(y1, y2, y3) = (y1 + 2y22 + 3y33).
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As we calculated in the previous example, for p ∈ R2 written as p = (p1, p2) the
linear map Dpf : TpR2 → Tf(p)R3 is represented by the matrix2p1 −9p22

p2 p1
0 1

 .

For q ∈ R3 written as q = (q1, q2, q3), the linear map Dqg : TqR3 → Tg(q)R1 is
represented by the matrix (

1 4q2 9q23
)
.

Let’s now check the chain rule. The composition g ◦ f : R2 → R1 is given via the
formula

(g ◦ f)(p1, p2) = ((p21 − 3p32) + 2(p1p2)
2 + 3(p2 + 3)3) ∈ R1.

The derivative Dp(g ◦ f) of this at p = (p1, p2) is represented by the matrix(
2p1 + 4(p1p2)p2 −9p22 + 4(p1p2)p1 + 9(p2 + 3)2

)
.

Plugging the equations of f(p) into the above formula for Dqg : TqR3 → Tg(q)R1,

the linear map Df(p)g : Tf(p)R3 → Tg(f(p))R1 is represented by the matrix(
1 4(p1p2) 9(p2 + 3)2

)
The chain rule then asserts that(

2p1 + 4(p1p2)p2 −9p22 + 4(p1p2)p1 + 9(p2 + 3)2
)

=
(
1 4(p1p2) 9(p2 + 3)2

)
·

2p1 −9p22
p2 p1
0 1

 ,

which is easily verified. □

2.2. Tangent spaces

LetMn be a smooth n-manifold and let p ∈Mn. Our goal is to construct an n-
dimensional vector space TpM

n called the tangent space to Mn at p. If ϕ : U → V
is a chart around p, then vectors in TpM

n should be represented by elements of
Tϕ(p)V = Rn. To make a definition that does not depend on any particular choice
of chart, we introduce the following equivalence relation.

Definition. Let Mn be a smooth n-manifold, let p ∈Mn, and let {ϕi : Ui →
Vi}i∈I be the set of charts around p. For i, j ∈ I, let τji : ϕi(Ui∩Uj) → ϕj(Ui∩Uj)
be the transition function from Ui to Uj . Finally, let X (Mn, p) be the set of pairs
(i, v⃗), where i ∈ I and v⃗ ∈ Tϕi(p)Vi. Define ∼ to be the relation on X (Mn, p) where
where (i, v⃗) ∼ (j, w⃗) when (Dϕi(p)τji)(v⃗) = w⃗. □

Lemma 2.2. The relation ∼ defined in the previous definition is an equivalence
relation on X (Mn, p).

Proof. We must check reflexivity, symmetry, and transitivity.
For (i, v⃗) ∈ X (Mn, p), we have (i, v⃗) ∼ (i, v⃗) since the relevant transition

function τii : ϕi(Ui ∩ Ui) → ϕi(Ui ∩ Ui) is the identity.
If (i, v⃗), (j, w⃗) ∈ X (Mn, p) satisfy (i, v⃗) ∼ (j, w⃗), then by definition we have

(Dϕi(p)τji)(v⃗) = w⃗. From its definition, we see that τij : ϕj(Ui ∩Uj) → ϕi(Ui ∩Uj)
is the inverse of τji : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj). From Theorem 2.1 (the Chain
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Rule), we have (Dϕj(p)τij) ◦ (Dϕi(p)τji) = id, so (Dϕj(p)τij)(w⃗) = v⃗ and hence
(j, w⃗) ∼ (i, v⃗).

If (i, v⃗), (j, w⃗), (k, u⃗) ∈ X (Mn, p) satisfy (i, v⃗) ∼ (j, w⃗) and (j, w⃗) ∼ (k, u⃗),
then by definition we have (Dϕi(p)τji)(v⃗) = w⃗ and (Dϕj(p)τkj)(w⃗) = u⃗. From its
definition, we see that on ϕi(Ui ∩ Uj ∩ Uk) we have τki = τkj ◦ τji. Again using
Theorem 2.1 (the Chain Rule), we see that Dϕi(p)τki = (Dϕj(p)τkj) ◦ (Dϕi(p)τji), so
(Dϕi(p)τki)(v⃗) = u⃗ and hence (i, v⃗) ∼ (k, u⃗). □

This allows us to make the following definition.

Definition. Let Mn be a smooth manifold and let p ∈ Mn. Let {ϕi : Ui →
Vi}i∈I be the set of charts around p. The tangent space to Mn at p, denoted TpM

n,
is the set of equivalence classes of elements of X (Mn, p) under the equivalence
relation given by Lemma 2.2. □

Lemma 2.3. Let Mn be a smooth manifold and let p ∈Mn. Then the tangent
space TpM

n is an n-dimensional vector space and for all charts ϕ : U → V the
natural map Tϕ(p)V → TpM

n is an isomorphism.

Proof. This follows from the fact that the derivatives used to define the equiv-
alence relation are vector space isomorphisms, so the vector space structures on
the various Tϕi(p)Vi used to define TpM

n descend to a vector space structure on
TpM

n. □

Convention. The notation X (Mn, p) that we used when defining TpM
n will

not be used again. In the future, instead of talking about elements of TpM
n being

equivalence classes of pairs (i, v⃗), we will simply say that a given element of TpM
n

is represented by some v⃗ ∈ Tϕi(p)Vi. □

Convention. Consider a smooth manifold Mn, a point p ∈Mn, and a chart

ϕ : U → V with p ∈ U . We have the standard basis {
(

∂
∂x1

)
ϕ(p)

, . . . ,
(

∂
∂xn

)
ϕ(p)

}

for Tϕ(p)V = Rn. Each
(

∂
∂xi

)
ϕ(p)

represents a vector in TpM
n which we will write(

∂
∂xi

)
p
; the resulting basis for TpM

n will be called the the standard basis for TpM
n

with respect to the chart ϕ : U → V . □

2.3. Derivatives

Let f : Mn1
1 → Mn2

2 be a smooth map between smooth manifolds and let
p ∈Mn1

1 . We now show how to construct the derivative Dpf : TpM
n1
1 → Tf(p)M

n2
2 ,

which is a linear map between these vector spaces. Let ϕ1 : U1 → V1 be a chart
around p and let ϕ2 : U2 → V2 be a chart around ϕ(p) such that f(U1) ⊂ U2. We
thus have identifications TpM

n1
1 = Tϕ1(p)V1 and Tf(p)M

n2
2 = Tϕ2(f(p))V2. We define

Dpf : TpM
n1
1 → Tf(p)M

n2
2 to be composition

TpM
n1
1

=−→ Tϕ1(p)V1
Dϕ1(p)(ϕ2◦f◦ϕ−1

1 )
−−−−−−−−−−−−→ Tϕ2(f(p))V2

=−→ Tf(p)M
n2
2 .

Lemma 2.4. This does not depend on the choice of charts.

Proof. This is in the exercises; it provides good practice in the various iden-
tifications we have made. □
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Theorem 2.1 (the Chain Rule in Euclidean space) immediately implies the
following version of the chain rule.

Theorem 2.5 (Manifold Chain Rule). Let f : Mn1
1 → Mn2

2 and g : Mn2
2 →

Mn3
3 be smooth maps between smooth manifolds. Then for all p ∈Mn1

1 we have

Dp(g ◦ f) = (Df(p)g) ◦ (Dpf).

2.4. The tangent bundle

LetMn be a smooth manifold. We now explain how to assemble all the tangent
spaces of Mn into a single object TMn called the tangent bundle. As a set, it is
easy to define:

TMn = {(p, v⃗) | p ∈Mn and v⃗ ∈ TpM
n}.

A subtle point in this is that the set in which the second coordinate v⃗ of (p, v⃗)
lies depends on the first coordinate p, so this is not a product. For all p ∈ Mn,
we will identify TpM

n with the subset {(p, v⃗) | v⃗ ∈ TpM
n} of TMn. Under this

identification, we have

TMn =
⊔

p∈Mn

TpM
n.

We now define a topology on TMn as follows. Let ϕ : U → V be a chart on Mn.
Define TU to be the subset

{(p, v⃗) | p ∈ U and v⃗ ∈ TpM
n}

of TMn. For p ∈ U , our definition of TpM
n identifies it with Tϕ(p)V = Rn. Define

a map Tϕ : TU → V × Rn via the formula

Tϕ(p, v⃗) = (ϕ(p), v⃗).

We want to construct a topology on TMn such that if TU is given the subspace
topology, then Tϕ is a homeomorphism. Define

U = {(Tϕ)−1(W ) | ϕ : U → V a chart on Mn and W ⊂ V × Rn is open}.
It is easy to see that U is a basis for a topology, and that under this topology the
induced topology on the subsets TU is such that Tϕ is a homeomorphism. We
endow TMn with this topology.

Now, the set V × Rn is an open subset of Rn × Rn = R2n. The maps Tϕ are
thus charts, so TMn is a 2n-dimensional manifold. We now prove that it is in fact
a smooth manifold.

Lemma 2.6. Let Mn be a smooth manifold. Then the set

A = {Tϕ : TU → V × Rn | ϕ : U → V a chart on Mn}
is a smooth atlas on TMn.

Proof. Consider two charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 on Mn. Let
τ12 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2) be the transition map from ϕ1 to ϕ2. By defini-
tion, τ12 is smooth. The transition map on TMn from Tϕ1 : TU1 → V1 × Rn to
Tϕ2 : TU2 → V2 × Rn is the map

Tτ12 : ϕ1(U1 ∩ U2)× Rn −→ ϕ2(U1 ∩ U2)× Rn

defined via the formula

Tτ12(q, v⃗) = (τ12(q), Dqτ12(v⃗)) ∈ ϕ2(U1 ∩ U2)× Rn.
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p

v∈TpS
1

Figure 2.1. A vector v⃗ ∈ TpS
1 is orthogonal to the line from 0 to p.

This is clearly a smooth map, as desired. □

2.5. Visualizing the tangent bundle

Our construction of the tangent bundle was very abstract. In the case of
smooth submanifolds of Rm, there is a simpler construction which is a great aid
to visualization. Consider a smooth submanifold Mn ⊂ Rm. For p ∈ Mn, we can
regard TpM

n as a subspace of TpRm = Rm in the following way. By definition,
there is a diffeomorphism ϕ : U → V , where U ⊂ Mn is an open neighborhood of
p and V ⊂ Rn is an open set. The inverse ϕ−1 can be regarded as a smooth map
from V to Rm, and thus it has a derivative

Dϕ(p)ϕ
−1 : Tϕ(p)V → TpRm = Rm.

The image of this derivative can be identified with the tangent space TpM
n; it is

easy to see that it does not depend on the choice of diffeomorphism ϕ : U → V .
Using this, we can regard the tangent bundle TMn as the subspace

{(p, v⃗) ∈ TRm | p ∈Mn, v⃗ ∈ TpM
n ⊂ TpRm} ⊂ TRm = Rm × Rm.

This results in the familar picture of tangent vectors to Mn as being arrows in Rm
that “point in the direction of the tangent plane to Mn”.

Example. For Sn ⊂ Rn+1, you will prove in the exercises that

TSn = {(p, v⃗) ∈ TRn+1 | ∥p∥ = 1 and v⃗ is orthogonal to the line from 0 to p}.
See Figure 2.1. □

The derivative map can also be understood from this perspective. Let Mn1
1 ⊂

Rm1 andMn2
2 ⊂ Rm2 be smooth submanifolds of Euclidean space and let f :Mn1

1 →
Mn2

2 be a smooth map. Fix some p ∈Mn1
1 . As we will see in Lemma 3.4 of Chapter

3, there exists an open set U ⊂ Rm1 containing p and a smooth map g : U → Rm2

such that g|Mn1
1

= f . The map g induces a derivative map Dpg : TpU → TpRm2

in the sense of multivariable calculus. The derivative Dpf : TpM
n1
1 → Tf(p)M

n2
2 is
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then just the restriction of Dpg to TpM
n1
1 ⊂ TpU ; this image of this restriction lies

in Tf(p)M
n2
2 ⊂ Tf(p)Rm2 .

Often the smooth map f : Mn1
1 → Mn2

2 is given by a formula which can be
extended to an open set U (often all of Rm1 , or at least Rm1 minus some isolated
points where the formula has a singularity). Using this formula, it is easy to use
the above recipe to work out the effect of Dpf .





CHAPTER 3

The structure of smooth maps

3.1. Local diffeomorphisms

The first property of smooth maps we will study is as follows.

Definition. Let f : M1 → M2 be a smooth map between smooth manifolds
and let p ∈ M1. The map f is a local diffeomorphism at p if there exists an
open neighborhood U1 of p such that U2 := f(U1) is an open subset of M2 and
f |U1

: U1 → U2 is a diffeomorphism. The map f is a local diffeomorphism if it is a
local diffeomorphisms at all points. □

Remark. This implies that M1 and M2 have the same dimension. □
Example. Let f : R → S1 be the smooth map defined via the formula f(t) =

(cos(t), sin(t)) ∈ S1 ⊂ R2. Then f is a local diffeomorphism. Since f is not
injective, f is not itself a diffeomorphism. □

Example. Recall that RPn is the quotient space of Sn via the equivalence
relation ∼ that identifies antipodal points x ∈ Sn and −x ∈ Sn. The projection
map f : Sn → RPn is a smooth map which is a local diffeomorphism. □

The following is an easy criterion for recognizing a local diffeomorphism. As
we will see, it is essentially a restatement of the implicit function theorem.

Theorem 3.1 (Implicit Function Theorem). Let f :M1 →M2 be a smooth map
between smooth manifolds and let p ∈ Int(M1). Then f is a local diffeomorphism
at p ∈M1 if and only if the linear map Dpf : TpM1 → Tf(p)M2 is an isomorphism.

Proof. Assume first that f is a local diffeomorphism at p ∈ M1 and let
U1 ⊂ Int(M1) be an open neighborhood of p such that U2 := f(U1) is open and
f |U1

: U1 → U2 is a diffeomorphism. Replacing U1 with a smaller open subset if
necessary, we can find charts ϕ1 : U1 → V1 for M1 and ϕ2 : U2 → V2 for M2. Let
F : V1 → V2 be the expression for f in these local coordinates, i.e. the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2.

Setting q = ϕ1(p), we have identifications TqV1 ∼= TpM1 and TF (q)V2 = Tf(q)M2,
and it is enough to prove that DqF : TqV1 → TF (q)V2 is an isomorphism. Since F is
a diffeomorphism, it has an inverse G : V2 → V1. Applying the chain rule (Theorem
2.1) to idV1

= G ◦ F , we see that

id = DqidV1 = (DF (q)G) ◦ (DpF ).

Similarly, we have
id = DF (q)idV2

= (DpF ) ◦ (DF (q)G).

We conclude that DpF is an isomorphism, as desired.

19
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Figure 3.1. An immersion f : R → R2 that is not an embedding.

Now assume conversely that the linear map Dpf : TpM1 → Tf(p)M2 is an
isomorphism. Choose charts ϕ1 : U1 → V1 for M1 and ϕ2 : U2 → V2 for M2 such
that p ∈ U1 and f(U1) ⊂ U2 and U1 ⊂ Int(M1) and U2 ⊂ Int(M2). Let F : V1 → V2
be the expression for f in these local coordinates, i.e. the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2.

Setting q = ϕ1(p), our assumptions imply that DqF : TqV1 → TF (q)V2 is an isomor-
phism. Since V1 and V2 are open subsets of Euclidean space, we can now apply the
ordinary inverse function theorem to deduce that F is a local diffeomorphism at q.
This implies that f is a local diffeomorphism at p, as desired. □

3.2. Immersions

We now turn to the following property.

Definition. Let f : M1 → M2 be a smooth map between smooth manifolds
and let p ∈ M1. The map f is an immersion at p if the derivative Dpf : TpM1 →
Tf(p)M2 is an injective linear map. The map f is an immersion if it is an immersion
at all points. □

Remark. This implies that the dimension of M2 is at least the dimension of
M1. □

Example. If f : M1 → M2 is a local diffeomorphism at p, then f is an
immersion at p. □

Example. Consider the smooth map f : R → R2 whose image is as in Figure
3.1. Then f is an immersion but is not an embedding. □

Example. If M1 and M2 are smooth manifolds and x ∈ M2, then the map
f :M1 →M1 ×M2 defined via the formula f(p) = (p, x) is an immersion. □

The following theorem says that all immersions look locally like the final ex-
ample above.

Theorem 3.2 (Local Immersion Theorem). Let f : Mn1
1 → Mn2

2 be a smooth
map between smooth manifolds that is an immersion at p ∈ Int(Mn1

1 ). There then
exists an open neighborhood U1 ⊂Mn1

1 of p and an open subset U2 ⊂Mn2
2 satisfying

f(U1) ⊂ U2 such that the following hold. There exists an open subset W ⊂ Rn2−n1 ,
a point w ∈W , and a diffeomorphism ψ : U2 → U1 ×W such that the composition

U1
f−→ U2

ψ−→ U1 ×W
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takes u ∈ U1 to (u,w) ∈ U1 ×W .

Proof. Choose charts ϕ1 : U1 → V1 for M1 and ϕ2 : U2 → V2 for M2 such
that p ∈ U1 and f(U1) ⊂ U2 and U1 ⊂ Int(M1) and U2 ⊂ Int(M2). Let F : V1 → V2
be the expression for f in these local coordinates, i.e. the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2.

Set q = ϕ1(p). The map F is an immersion at q, and it is enough to prove the
theorem for this immersion.

By assumption, the map DqF : TqV1 → TF (q)V2 is an injection. Let

X ⊂ TF (q)V2 = Rn2

be a vector subspace such that

TF (q)V2 = Im(DqF )⊕X.

We thus have X ∼= Rn2−n1 . Define G : V1 ×X → Rn2 via the formula

G(p, x) = F (q) + x.

We have T(q,0)(V1 ×X) = (TqV1)⊕X and by construction the derivative D(q,0)G :
T(q,0)(V1 ×X) → TF (q)V2 is an isomorphism. Theorem 3.1 (the Implicit Function
Theorem) thus implies that G is a local diffeomorphism at (q, 0). This implies that
we can find open subsets V ′

1 ×W ⊂ V1 ×X and V ′
2 ⊂ V2 such that (q, 0) ∈ V ′

1 ×W
and G(V ′

1×W ) = V ′
2 and such that G restricts to a diffeomorphism between V ′

1×W
and V ′

2 . The composition

V ′
1
F−→ V ′

2
G−1

−−−→ V ′
1 ×W

then takes v ∈ V ′
1 to (v, 0) ∈ V ′

1 ×W , as desired. □

3.3. Embeddings

We now discuss embeddings of manifolds.

Definition. A smooth map f : Mn1
1 →Mn2

2 between smooth manifolds is an
embedding if it satisfies the following two properties.

• Letting M3 be the image of f , the map f is a homeomorphism between
Mn1

1 and M3.
• Let g : M3 →Mn1

1 be the inverse of f . Then g is smooth (see the remark
below). □

Remark. A priori the setM3 is merely a subset ofMn2
2 , so the assertion that g

is smooth means smooth in the sense of Definition 1.2, i.e. that for all p ∈M3 there
exists an open set U ⊂Mn2

2 containing p and a smooth function G : U →Mn2
2 such

that G|U∩M3
= g|U∩M3

. □

The following lemma gives an infinitesimal criterion for a map to be an embed-
ding.

Lemma 3.3. Let f : Mn1
1 → Mn2

2 be a smooth map between smooth manifolds
that is a homeomorphism onto its image. Then f is an embedding if and only if f
is an immersion.
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Proof. Assume first that f is an embedding. Consider p ∈Mn1
1 . We want to

prove that the derivative map Dpf : TpM
n1
1 → Tf(p)M

n2
2 is injective. By definition,

there exists an open set U ⊂ Mn2
2 containing p and a smooth map G : U → Mn1

1

such that G ◦ f = id. Using the chain rule (Theorem 2.5), we see that

id = (Df(p)G) ◦ (Dpf).

This immediately implies that Dpf is injective, as desired.
Now assume that f is an immersion. LetM3 be the image of f and let g : M3 →

Mn1
1 be the inverse of f . We want to prove that g is smooth. Consider a point

q ∈ M3 and let p ∈ Mn1
1 be such that f(p) = q. Since f is an immersion, we

can apply the Local Immersion Theorem (Theorem 3.2) to see that there exists a
neighborhood U1 ⊂Mn1

1 of p and an open subset U2 ⊂Mn2
2 satisfying f(U1) ⊂ U2

with the following property. There exists an open subset W ⊂ Rn2−n1 , a point
w ∈W , and a diffeomorphism ψ : U2 → U1 ×W such that the composition

U1
f−→ U2

ψ−→ U1 ×W

takes u ∈ U1 to (u,w) ∈ U1 ×W . The composition

U2
ψ−→ U1 ×W

proj−−→ U1

is then a smooth map G : U2 → U1 such that G|U2∩M3 = g|U2∩M3 , as desired. □

This brings us to the following definition.

Definition. A smooth submanifold of a smooth manifold Mn2
2 is the image of

a smooth embedding f : Mn1
1 → Mn2

2 . This image has the structure of a smooth
n1-dimensional manifold that can be identified with Mn1

1 . □
Remark. If Mn2

2 is Euclidean space, then this reduces to the definition of a
smooth submanifold of Euclidean space as defined in Example 1.2. □

If Mn1
1 is a smooth submanifold of a smooth manifold Mn2

2 , then we now have
to different definitions of what it means for a function f : Mn1

1 → R to be smooth:

(1) The definition in terms of charts for Mn1
1 , and

(2) The definition where we require f to locally extend to a smooth function
on an open subset of Mn2

2 .

This same issue has already arose for smooth submanifolds of Euclidean space;
see Remark 1.3. As we promised in that remark, we now prove that these two
definitions are equivalent.

Lemma 3.4. Let Mn1
1 be a smooth submanifold of a smooth manifold Mn2

2 and
let f : Mn1

1 → R be a function. Then the above two definitions of what it means for
f to be smooth are equivalent.

Proof. It is clear that the second definition implies the first, so we must only
prove that the first implies the second. Assume that f is smooth in terms of the
charts on Mn1

1 and consider p ∈Mn1
1 . Let f : Mn1

1 →Mn2
2 be the embedding. The

local immersion theorem (Theorem 3.2) implies that there exists a neighborhood
U1 ⊂ Mn1

1 of p and an open subset U2 ⊂ Mn2
2 satisfying f(U1) ⊂ U2 with the

following property. There exists an open subset W ⊂ Rn2−n1 , a point w ∈W , and
a diffeomorphism ψ : U2 → U1 ×W such that the composition

U1
f−→ U2

ψ−→ U1 ×W
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takes u ∈ U1 to (u,w) ∈ U1 ×W . Let F : U2 → R be the composition

U2
ψ−→ U1×

proj−−→ U1
f−→ R.

Then F is smooth and F |Mn1
1 ∩U2

= f |Mn1
1 ∩U2

, as desired. □

3.4. Embedding manifolds into Euclidean space

We now prove that every compact smooth manifold can be realized as a smooth
submanifold of Euclidean space.

Theorem 3.5. If Mn is a compact smooth manifold, then for some m ≫ 0
there exists an embedding f :Mn → Rm.

Remark. This is also true for noncompact manifolds manifolds, though the
proof is a little more complicated. Whitney proved a difficult theorem that says
that we can take m = 2n. □

Proof of Theorem 3.5. Since Mn is compact, there exists a finite atlas

A = {ϕi : Ui → Vi}ki=1.

Choose open subsets Wi ⊂ Ui such that {Wi}ki=1 is still a cover of Mn and such
that the closure of Wi in Ui is compact. Using Lemma 1.4, we can find a smooth
function νi : M

n → R such that (νi)|Wi
= 1 and (νi)|Mn\Ui

= 0. Next, define a
function ηi :M

n → Rn via the formula

ηi(p) =

{
νi(p) · ϕi(p) if p ∈ Ui,

0 otherwise.

Clearly ηi is a smooth function. Finally, define f :Mn → Rk(n+1) via the formula

f(p) = (ν1(p), η1(p), . . . , νk(p), ηk(p)).

The function f is then a smooth map.
By Lemma 3.3, to prove that f is an embedding it is enough to prove that

it is a homeomorphism onto its image and that it is an immersion. Since Mn is
compact, to prove that f is a homeomorphism onto its image it is enough to prove
that f is injective. Consider points p1, p2 ∈Mn such that f(p1) = f(p2). We thus
have in particular that νi(p1) = νi(p2) for all 1 ≤ i ≤ k. Since the Wi form a cover
of Mn and νi|Wi

= 1, we can find some 1 ≤ i ≤ k such that ηi(p1) = ηi(p2) = 1.
This implies that p1, p2 ∈ Ui and

ϕi(p1) = ηi(p1) = ηi(p2) = ϕi(p2).

Since ϕi : Ui → Vi is a diffeomorphism, we conclude that p1 = p2, as desired.
It remains to prove that f is an immersion. Fix a point p0 ∈ Mn. Pick

1 ≤ j ≤ k such that p0 ∈Wj . Let

g : Rk(n+1) −→ Rn

be the projection onto the coordinates corresponding to ηj , so g◦f = ηj . The chain
rule (Theorem 2.5) thus implies that

(1) Dp0ηj = (Df(pp)g) ◦ (Dp0f).

Since p0 ∈ Wj and ηj |Wj = ϕj |Wj , we see that Dp0ηj = Dp0ϕj . Since ϕj : Uj → Vj
is a diffeomorphism, we see that Dp0ϕj is an isomorphism. The formula in (1) thus
implies that Dp0f is an injection, as desired. □
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3.5. Submersions

We now turn to the following.

Definition. Let f : M1 → M2 be a smooth map between smooth manifolds
and let p ∈ M1. The map f is a submersion at p if the derivative Dpf : TpM1 →
Tf(p)M2 is a surjective linear map. The map f is a submersion if it is a submersion
at all points. □

Remark. This implies that the dimension of M1 is at least the dimension of
M2. □

Example. If f :M1 →M2 is a local diffeomorphism at p, then f is a submer-
sion at p. □

Example. If M1 and M2 are smooth manifolds, then the map f :M1 ×M2 →
M1 defined via the formula f(p1, p2) = p2 is a submersion. □

The following theorem says that all submersions look locally like the final ex-
ample above.

Theorem 3.6 (Local Submersion Theorem). Let f :Mn1
1 →Mn2

2 be a smooth
map between smooth manifolds that is a submersion at p ∈ Int(Mn1

1 ). There then
exists an open neighborhood U1 ⊂Mn1

1 of p and an open subset U2 ⊂Mn2
2 satisfying

f(U1) ⊂ U2 such that the following hold. There exists an open subset W ⊂ Rn1−n2

and a diffeomorphism ψ : U2 ×W → U1 such that the composition

U2 ×W
ψ−→ U1

f−→ U2

takes (u,w) ∈ U2 ×W to u ∈ U2.

Proof. Choose charts ϕ1 : U1 → V1 for M1 and ϕ2 : U2 → V2 for M2 such
that p ∈ U1 and f(U1) ⊂ U2 and U1 ⊂ Int(M1) and U2 ⊂ Int(M2). Let F : V1 → V2
be the expression for f in these local coordinates, i.e. the composition

V1
ϕ−1
1−−→ U1

f−→ U2
ϕ2−→ V2.

Set q = ϕ1(p). The map F is a submersion at q, and it is enough to prove the
theorem for this submersion.

By assumption, the map DqF : TqV1 → TF (q)V2 is a surjection. Let X =

ker(DqF ), so X ∼= Rn1−n2 . Identifying TqV1 with Rn1 , let π : Rn1 → X be a linear
map such that π|X = id. Define G : V1 → V2 ×X via the formula

G(v) = (F (v), π(v)).

We have T(F (q),π(q))(V2 ×X) = (TF (q)V2) ×X and by construction the derivative
DqG : TqV1 → T(F (q),π(q))(V2 ×X) is an isomorphism. Theorem 3.1 (the Implicit
Function Theorem) thus implies that G is a local diffeomorphism at q. This implies
that we can find open subset V ′

1 ⊂ V1 and V ′
2 ×W ⊂ V2 ×X such that q ∈ V ′

1 and
G(V ′

1) ⊂ V ′
2 ×W and such that G restricts to a diffeomorphism between V ′

1 and
V ′
2 ×W . The composition

V ′
2 ×W

G−1

−−−→ V ′
1 −→ V ′

2

then takes (v, w) ∈ V ′
2 ×W to v ∈ V ′

2 , as desired. □
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3.6. Regular values

We now discuss regular values, which are defined as follows.

Definition. Let f : M1 → M2 be a smooth map between smooth manifolds
and let q ∈ M2. Then q ∈ M2 is a regular value if f is a submersion at each point
of f−1(q). □

Before we discuss some examples, we prove the following theorem.

Theorem 3.7. Let f :Mn1
1 →Mn2

2 be a smooth map between smooth manifolds
and let q ∈ Mn2

2 be a regular value such that f−1(q) is nonempty. Then f−1(q) is
a smooth (n1 − n2)-dimensional smooth submanifold of Mn1

1 .

Proof. Consider p ∈ f−1(q). Theorem 3.6 (the Submersion Theorem) im-
plies that there exists an open neighborhood U1 ⊂ Mn1

1 of p and an open subset
U2 ⊂ Mn2

2 satisfying f(U1) ⊂ U2 such that the following hold. There exists an
open subset W ⊂ Rn1−n2 and a diffeomorphism ψ : U2 ×W → U1 such that the
composition

U2 ×W
ψ−→ U1

f−→ U2

takes (u,w) ∈ U2×W to u ∈ U2. This implies that ψ−1 restricts to a diffeomorphism
between f−1(q)∩U1 and {q}×W , i.e. that the point p ∈ f−1(q) has a neighborhood
diffeomorphic to the open subset W of Rn1−n2 , as desired. □

It turns out that all smooth maps have many smooth values.

Theorem 3.8 (Sard’s Theorem). Let f :Mn1
1 →Mn2

2 be a smooth map between
smooth manifolds. Then the set of regular values of f is open and dense in Mn2

2 .

Remark. In fact, Sard’s theorem asserts something stronger: the set of non-
regular values forms a set of measure 0. Defining what this means requires a
discussion of measure theory, which we prefer to to include. □

Proof of Theorem 3.8. Omitted. The proof in Milnor’s “Topology from
the differential viewpoint” is very readable. □

We now discuss a large number of illustrations of Theorem 3.7.

Example. Let f : Mn1
1 → Mn2

2 be a smooth map such that n1 < n2. For
instance, f might be an embedding of an n-manifold into Rm for some m > n.
Then f is clearly not a submersion anywhere, so the only regular values of f are
the points not in the image of f . For such a point q, we have f−1(q) = ∅, which
is what Theorem 3.7 predicts. Sard’s Theorem (Theorem 3.8) implies that such
regular values must exist. This implies in particular that there does not exist a
smooth surjective map f : S1 → Rn with n ≥ 2. This is in contrast to the fact that
there exist continuous space-filling curves. □

Example. As in Figure 3.2, consider the 2-torus T embedded in R3 and let
f : T → R be the “height function”, i.e. the function defined by the formula
f(x, y, z) = z for all (x, y, z) ∈ T . The only non-regular values of f are then
{0, 2, 4, 6}. For a regular value x ∈ R \ {0, 2, 4, 6}, the subset f−1(x) ⊂ T is a
1-manifold. There are several cases:

• If x < 0 or x > 6, then f−1(x) = ∅.
• If 0 < x < 2 or 4 < x < 6, then f−1(x) consists of a single circle.
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Figure 3.2. The torus T in R3 together with the height function
f : T → R.

• If 2 < x < 4, then f−1(x) consists of the disjoint union of two circles.
For x ∈ {0, 2, 4, 6}, the set f−1(x) is not a 1-manifold. For x ∈ {0, 6}, the set
f−1(x) consists of a single point (a 0-manifold). For x ∈ {2, 4}, the set f−1(x) is
not even a manifold (it is a “figure 8”). □

Example. Consider the map f : Rn+1 → R defined via the formula

f(x1, . . . , xn+1) = x21 + · · ·+ x2n+1.

The derivative of this at p = (p1, . . . , pn+1) is the linear map Dpf : TpRn+1 →
Tf(p)R1 represented by the 1× (n+ 1)-matrix(

2p1 2p2 · · · 2pn+1

)
.

This is surjective as long as it is nonzero. We conclude that f is a submersion at
every point except for 0 ∈ Rn+1, and thus that every nonzero point of R is a regular
value. Since f−1(1) = Sn, applying Theorem 3.7 furnishes us with another proof
that Sn is a smooth n-manifold. □

Many smooth manifolds can be constructed like Sn was above. The following
example is a very important case of this.

Example. We can identify the set Matn of n× n real matrices with Rn2

, and
thus endow it with the structure of a smooth manifold. The map f : Matn → R
defined via f(A) = det(A) is clearly a smooth map. We claim that f is a submersion
at all points A ∈ Matn such that f(A) ̸= 0. Indeed, fixing such an A we define a
smooth map g : R → Matn via the formula g(t) = tA. We have

f(g(t)) = det(tA) = tn det(A).
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Figure 3.3. The function f : S2 → S2 equals g ◦π. It takes X to
p0 and each open disc Di diffeomorphically to S2 \ {p0}.

The ordinary calculus derivative of the map f ◦ g : R → R is thus nonzero at t = 1,
which implies that the derivative map D1(f ◦ g) : T1R → Tdet(A)R is a surjective
linear map (it is just multiplication by our nonzero ordinary calculus derivative!).
The chain rule (Theorem 2.5) implies that

D1(f ◦ g) = (DAf) ◦ (D1g).

Since D1(f ◦ g) is surjective, we conclude that DAf is surjective, i.e. that f is a
submersion at A, as claimed. The upshot is that all nonzero numbers are regular
values of f : Matn → R. In particular, Theorem 3.7 implies that

SLn(R) = f−1(1)

is a smooth manifold of dimension n2 − 1. Just like GLn(R), this is an example
of a Lie group (a group which is also a smooth manifold and for which the group
operations are smooth). □

Example. As in Figure 3.3, letD1 andD2 andD3 be three disjoint open round
discs in S2 and let X = S2 \ (D1 ∪D2 ∪D3). We construct a function f : S2 → S2

as follows.
• Let S2 ∨ S2 ∨ S2 be the result of gluing three copies of S2 together at a
single point (which we will call the “wedge point”). The space S2∨S2∨S2

is not a manifold because the wedge point does not have a neighborhood
homeomorphic to an open set in Euclidean space. There is a map π : S2 →
S2∨S2∨S2 obtained by collapsing the subset X to a single point; the map
π takes X to the wedge point and each open disc Di homeomorphically
to the result of removing the wedge point from one of the S2’s.

• Fix some basepoint p0 ∈ S2. There is a map g : S2 ∨ S2 ∨ S2 → S2 that
takes each copy of S2 homeomorphically onto S2 and takes the wedge
point to p0.

• We define f = g ◦ π.
If one is careful in the above construction, we can ensure that f is a smooth map.
The regular values of f are S2 \ {p0}. For x ∈ S2 \ {p0}, the set f−1(x) consists
of three point, one in each disc Di. As we expect, this is a 0-manifold. The set
f−1(p0) is X; this is not even a manifold. □





CHAPTER 4

Vector fields

In this chapter, we discuss some basic results about vector fields, including
their integral curves and flows.

4.1. Definition and basic examples

Let Mn be a smooth manifold. Intuitively, a smooth vector field on Mn is a
smoothly varying choice of vector TpM

n for each p ∈Mn. More precisely, a smooth
vector field on Mn is a smooth map ν : Mn → TMn such that ν(p) ∈ TpM

n for all
p ∈ Mn. Let X(Mn) be the set of smooth vector fields on Mn. The vector space
structures on each TpM

n together endow X(Mn) with the structure of a real vector
space (infinite dimensional unless Mn is a compact 0-manifold).

If ν ∈ X(Mn) and ϕ : U → V is a chart on Mn, then for all p ∈ U we have the

standard basis {
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p
} for TpM

n with respect to ϕ : U → V ; here

recall that
(

∂
∂xi

)
p
∈ TpM

n is the vector represented by the vector
(

∂
∂xi

)
ϕ(p)

in

Tϕ(p)V = Rn with a 1 in position i and 0’s elsewhere. We can then write

ν(p) = ν1(p) ·
(

∂

∂x1

)
p

+ · · ·+ νn(p) ·
(

∂

∂xn

)
p

for some unique ν1(p), . . . , νn(p) ∈ R. The resulting functions νi : U → R are
smooth functions; indeed, if you unwind the definitions you will see that this is
equivalent to the fact that the map ν : Mn → TMn is smooth. The expression

ν1 ·
∂

∂x1
+ · · ·+ νn · ∂

∂xn

will be called the expression for ν with respect to the local coordinates V .

Remark. If ϕ : U → V is a chart on a smooth manifoldMn, then for 1 ≤ i ≤ n
we have a vector field ∂

∂xi
not on all of Mn, but only on the open subset U of

Mn. □

It is particularly easy to write down smooth vector fields on smooth subman-
ifolds Mn of Rm. Namely, recall that the embedding of Mn in Rm identifies
each TpM

n with an n-dimensional subspace of TRm = Rm. A smooth vector
field on Mn can thus be identified with a smooth map ν : Mn → Rm such that
ν(p) ∈ TpM

n ⊂ Rm for each p ∈ Mn. We warn the reader that this is different
from the expressions for ν in local coordinates defined above.

Example. Consider an odd-dimensional sphere S2n−1 ⊂ R2n. Recall that

TS2n−1 = {(p, v⃗) ∈ TR2n | ∥p∥ = 1 and v⃗ is orthogonal to the line from 0 to p}.

29
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We can then define a smooth vector field on S2n−1 via the formula

ν(x1, . . . , x2n) = (x2,−x1, x4,−x3, . . . , x2n,−x2n−1) ∈ T(x1,...,x2n)S
2n−1 ⊂ Rm

for each (x1, . . . , x2n) ∈ S2n−1. The smooth vector field ν has the property that
ν(p) ̸= 0 for all p ∈ S2n−1. A basic theorem from topology (the “hairy ball
theorem”) asserts that no such nonvanishing smooth vector field exists on an even-
dimensional sphere. □

Example. Let Mn be a smooth submanifold of Rm and let f : Mn → R be a
smooth function. We can then define a smooth vector field grad(f) on Mn in the
following way. Consider p ∈ Mn. We can define a linear map ηp : TpM

n → R via
the formula

ηp(v⃗) = Xv⃗(f).

Let ω(·, ·) be the usual inner product on Rm. There then exists a unique vector
grad(f)(p) ∈ TpM

n such that

ηp(v⃗) = ω(grad(f)(p), v⃗) (v⃗ ∈ TpM
n).

It is easy to see that this map grad(f) : Mn → TMn is a smooth vector field. □

Remark. In the construction of grad(f), we used the embedding of Mn into
Rm to obtain an inner product on each TpM

n. More generally, a Riemannian metric
on Mn is a choice of a nondegenerate symmetric bilinear form on each TpM

n that
varies smoothly in an appropriate sense. Given a Riemannian metric onMn, we can
define a smooth vector field grad(f) on Mn for any smooth function F : Mn → R
via the above procedure. □

4.2. Integral curves of vector fields

Let M be a smooth manifold and let ν ∈ X(M). Informally, an integral curve
of ν is a smoothly embedded curve that moves in the direction of ν. To make this
precise, if I ⊂ R is an open interval and γ : I →M is a smooth map, then for t ∈ I
we define γ′(t) ∈ Tγ(t)M to be the image under the map Dtγ : TtI → Tγ(t)M of the
element 1 ∈ TtI = Rn. The curve γ is an integral curve of ν if γ′(t) = ν(γ(t)) for
all t ∈ I.

Our main theorem then is as follows.

Theorem 4.1 (Existence of integral curves). Let M be a smooth manifold and
let ν ∈ X(M). Assume that Supp(ν) is compact. Then for all p ∈ M , there a
unique integral curve γ : R →M of ν such that γ(0) = p.

Remark. The hypothesis that Supp(ν) is compact holds automatically if M
is compact. □

Remark. The theorem is not necessarily true if Supp(ν) is not compact. The
problem is that the integral curve might “escape” the manifold in finite time. As
an example of what we mean here, let M = R \ {2}. This has a single chart
idR\{2} → R\{2} and we have a vector field ∂

∂x defined on all of M . We can then

define an integral curve γ : (−∞, 2) →M for ∂
∂x via the formula γ(t) = t; however,

we cannt extend γ past 2 since it runs into the missing point 2. □

The key technical input to the proof is the following lemma.
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Lemma 4.2. Consider a chain of open sets V ′′ ⊂ V ′ ⊂ V ⊂ Rn such that the
closure of V ′′ is a compact subset of V ′ and such that the closure of V ′ is a compact
subset of V . Consider ν ∈ X(V ). Then there is an ϵ > 0 such that for all p ∈ V ′′,
there exists an integral curve γ : (−ϵ, ϵ) → V such that γ(0) = p and γ′(t) = ν(γ(t))
for all t ∈ (−ϵ, ϵ). The integral curve γ is unique in the following sense: if for some
δ > 0 there is another integral curve λ : (−δ, δ) → V with λ(0) = p, then γ(t) = λ(t)
for all t ∈ (−ϵ, ϵ) ∩ (−δ, δ).

Proof. This is simply a restatement into our language of the usual existence
and uniqueness for solutions of systems of ordinary differential equations. □

This lemma provides the local result needed for the following.

Lemma 4.3. Let M be a smooth manifold and let ν ∈ X(M). Assume that
Supp(ν) is a compact subset of Int(M). There then exists some ϵ > 0 such that
for all p ∈ M , there exists an integral curve γ : (−ϵ, ϵ) → M such that γ(0) = p.
The integral curve γ is unique in the following sense: if for some δ > 0 there is
another integral curve λ : (−δ, δ) → M with λ(0) = p, then γ(t) = λ(t) for all
t ∈ (−ϵ, ϵ) ∩ (−δ, δ).

Proof. Let {Ui}ki=1 and {U ′
i}ki=1 and {U ′′

i }ki=1 be finite open covers of the
compact set Supp(ν) such that the following hold for all 1 ≤ i ≤ k.

• There exists a chart ϕi : Ui → Vi.
• The set Ui lies in Int(M).
• The closure of U ′

i is a compact subset of Ui.
• The closure of U ′′

i is a compact subset of U ′
i .

For 1 ≤ i ≤ k, we can apply Lemma 4.2 to find some ϵi > 0 such that for all p ∈ U ′′
i ,

there exists a smooth map γ : (−ϵi, ϵi) → Ui with γ(0) = 0 and γ′(t) = ν(γ(t)) for
all t ∈ (−ϵi, ϵi). Let ϵ > 0 be the minimum of the ϵi. Then the desired curve
γ : (−ϵ, ϵ) → M exists and is unique for all p ∈ Supp(ν). But for p /∈ Supp(ν)
we have ν(p) = 0, and thus the desired curve is the constant curve γ : (ϵ, ϵ) → M
defined by γ(t) = p for all t. □

Proof of Theorem 4.1. Let ϵ > 0 be the constant given by Lemma 4.3
and let p ∈ M . For k ≥ 1, we will prove that there exists a unique smooth
function γk : (−kϵ/2, kϵ/2) → M such that γk(0) = p and γ′k(t) = ν(γk(t)) for all
t ∈ (−kϵ/2, kϵ/2). Before we do that, observe that the uniqueness of γk implies
that γk+1(t) = γk(t) for t ∈ (−kϵ/2, kϵ/2), so the desired integral curve γ : R →M
can be defined by γ(t) = γk(t), where k is chosen large enough such that t ∈
(−kϵ/2, kϵ/2). The uniqueness of our integral curve follows from the uniqueness of
the γk.

It remains to construct the γk. This construction will be inductive. First, we
can use Lemma 4.3 to construct and prove unique the desired γ1 : (−ϵ/2, ϵ/2) →M
(in fact, we could ensure that γ1 was defined on (−ϵ, ϵ), but this will simplify our
inductive procedure). Now assume that γk has been constructed and proven to be
unique. Set qk = γk((k − 1)ϵ/2) and rk = γk(−(k − 1)ϵ/2). Another application
of Lemma 4.3 implies that there exists smooth functions ζk : (−ϵ, ϵ) → M and
κk : (−ϵ, ϵ) →M such that

ζk(0) = pk and κk(0) = rk

and such that
ζ ′k(t) = ν(ζk(t)) and κ′k(t) = ν(κk(t))
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for all t ∈ (−ϵ, ϵ). The uniqueness statement in Lemma 4.3 implies that

ζk(t) = γk((k − 1)ϵ/2 + t) and κk(t) = γk(−(k − 1)ϵ/2 + t)

for all t ∈ (−ϵ/2, ϵ/2). The desired function γk+1 : (−(k + 1)ϵ/2, (k + 1)ϵ/2) → M
is then defined via the formula

γk+1(t) =


κk(t+ (k − 1)ϵ/2) if −(k + 1)ϵ/2 < t < −(k − 1)ϵ/2,

γk(t) if −kϵ/2 < t < kϵ/2,

ζk(t− (k − 1)ϵ/2) if (k − 1)ϵ/2 < t < (k + 11)ϵ/2.

Its uniqueness follows from the uniqueness statement in Lemma 4.3. □

4.3. Flows

Let M be a smooth manifold and let ν ∈ X(M). In this section, we use the
results of the previous section to prove an important theorem which says that in
most cases ν determines a flow, that is, a family of diffeomorphisms of M that
move points in the direction of ν. More precisely, a flow on M in the direction of ν
consists of smooth maps ft : M →M for each t ∈ R with the following properties.

• For all t ∈ R, the map ft is a diffeomorphism.
• Define F : M×R →M via the formula F (p, t) = ft(p). Then F is smooth.
• For all t, s ∈ R, we have ft+s = ft ◦ fs. In particular, f0 = id.
• For all p ∈M , define γp : R →M via the formula γp(t) = ft(p). Then γp
is an integral curve for ν starting at p.

Our main theorem is as follows.

Theorem 4.4 (Existence of flows). Let M be a smooth manifold and let ν ∈
X(M) be such that Supp(ν) is compact. Then there exists a unique flow on M in
the direction of ν.

Proof. Theorem 4.1 implies that for all p ∈M , there exists a unique integral
curve γp : R → M for ν starting at p. From the uniqueness of this integral curve,
we see that

(2) γp(s+ t) = γγp(s)(t) (p ∈M, s, t ∈ R).

Define F : M ×R →M via the formula F (p, t) = γp(t). It follows from the smooth
dependence on initial conditions of solutions to systems of ordinary differential
equations that F is smooth. For t ∈ R, define ft : M →M via the formula ft(p) =
F (p, t) for p ∈ M . The equation (2) implies that fs+t = fs ◦ ft for all s, t ∈ R.
Since f0 = id by construction, this implies that f−t ◦ ft = id for all t ∈ R, and
hence each ft is a diffeomorphism. The theorem follows. □

4.4. Moving points around via flows

As an application of flows, we will prove the following theorem.

Theorem 4.5. Let Mn be a connected smooth manifold and let p, q ∈ Mn.
Then there exists a diffeomorphism f : Mn →Mn such that f(p) = q.

Proof. The proof has two steps.

Step 1. Let V ⊂ Rn be an open disc with center x0 and radius r > 0. Consider
p, q ∈ V . Then there exists a diffeomorphism g : V → V such that g(p) = q and
such that for some ϵ > 0 we have g(x) = x for all x ∈ V satisfying ∥x−x0∥ > r−ϵ.
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Without loss of generality, we can assume that x0 = 0. Let v⃗ ∈ Rn be the
vector q − p and let ν1 ∈ X(V ) be the constant vector field ν1(p) = v⃗ on V . We
cannot apply Theorem 4.4 to ν1 since it does not have compact support. However,
choose 0 < ϵ < ϵ′ < r such that ∥p∥ < ϵ′ and ∥q∥ < ϵ′. Using Lemma 1.4, we can
find a smooth function h : V → R such that

h(x) = 1 (∥x∥ ≤ ϵ′)

and
h(x) = 0 (∥x∥ > r − ϵ).

Define ν ∈ X(V ) via the formula

ν(x) = h(x) · ν1(x).
The support of ν is then compact, so we can apply Theorem 4.4 to obtain a flow
gt : V → V . Unwinding the definitions, the map [0, 1] → V taking t ∈ [0, 1] to gt(p)
traces out the straight line segment connecting p to q; in particular, g1(p) = q.
Moreover, for x ∈ V satisfying ∥x∥ > r − ϵ we have ν(x) = 0, and thus g1(x) = x,
as desired.

Step 2. We construct f .

Let γ : [0, 1] → Mn be a continuous path with γ(0) = p and γ(1) = q. We can
then find some N > 0 such that for all 0 ≤ k < N , there exists a chart ϕk : Uk → Vk
with γ(k/N), γ((k+1)/N) ∈ Uk and with Vk an open disc in Rn. Let gk : Vk → Vk
be the diffeomorphism taking ϕ(γ(k/N)) to ϕ(γ((k+1)/N)) given by Step 1. Define
fk : M

n →Mn via the formula

gk(p) =

{
ϕ−1
k (gk(ϕk(p))) if p ∈ Uk,

p otherwise.

It is clear that fk is a diffeomorphism of Mn satisfying

fk(γ(k/N)) = γ((k + 1)/N).

Define
f = fN−1 ◦ fN−2 ◦ · · · ◦ f1 : Mn →Mn.

Then f is a diffeomorphism satisfying f(p) = q, as desired. □





CHAPTER 5

Differential 1-forms

In this chapter, we introduce the theory of differential 1-forms and path inte-
grals.

5.1. Cotangent vectors

Recall that if V is a finite-dimensional R-vector space, then the dual of V ,
denoted V ∗, is the set of all R-linear maps V → R. The dual V ∗ is an R-vector
space of the same dimension as V . If {e⃗1, . . . , e⃗n} is a basis for V , then we can
define a dual basis {v⃗∗1 , . . . , v⃗∗n} for V ∗ via the formula

v⃗∗k(

n∑
i=1

cie⃗i) = ck (c1, . . . , cn ∈ R, 1 ≤ k ≤ n).

This leads to an isomorphism between V and V ∗ taking e⃗i to e⃗
∗
i . However, we warn

the reader that this isomorphism depends on the choice of basis {e⃗1, . . . , e⃗n} and
that there is no canonical (i.e. basis independent) choice of isomorphism between
V ∗ and V .

The cotangent space is now defined as follows.

Definition. Let Mn be a smooth manifold and let p ∈ Mn. The cotangent
space of Mn at p, denoted T ∗

pM
n, is the dual (TpM

n)∗ of the tangent space at
p. □

If ϕ : U → V is a chart forMn with p ∈ U , then TpM
n is identified with Tϕ(p)V

and T ∗
pM

n is identified with (Tϕ(p)V )∗. Let {
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p
} be the standard

basis for TpM
n with respect to ϕ : U → V . The dual basis for T ∗

pM
n is denoted

{(dx1)p, . . . , (dxn)p}, so by definition we have

(dxi)p(

(
∂

∂xj

)
p

) =

{
1 if i = j,

0 otherwise

for 1 ≤ i, j ≤ n. We will call {(dx1)p, . . . , (dxn)p} the standard basis for the
cotangent space of Mn at p with respect to ϕ : U → V .

Now consider two charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 with p ∈ U1 ∩ U2. Set
q1 = ϕ1(p) and q2 = ϕ2(p) and let τ12 : ϕ1(U1∩U2) → ϕ2(U1∩U2) be the transition
map. By definition, the composition

Tq1V1 = TpM
n = Tq2V2

of our identifications is given by the derivative map

(3) Dq1τ12 : Tq1V1 → Tq2V2.

35
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Now consider an element ρ ∈ T ∗
pM

n. We can identify ρ with elements ρ1 ∈ (Tq1V1)
∗

and ρ2 ∈ (Tq2V2)
∗. If v⃗ ∈ TpM

n is identified with v⃗1 ∈ Tq1V1 and v⃗2 ∈ Tq2V2, then
we must have

ρ(v⃗) = ρ1(v⃗1) = ρ2(v⃗2).

By (3), we have v⃗1 = (Dq1τ12)
−1(v⃗2), and thus

ρ1((Dq1τ12)
−1(v⃗2)) = ρ2(v⃗2).

In other words, ρ1 and ρ2 are related by the equation

(4) ρ2 = ρ1 ◦ (Dq1τ12)
−1.

We close this section by giving an important example of a cotangent vector.

Example. Let Mn be a smooth manifold, let f : Mn → R be a smooth map,
and let p ∈ Mn. We define (df)p ∈ T ∗

pM
n to be the linear map TpM

n → R that
takes v⃗ ∈ TpM

n to the directional derivative of f in the direction of v⃗. In other
words, (df)p(v⃗) is the image of v⃗ under the derivative map

Dpf : TpM
n → Tf(p)R = R.

If ϕ : U → V is a chart with p ∈ U and {(dx1)p, . . . , (dxn)p} is the associated
standard basis for the cotangent space of Mn at p, then the usual formulas from
multivariable calculus show that

(df)p =

n∑
i=1

∂f ◦ ϕ−1

∂xi
(ϕ(p)) · (dxi)p;

here observe that f ◦ϕ−1 : V → R is a smooth function on the open set V of Rn. □
Remark. This is consistent with our previous notation: if ϕ : U → V is a chart

on a smooth manifold Mn, then for 1 ≤ i ≤ n we have the coordinate functions
xi : U → R. For p ∈ U , the element (dxi)p defined in the previous example agrees
with the corresponding element of the standard basis for the cotangent space of
Mn at p. □

5.2. The cotangent bundle

Let Mn be a smooth manifold. Our goal now is to globalize the construction
in the previous section to define the cotangent bundle of a smooth manifold Mn.
The construction will be very similar to that of the tangent bundle. As a set, we
define

T ∗Mn = {(p, ρ) | p ∈Mn and ρ ∈ T ∗
pM

n}.
For all p ∈ Mn, we will identify T ∗

pM
n with the subset {(p, ρ) | ρ ∈ T ∗

pM
n} of

T ∗Mn. Under this identification, we have

T ∗Mn =
⊔

p∈Mn

T ∗
pM

n.

We now define a topology on T ∗Mn as follows. Let ϕ : U → V be a chart on Mn.
Define T ∗U to be the subset

{(p, ρ) | p ∈ U and ρ ∈ T ∗
pM

n}
of T ∗Mn. For p ∈ U , our definition of T ∗

pM
n identifies it with T ∗

ϕ(p)V = (Rn)∗.
Define a map T ∗ϕ : T ∗U → V × (Rn)∗ via the formula

T ∗ϕ(p, ρ) = (ϕ(p), ρ).
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We want to construct a topology on T ∗Mn such that if T ∗U is given the subspace
topology, then T ∗ϕ is a homeomorphism. Define

U = {(T ∗ϕ)−1(W ) | ϕ : U → V a chart on Mn and W ⊂ V × (Rn)∗ is open}.
It is easy to see that U is a basis for a topology, and that under this topology the
induced topology on the subsets T ∗U is such that T ∗ϕ is a homeomorphism. We
endow T ∗Mn with this topology.

Now, the set V × (Rn)∗ is an open subset of Rn× (Rn)∗ ∼= R2n. The maps T ∗ϕ
are thus charts, so T ∗Mn is a 2n-dimensional manifold. We now prove that it is in
fact a smooth manifold.

Lemma 5.1. Let Mn be a smooth manifold. Then the set

A = {T ∗ϕ : T ∗U → V × (Rn)∗ | ϕ : U → V a chart on Mn}
is a smooth atlas on T ∗Mn.

Proof. Consider two charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 on Mn. Let
τ12 : ϕ1(U1∩U2) → ϕ2(U1∩U2) be the transition map from ϕ1 to ϕ2. By definition,
τ12 is smooth. Using equation (4) above, we see that the transition map on T ∗Mn

from T ∗ϕ1 : T
∗U1 → V1 × (Rn)∗ to T ∗ϕ2 : T

∗U2 → V2 × (Rn)∗ is the map

T ∗τ12 : ϕ1(U1 ∩ U2)× (Rn)∗ −→ ϕ2(U1 ∩ U2)× (Rn)∗

defined via the formula

T ∗τ12(q, ρ) = (τ12(q), ρ ◦ (Dqτ12)
−1) ∈ ϕ2(U1 ∩ U2)× (Rn)∗.

This is clearly a smooth map, as desired. □

5.3. Differential 1-forms

Fix a smooth manifold Mn. We then make the following definition.

Definition. Let Mn be a smooth manifold. A differential 1-form on Mn is a
smooth map ω : Mn → T ∗Mn such that ω(p) ∈ T ∗

pM
n for all p ∈ Mn. The set of

all differential 1-forms on Mn is denoted Ω1(Mn). □

Example. Regarding S1 as a smooth submanifold of R2, recall that for (x, y) ∈
S1 the vector space T(x,y)S

1 can be regarded as the subspace of R2 spanned by

(−y, x). We can then define an element θ ∈ Ω1(S1) by letting θ(x, y) ∈ T ∗
(x,y)S

1 be

the linear map that takes t · (−y, x) to t. □

Observe that the R-vector space structure on the cotangent spaces ofMn makes
Ω1(Mn) into an R-vector space. In fact, it has even more structure: if f : Mn → R
is a smooth function and ω ∈ Ω1(Mn), then we can define an element of Ω1(Mn)
that takes p ∈Mn to f(p) ·ω(p) ∈ T ∗

p (M
n); we will denote this by fω. This makes

Ω1(Mn) into a module over the ring of smooth functions on Mn.
We now explain how to think about differential 1-forms locally. Fix a chart

ϕ : U → V onMn. Letting x1, . . . , xn be the coordinate functions of V , for all p ∈ U
we have the standard basis {(dx1)p, . . . , (dxn)p} for T ∗

pM
n. For all 1 ≤ i ≤ n, the

map p 7→ (dxi)p is a differential 1-form on the open set U of Mn. If ω ∈ Ω1(Mn),
then there exist functions f1, . . . , fn : U → R such that the restriction to U of
ω equals f1dx1 + · · · + fndxn. The fact that ω is a smooth map from Mn to
T ∗Mn is equivalent to the fact that these functions fi are smooth. The expression
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f1dx1 + · · · + fndxn will be called the expression for ω in the local coordinates
ϕ : U → V .

Example. Let us return to Example 5.3. Let θ ∈ Ω1(S1) be the differential
1-form from that example. Set U = S1 \ {(0, 1)} and let ϕ : U → R be given by
stereographic projection, so ϕ(x, y) = x/(1 − y). To keep our notation straight,
we will let z be the coordinate function on R. We will determine the function
f : R → R such that the restriction of θ to U equals fdz. Observe that

ϕ−1(z) = (
2z

z2 + 1
,
z2 − 1

z2 + 1
),

and thus

Dzϕ
−1 : TzR → Tϕ−1(z)S

1

is represented by the matrix (
2(1−z2)
(1+z2)2

4z
(1+z2)2

)
.

For (x, y) ∈ S1, like in Example 5.3 we will regard T(x,y)S
1 as the subspace of R2

spanned by (−y, x). Using this, it follows that(
∂

∂z

)
( 2z
z2+1

, z
2−1

z2+1
)

=
2

z2 + 1
· (1− z2

z2 + 1
,

2z

z2 + 1
).

We deduce that

θ(

(
∂

∂z

)
( 2z
z2+1

, z
2−1

z2+1
)

) =
2

z2 + 1
,

and hence that the restriction of θ to U is

2

z2 + 1
dz. □

Another important example is as follows.

Example. Let f : Mn → R be a smooth map. Recall from Example 5.1 that
for p ∈ Mn we defined dfp ∈ T ∗

pM
n to be the linear map TpM

n → R taking
v⃗ ∈ TpM

n to the directional derivative of f in the direction of v⃗. We then have
df ∈ Ω1(Mn) defined via df(p) = dfp. If ϕ : U → V are local coordinates and
x1, . . . , xn are the coordinate functions of V , then the expression for df in terms of
these local coordinates is

∂f ◦ ϕ−1

∂x1
dx1 + · · ·+ ∂f ◦ ϕ−1

∂xn
dxn. □

Remark. In the next section, we will prove that the element θ ∈ Ω1(S1)
discussed in Examples 5.3 and 5.3 cannot be written as df for any smooth f : S1 →
R. This is a fundamental fact; underlying it is the fact that the ‘first de Rham
cohomology group” of S1 is nontrivial. □

One important property of the previous example is as follows.

Lemma 5.2. Let Mn be a smooth manifold and let f : Mn → R be a smooth
function. Then df = 0 if and only if f is constant.
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Proof. Let ϕ : U → V be a chart and let x1, . . . , xn be the coordinate functions
on V . Then the restriction of df to U is

∂f ◦ ϕ−1

∂x1
dx1 + · · ·+ ∂f ◦ ϕ−1

∂xn
dxn.

This equals 0 if and only if all the ∂f◦ϕ−1

∂xi
vanish, i.e. if and only if f ◦ ϕ−1 is

constant. This holds for all charts if and only if f is constant. □

5.4. Pulling back 1-forms

Let f : Mn1
1 →Mn2

2 be a smooth map between smooth manifolds. For p ∈Mn1
1 ,

we have a derivative map

Dpf : TpM
n1
1 → Tf(p)M

n2
2 .

However, there is no reasonable way to take a vector field on Mn1
1 and push it

forward along f to obtain a vector field on Mn2
2 . In contrast, for differential 1-

forms we have the following construction.

Construction. Let f : Mn1
1 →Mn2

2 be a smooth map between smooth man-
ifolds and let ω ∈ Ω1(Mn2

2 ). Define f∗(ω) ∈ Ω1(Mn1
1 ) as follows. For p ∈ M1, we

must construct an element f∗(ω)(p) ∈ T ∗
pM

n1
1 , i.e. a linear map TpM

n1
1 → R. The

1-form ω gives us a linear map ω(f(p)) : Tf(p)M
n2
2 → R, and f∗(ω)(p) is obtained

by composing this with Dpf : TpM
n1
1 → Tf(p)M

n2
2 , i.e. by setting

f∗(ω)(p) = (ω (f (p))) ◦ (Dpf) .

It is easy to see that f∗(ω) ∈ Ω1(Mn1
1 ). □

Remark. We emphasize that this construction pulls differential 1-forms back;
there is no reasonable way to push them forward. □

Here is an important example.

Example. Let θ ∈ Ω1(S1) be the form discussed in Examples 5.3 and 5.3.
Define π : R → S1 via the formula π(t) = (cos(t), sin(t)). Then π∗(ω) = dt. □

One important property of the above pull-back construction is as follows.

Lemma 5.3. Let f : Mn1
1 → Mn2

2 be a smooth function between smooth mani-
folds and let g : Mn2

2 → R be a smooth map. Then f∗(dg) = d(g ◦ f).

Proof. By definition, for q ∈ Mn2
2 the linear map dg(q) : TqM

n2
2 → R takes

w⃗ ∈ TqM
n2
2 to its image under the map

Dqg : TqM
n2
2 → Tg(q)R = R.

For p ∈ Mn1
1 , it follows that the linear map f∗(dg)(p) : Tp → R takes v⃗ ∈ TpM

n1
1

to its image under the composition

TpM
n1
1

Dpf−−−→ Tf(p)M
n2
2

Df(p)g−−−−→ Tg(f(p))R = R.
By the chain rule (Theorem 2.5), this composition equals Dp(g ◦ f). The lemma
follows. □

To illustrate some of the tools we have developed, we now prove the following.

Lemma 5.4. Let θ ∈ Ω1(S1) be the form discussed in Examples 5.3 and 5.3 and
5.4. Then there does not exist a smooth function f : S1 → R such that θ = df.
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Proof. Assume that f : S1 → R satisfies df = θ. As in Example 5.4, let
π : R → S1 be the map defined via the formula π(t) = (cos(t), sin(t)), so π∗(ω) = dt.
Set g = f ◦ π, so by Lemma 5.3 we have dg = π∗(ω) = dt. This implies that
d(g − t) = 0, so by Lemma 5.2 we have g(t) = t − c for some constant c ∈ R.
However, since g = f◦π it must be the case that g is periodic, i.e. that g(t+1) = g(t)
for all t ∈ R. This is a contradiction. □

5.5. Path integrals

The main reason we introduced 1-forms was to define path integrals. Let Mn

be a smooth manifold and let ω ∈ Ω1(Mn). Consider a smooth path in Mn, i.e. a
smooth function γ : [a, b] → Mn for some a < b. Here [a, b] is not a manifold, but
rather a manifold with boundary; we will ignore this technicality for the moment.
Let t be the coordinate function on [a, b]. We can then write γ∗(ω) = f(t)dt for
some smooth function f : [a, b] → R. Define∫

γ

ω =

∫ b

a

f(t)dt.

The following is an important example.

Example. Let θ ∈ Ω1(S1) be the form discussed in Examples 5.3 and 5.3 and
5.4. Define γ : [0, 2π] → S1 via the formula γ(t) = (cos(t), sin(t)). Then γ∗(θ) = dt,
so ∫

γ

θ =

∫ 2π

0

dt = 2π.

□
One important property of line integrals is the following lemma, which says

that they do not depend on the parameterization of the curve.

Lemma 5.5. Let Mn be a smooth manifold, let γ : [a, b] → Mn be a smooth
path, and let ω ∈ Ω1(Mn). Finally, let h : [a, b] → [a, b] be a smooth map such that
h(a) = a and h(b) = b. Define γ2 = γ ◦ h. Then

∫
γ
ω =

∫
γ2
ω.

Proof. Homework. □

Remark. Lemma 5.5 is why we defined line integrals of differential 1-forms
rather than of functions. If f : Mn → R is a smooth function and γ : [a, b] → Mn

is a smooth path, then one might be tempted to define
∫
γ
f =

∫ b
a
(f ◦ γ)dt. If one

made this definition, then Lemma 5.5 would not hold. □
Another is the following version of the fundamental theorem of calculus.

Lemma 5.6. Let Mn be a smooth manifold, let γ : [a, b] → Mn be a smooth
path, and let f : Mn → R be a smooth function. Then

∫
γ
df = f(b)− f(a).

Proof. Homework. □

To finish up this circle of ideas, we will prove the following theorem which
completely describes the set of 1-forms on S1.

Theorem 5.7. Let θ ∈ Ω1(S1) be the form discussed in Examples 5.3 and 5.3
and 5.4 and let ω ∈ Ω1(S1) be arbitrary. Then there exists some c ∈ R and some
smooth function f : S1 → R such that ω = cθ + df.
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Proof. Define π : R → S1 via the formula π(t) = (cos(t), sin(t)) and let
γ : [0, 2π] → S1 be the restriction of π to [0, 2π]. Set c =

∫
γ
ω and ω1 = ω − cθ.

We thus have
∫
γ
ω1 = 0. Our goal is to find some smooth function f : S1 → R such

that ω1 = df.
Write π∗(ω1) = g(t)dt. The function g(t) is 2π-periodic in the sense that

g(t+ 2π) = g(t) (t ∈ R).
Define a function F : R → R via the formula

F (t) =

∫ t

0

g(t)dt.

By the fundamental theorem of calculus, we know that dF = g(t)dt = π∗(ω1).
Moreover, since ∫ 2π

0

g(t)dt =

∫
γ

ω1 = 0

and sicne g(t) is 2π-periodic we see that F (t) is 2π-periodic. This implies that F
descends to S1 in the sense that there exists a smooth function f : S1 → R such
that F = f ◦ π. We clearly have df = ω1, as desired. □





CHAPTER 6

Differential k-forms

In this chapter, we introduce the theory of differential k-forms for k ≥ 2.

6.1. Multilinear forms

We begin by discussing some aspects of linear algebra. Let V be an R-vector
space.

Definition. A k-multilinear form on V is a function

ω :

k⊕
i=1

V → R

such that for all 1 ≤ i ≤ ℓ and all v⃗1, . . . , v⃗ℓ−1, v⃗ℓ+1, . . . , v⃗k ∈ V , the map V → R
defined via the rule

w⃗ 7→ ω(v⃗1, . . . , v⃗ℓ−1, w⃗, v⃗ℓ+1, . . . , v⃗k)

is linear. □

A 1-multilinear form is thus simply an element of the dual V ∗, and a 2-
multilinear form should satisfy

ω(cw⃗ + dw⃗′, v⃗2) = cω(w⃗, v⃗2) + dω(w⃗′, v⃗2)

and

ω(v⃗1, cw⃗ + dw⃗′) = cω(v⃗1, w⃗) + dω(v⃗1, w⃗
′)

for all

v⃗1, v⃗2, w⃗, w⃗
′ ∈ V and c, d ∈ R.

The vector space of all k-multilinear forms on V is denoted T k(V ).
Multilinear forms can be multiplied in the following way.

Construction. Let ω1 be a k1-multilinear form and ω2 be a k2-multilinear
form. Define a function

ω1ω2 :

k1+k2⊕
i=1

V → R

via the formula

(ω1ω2)(v⃗1, . . . , v⃗k1+k2) = ω1(v⃗1, . . . , v⃗k1)ω2(v⃗k1+1, . . . , v⃗k1+k2)

Then it is clear that ω1ω2 is a (k1 + k2)-multilinear form on V . □

The following lemma provides a basis for T k(V ).

43
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Lemma 6.1. Let V be an R-vector space, let {e⃗1, . . . , e⃗n} be a basis for V , and
let {e⃗∗1, . . . , e⃗∗n} be the dual basis for V ∗. Then

{e⃗∗i1 · · · e⃗
∗
ik

| 1 ≤ i1, i2, . . . , ik ≤ n}

is a basis for T k(V ). In particular, T k(V ) is nk-dimensional.

Proof. We begin by introducing some notation. Let

I = {(i1, . . . , ik | 1 ≤ i1, i2, . . . , ik ≤ n}.
For an element I = (i1, . . . , ik) of I, define

e⃗∗I = e⃗∗i1 · · · e⃗
∗
ik
.

For ω ∈ T k(V ) and an element I = (i1, . . . , ik) of I, define
ω(e⃗I) = ω(e⃗i1 , . . . , e⃗ik).

Finally, let B be the purported basis for T k(V ).
We first prove that B is linearly independent. Assume that

(5)
∑
I∈I

dI e⃗
∗
I = 0

for some dI ∈ R. For I, I ′ ∈ I we have

e⃗∗I(e⃗I′) =

{
1 if I = I ′,

0 if I ≠ I ′.

For all I ∈ I, we can thus plug e⃗I into (5) and see that dI = 0, as desired.
We next prove that B spans T k(V ). Consider ω ∈ T k(V ). For I ∈ I, define

cI = ω(e⃗I) ∈ R. Set
ω′ =

∑
I∈I

cI e⃗
∗
I .

We then have ω′(e⃗I) = ω(e⃗I) for all I ∈ I. Using the multilinearity of ω, we see
that for all v⃗ ∈ V the value of ω(v⃗) is equal to an appropriate linear combination of
the ω(e⃗I) as I ranges over I. A similar fact holds for ω′. We conclude that ω = ω′,
as desired. □

We now make the following important definition.

Definition. An element ω ∈ T k(V ) is alternating if flipping two inputs of ω
changes its sign. More precisely, let Sk be the symmetric group on k letters. We
then require that for v⃗1, . . . , v⃗k ∈ V and σ ∈ Sk we have

ω(v⃗σ(1), . . . , v⃗σ(k)) = (−1)|σ|ω(v⃗1, . . . , v⃗k).

Here (−1)|σ| is the signature of the permutation σ. The set of all alternating k-

multilinear forms on V is denoted Ak(V ). □

Example. We can construct an alternating form det ∈ An(Rn) by letting
det(v⃗1, . . . , v⃗n) equal the determinant of the n × n matrix whose columns are
v⃗1, . . . , v⃗n □

Remark. We will later see that An(Rn) = {sdet | s ∈ R}; see Corollary 6.6.
□

To understand Ak(Rn), we make the following construction.
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Construction. Let V be a vector space and let k ≥ 1. Define alt : T k(V ) →
Ak(V ) via the formula

alt(ω)(v⃗1, . . . , v⃗k) =
1

k!

∑
σ∈Sk

(−1)|σ|ω(v⃗σ(1), . . . , v⃗σ(k)) (v⃗1, . . . , v⃗k ∈ V ). □

The linear map alt has the following property.

Lemma 6.2. For ω ∈ T k(V ), we have alt(ω) = ω.

Proof. An immediate consequence of the fact that Sk has k! elements. □

This allows us to make the following definition.

Definition. Consider ω1 ∈ Ak1(V ) and ω2 ∈ Ak2(V ). Define ω1 ∧ ω2 =

alt(ω1ω2) ∈ Ak1+k2(V ). □

The wedge product is graded commutative in the sense that if ω1 ∈ Ak1(V )

and ω2 ∈ Ak2(V ), then

ω1 ∧ ω2 = (−1)k1k2ω2 ∧ ω1.

Our next goal is to prove that the wedge product is associative. This requires a
lemma.

Lemma 6.3. Consider ω1 ∈ Ak1(V ) and ω2 ∈ Ak2(V ). Then

alt(ω1ω2) = alt(alt(ω1)ω2) = alt(ω1alt(ω2)).

Proof. We will prove that

alt(ω1ω2) = alt(alt(ω1)ω2);

the proof that

alt(ω1ω2) = alt(ω1alt(ω2))

is similar. Expanding out alt(alt(ω1)ω2), we see that for

v⃗1, . . . , v⃗k1+k2 ∈ V

the number

alt(alt(ω1)ω2)(v⃗1, . . . , v⃗k1+k1)

equals

(6)
1

(k1 + k2)!

∑
σ∈Sk1+k2

alt(ω1)(v⃗σ(1), . . . , v⃗σ(k1))ω2(v⃗σ(k1+1), . . . , v⃗σ(k1+k2)).

By definition, we have

alt(ω1)(v⃗σ(1), . . . , v⃗σ(k1)) =
1

(k1)!

∑
δ∈Sk1

ω1(v⃗σ(δ(1)), . . . , v⃗σ(δ(k1))).

Plugging this into (6) and regarding Sk1 as the subgroup of Sk1+k2 that acts on the
first k1 elements and fixes the rest, we get

1

(k1 + k2)!(k1)!

∑
σ∈Sk1+k2
δ∈Sk1

ω1(v⃗σ(δ(1)), . . . , v⃗σ(δ(k1)))ω2(v⃗σ(δ(k1+1)), . . . , v⃗σ(δ(k1+k2))).
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Every element of Sk1+k2 can be written as σδ with σ ∈ Sk1+k2 and δ ∈ Sk1 in
precisely (k1)! ways. It follows that the above sum equals

(k1)!

(k1 + k2)!(k1)!

∑
σ∈Sk1+k2

ω1(v⃗σ(1), . . . , v⃗σ(k1))ω2(v⃗σ(k1+1), . . . , v⃗σ(k1+k2)).

Cancelling the (k1)!’s, this is precisely

alt(ω1ω2)(v⃗1, . . . , v⃗k1+k2),

as desired. □
Theorem 6.4. For ω1 ∈ Ak1(V ) and ω2 ∈ Ak2(V ) and ω3 ∈ Ak3(V ), we have

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3;

in fact, both sides equal
alt(ω1ω2ω3).

Proof. Using Lemma 6.3, we see that

(ω1 ∧ ω2) ∧ ω3 = alt(alt(ω1ω2)ω3) = alt(ω1ω2ω3).

Similarly,
ω1 ∧ (ω2 ∧ ω3) = alt(ω1alt(ω2ω3)) = alt(ω1ω2ω3). □

Theorem 6.4 implies that the product operation ∧ is associative. Moreover,
applying it multiple times we see that if ωi ∈ Aki(V ) for 1 ≤ i ≤ ℓ, then

ω1 ∧ · · · ∧ ωℓ = alt(ω1 · · ·ωℓ).
We close this section by proving the following lemma, which gives a basis for

Ak(V ). It should be compared to Lemma 6.1

Lemma 6.5. Let V be an R-vector space, let {e⃗1, . . . , e⃗n} be a basis for V , and
let {e⃗∗1, . . . , e⃗∗n} be the dual basis for V ∗. Then

{e⃗∗i1 ∧ · · · ∧ e⃗∗ik | 1 ≤ i1 < i2 < · · · < ik ≤ n}

is a basis for Ak(V ). In particular, Ak(V ) is
(
n
k

)
-dimensional.

Proof. This can be proved exactly like Lemma 6.1. The only difference is
that an alternative k-multilinear form ω is determined by the set of values of

ω(e⃗i1 , . . . , e⃗ik)

with 1 ≤ i1 < i2 < · · · < ik ≤ n (while for a general k-multilinear form we would
need to allow 1 ≤ i1, . . . , ik ≤ n). This follows from two facts.

• For 1 ≤ i1, . . . , ik ≤ n, if ij = ij′ for distinct 1 ≤ j, j′ ≤ k, then
ω(e⃗i1 , . . . , e⃗ik) = 0 since flipping e⃗ij and e⃗ij′ multiplies it by −1 while
not changing its value.

• For distinct 1 ≤ i1, . . . , ik ≤ n, there exists a unique σ ∈ Sk such that
σ(i1) < σ(i2) < · · · < σ(ik), and

ω(e⃗σ(i1), . . . , e⃗σ(ik)) = (−1)|σ|ω(e⃗i1 , . . . , e⃗ik). □
We highlight the following corollary of Lemma 6.5.

Corollary 6.6. Let V be an n-dimensional R-vector space. Then An(V ) is
1-dimensional. In particular, if V = Rn then every element of An(V ) is a multiple
of the determinant (see Example 6.1).
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Proof. This follows from Lemma 6.5 together with the fact that
(
n
n

)
= 1. □

6.2. Basics of k-forms

Let Mn be a smooth manifold and let k ≥ 1. For p ∈Mn, define

Ak
p(M

n) = Ak(TpM
n).

We thus have
A1
p(M

n) = T ∗
pM

n.

Lemma 6.5 implies that Ak
p(M

n) is an
(
n
k

)
-dimensional R-vector space. Define

Ak(Mn) = {(p, ωp) | p ∈Mn and ωp ∈ Ak
p(M

n)}

= ⊔p∈Mn Ak
p(M

n).

Just like we did for the tangent bundle in §2.4 and for the cotangent bundle in
§5.2, we can define a topology on Ak(Mn) which makes it into a smooth n +

(
n
k

)
-

dimensional manifold. A differential p-form on Mn is a smooth map ω : Mn →
Ak(Mn) such that ω(p) ∈ Ak

p(M
n) for all p ∈ Mn. The R-vector space of all

differential k-forms on Mn is denoted Ωk(Mn). Just like for differential 1-forms,
Ωk(Mn) is a module over the ring C∞(Mn) of smooth functions from Mn to R.

For ω1 ∈ Ωk1(Mn) and ω2 ∈ Ωk2(Mn), we can define an element ω1 ∧ ω2 ∈
Ωk1+k2(Mn) via the formula

(ω1 ∧ ω2)(p) = ω1(p) ∧ ω2(p) (p ∈Mn).

This operation is graded commutative in the sense that

ω2 ∧ ω1 = (−1)k1k2ω1 ∧ ω2

and is associative in the sense that if ω3 ∈ Ωk3(Mn) then

(ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3).

Because of this latter property, we will omit frequently omit parentheses in our
formulas.

Using this wedge product, we can construct many k-forms from our already
existing store of 1-forms. Another interesting class of differential forms are volume
forms, which are defined as follows.

Definition. A volume form on a smooth n-dimensional manifold Mn is a
differential n-form ω ∈ Ωn(Mn) such that ω(p) ̸= 0 for all p ∈Mn. □

Not all smooth manifolds support volume forms (we will later see that a nec-
essary and sufficient condition is that the manifold be orientable). Here are some
that do.

Example. If U is an open subset of Rn, then U can be given the volume form
dx1 ∧ dx2 ∧ · · · ∧ dxn. □

Example. Consider a smoothly embedded submanifoldMn of Rm. One’s first
impulse might be to try to restrict the above volume form on Rm to Mn; however,
this does not work unless n = m since it would result in a differential form of
the wrong dimension. Some additional structure is needed. We will deal with a
particularly easy case, namely where m = n + 1 and where there exists a unit
normal vector field on Mn, i.e. a smooth map n : Mn → Rn+1 with the following
two properties.
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• ∥ n(p)∥ = 1 for all p ∈ Rn+1, and
• The vector n(p) ∈ Rn+1 is orthogonal to the tangent space Tp(M

n) ⊂
Rn+1 for all p ∈Mn.

For example, the sphere Sn ⊂ Rn+1 supports the unit normal vector field that takes
p ∈ Sn to itself (considered as a point of Rn+1). Similarly, it is easy to construct
unit normal vector fields on the standard ways of embedding genus g surfaces into
R3; however, they cannot be constructed on the Möbius band. Given a unit normal
vector field n on Mn ⊂ Rn+1, we can define a volume form ω ∈ Ωn(Mn) by setting

ω(p)(v⃗1, . . . , v⃗n) = ωRn+1(p)(n(p), v⃗1, . . . , v⃗n)

for p ∈ Mn and v⃗1, . . . , v⃗n ∈ TpM
n. Here ωRn+1 is the above volume form on

Rn+1. □

6.3. The local picture, I

Let Mn be a smooth manifold, let ω ∈ Ωk(Mn), and let ϕ1 : U1 → V1 and
ϕ2 : U2 → V2 be two charts. Consider p ∈ U1 ∩ U2, and set q1 = ϕ1(p) and
q2 = ϕ2(p). We thus have identifications

TpM
n = Tq1V1 and TpM

n = Tq2V2.

The alternating multilinear form ω(p) on TpM
n can thus be identified with alter-

nating multilinear forms ω1(q1) on Tq1V1 = Rn and ω2(q2) on Tq2V2 = Rn. We can
related ω1(q1) and ω2(q2) just like we did for cotangent vectors in §5.1. Namely, if
τ12 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2) is the transition map, then Tq1V1 and Tq2V2 are
identified via the derivative map

Dq1τ12 : Tq1V1 → Tq2V2.

For v⃗1, . . . , v⃗k ∈ Rn, we then have

ω2(q2)(v⃗1, . . . , v⃗k) = ω1(q1)(D
−1
q1 (v⃗1), . . . , D

−1
q1 (v⃗k)).

6.4. The local picture, II

Again letMn be a smooth manifold and let ω ∈ Ωk(Mn). Fix a chart ϕ : U → V
on Mn and consider some ω ∈ Ωk(Mn). Letting x1, . . . , xn be the coordinate
functions of V , we have the differential 1-forms {dx1, . . . , dxn} on U . For a sequence
(i1, . . . , ik) of numbers satisfying 1 ≤ i1, . . . , ik ≤ n, define

dxI = dxi1 ∧ · · · ∧ dxik .

Setting

I = {(i1, . . . , ik) | 1 ≤ i1 < i2 < · · · < ik ≤ n},
we can apply Lemma 6.5 to deduce that the restriction of ω to U can be uniquely
written as

(7)
∑
I∈I

fIdxI

for functions fI : M
n → R. The fact that ω is a smooth map from Mn to Ak(Mn)

is equivalent to the fact that these functions fI are smooth. The expression (7) will
be called the expression for ω in the local coordinates ϕ : U → V . The expressions
for ω in different local coordinates are related as in §6.3.
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6.5. Pulling forms back

Now let f : Mn1
1 →Mn2

2 be a smooth map. Recall that earlier we showed how
to construct a pull-back map

f∗ : Ω1(Mn2
2 ) → Ω1(Mn1

1 )

by composing with the derivative map

Dp : TpM
n1
1 → Tf(p)M

n2
2

for all p ∈ Mn1
1 . The same idea works for k-forms. Namely, we can define a

pull-back map
f∗ : Ωk(Mn2

2 ) → Ωk(Mn1
1 )

as follows. Consider ω ∈ Ωk(Mn2
2 ). The desired element f∗(ω) ∈ Ωk(Mn1

1 ) consists
of an alternating k-multilinear form f∗(ω)(p) on TpM

n1
1 for all p ∈Mn1

1 . The form
ω gives us an alternating k-multilinear form ω(f(p)) on Tf(p)M

n2
2 , and we define

f∗(ω)(p) via the formula

f∗(ω)(p)(v⃗1, . . . , v⃗k) = ω(f(p))((Dpf)(v⃗1), . . . , (Dpf)(v⃗k))

for v⃗1, . . . , v⃗k ∈ TpM
n1
1 .

This pull-back respects the wedge product of forms in the following sense.

Lemma 6.7. Let f : Mn1
1 →Mn2

2 , let ω1 ∈ Ωk1(Mn2
2 ), and let ω2 ∈ Ωk2(Mn2

2 ).
Then

f∗(ω1 ∧ ω2) = f∗(ω1) ∧ f∗(ω2).

Proof. Immediate from the definitions. □

6.6. The d-operator: big picture

Let Mn be a smooth manifold and let f : Mn → R be a smooth map. Recall
that we have a natural element df ∈ Ω1(Mn) defined as follows. For p ∈ Mn, the
element df(p) ∈ T ∗

p (M
n) should be a linear map TpM

n → R. This linear map takes
v⃗ ∈ TpM

n to the directional derivative of f in the direction of v⃗, i.e. to the image
of v⃗ under the linear map

Dpf : TpM
n → Tf(p)R = R.

We will regard d as a linear map

d : C∞(Mn) → Ω1(Mn).

In the next three sections, we will show how this can be generalized to a linear map

d : Ωk(Mn) → Ωk+1(Mn)

for all k ≥ 1. This linear map will satisfy the following three properties. To simplify
their statements, we will write Ω0(Mn) for C∞(Mn), and also for f ∈ Ω0(Mn) and
ω ∈ Ωk(Mn) we will write f ∧ ω for the product fω ∈ Ωk(Mn).

• For ω1 ∈ Ωk1(Mn) and ω2 ∈ Ωk2(n), we have

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2.

• For ω ∈ Ωk(Mn), we have d(dω) = 0.
• For ω ∈ Ωk(Mn) and f : Mn2

2 → Mn a smooth map between smooth
manifolds, we have

f∗(dω) = d(f∗(ω)).
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The most elegant way to construct this would be to give a global definition
that does not depend on a choice of a local coordinate system (like our definition
of df above). However, the formulas for doing this are a little complicated and
difficult to parse on a first reading, so we will instead do this in a more low-brow
way. Namely, in §6.7 we will construct the d operator for Mn an open subset of
Rn and prove that this has the above two properties. In §6.8 we will extract from
the previous local definition a key property. Finally, in §6.9 we will show that this
definition “glues together” to give an appropriate operator on an arbitrary smooth
manifold.

6.7. The d-operator: local definition

Consider an open set V ⊂ Rn. Letting x1, . . . , xn be the coordinate functions
of Rn and letting

Ik = {(i1, . . . , ik) | 1 ≤ i1 < i2 < · · · < ik ≤ n},

a k-form ω ∈ Ωk(V ) with k ≥ 1 can be uniquely written as

ω =
∑
I∈Ik

fIdxI

for some smooth functions fI : V → R. We then define

dω =
∑
I∈Ik

df ∧ dxI ∈ Ωk+1(V ).

It is clear that this gives an R-linear map d : Ωk(V ) → Ωk+1(V ) for all k ≥ 1. The
following three lemmas show that it has the three properties discussed in §6.6.

Lemma 6.8. Let V be an open subset of Rn. For some k1, k2 ≥ 0 let ω1 ∈
Ωk1(V ) and ω2 ∈ Ωk2(V ). Then d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2.

Proof. We divide this into three cases.

Case 1. For f, g ∈ Ω0(V ), we have d(fg) = g(df) + f(dg).

Using the product rule, we have

d(fg) =

n∑
i=1

∂fg

∂xi
dxi

=

n∑
i=1

(
g
∂f

∂xi
+ f

∂g

∂xi

)
dxi

= g(df) + f(dg),

as desired.

Case 2. For f ∈ Ω0(V ) and ω ∈ Ωk(V ) with k ≥ 1, we have d(fω) = (df) ∧
ω + f ∧ dω.

Write

ω =
∑
I∈Ik

gIdxI .
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Using the first case, we then have

dfω =
∑
I∈Ik

d(fgI) ∧ dxI

=
∑
I∈Ik

(gI(df) + f(dgI)) ∧ dxI

= (df) ∧ ω + f ∧ dω,

as desired.

Case 3. For ω1 ∈ Ωk1(V ) and ω2 ∈ Ωk2(V ) with k1, k2 ≥ 1, we have d(ω1 ∧
ω2) = dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2.

Write
ω1 =

∑
I∈Ik1

fIdxI

and
ω2 =

∑
J∈Ik2

gJdxJ .

We now calculate that
dω1 =

∑
I∈Ik1

dfI ∧ dxI

and
dω2 =

∑
J∈Ik2

dgJ ∧ dxJ ,

and hence dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2 equals

(
∑
I∈Ik1

dfI ∧ dxI) ∧ (
∑
J∈Ik2

gJdxJ) + (−1)k1(
∑
I∈Ik1

fIdxI) ∧ (
∑
J∈Ik2

dgJ ∧ dxJ)

=
∑
I∈Ik1
J∈Ik2

(gJdfI ∧ dxI ∧ dxJ + (−1)k1fI ∧ dxI ∧ dgJ ∧ dxJ).

For all I ∈ Ik1 and J ∈ Ik2 , we have dxI ∧ dgJ = (−1)k1dgJ ∧ dxI . It follows that
the above expression equals∑

I∈Ik1
J∈Ik2

(gJdfI + fIdgJ) ∧ dxI ∧ dxJ .

Using the previous cases, we see that this equals∑
I∈Ik1
J∈Ik2

d(fIgJ) ∧ dxI ∧ dxJ .

For I ∈ Ik1 and J ∈ Ik2 , we have dxI ∧ dxJ = 0 if I and J share any entries.
Otherwise, dxI ∧dxJ = ±dxI′ for some unique I ′ ∈ Ik1+k2 and some choice of sign.
It follows that d(fIgJ) ∧ dxI ∧ dxJ = d((fIdxI) ∧ (gJ ∧ dxJ)), and thus the above
expression equals

d

 ∑
I∈Ik1

fIdxI

 ∧

 ∑
J∈Ik2

gJdxJ

 = d(ω1 ∧ ω2),
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as desired. □

Lemma 6.9. Let V be an open subset of Rn and let ω ∈ Ωk(V ) for some k ≥ 0.
Then d(dω) = 0.

Proof. There are two cases.

Case 1. k = 0.

In this case, ω is a smooth function f : V → Rn. We then calculate that

d(df) = d

(
n∑
i=1

∂f

∂xi
dxi

)

=

n∑
i=1

d

(
∂f

∂xi

)
∧ dxi

=

n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
dxj ∧ dxi.

For i = j, we have dxj∧dxi = 0. Applying the equality of mixed partial derivatives,
we thus see that the above expression equals∑

1≤i,j≤n
i ̸=j

∂2f

∂xj∂xi
dxj ∧ dxi =

∑
1≤i<j≤n

∂2f

∂xj∂xi
(dxj ∧ dxi − dxi ∧ dxj) = 0,

as desired.

Case 2. k ≥ 1.

Write

ω =
∑
I∈Ik

fIdxI .

Using Lemma 6.8, we have

d(dω) = d

(∑
I∈Ik

dfI ∧ dxI

)
=
∑
I∈Ik

d(dfI) ∧ dxI − dfI ∧ d(dxI).

By the first case, all of these terms equal 0, as desired. □

Lemma 6.10. Let V ⊂ Rn and W ⊂ Rm be open subsets and let f : V →W be
a smooth map. Consider ω ∈ Ωk(V ) for some k ≥ 0. Then f∗(dω) = d(f∗(ω)).

Proof. An immediate consequence of the definitions together with the natu-
rality of the wedge product (Lemma 6.7) and the naturality of the d-operator on
smooth functions (Lemma 5.3). □
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6.8. The d-operator: a key lemma

In this section, we apply the local results of the previous section to prove the
following lemma.

Lemma 6.11. Let Mn be a smooth manifold. For some k ≥ 1, let ω ∈ Ωk(Mn).
Assume that we can write

(8) ω =

m∑
i=1

fidgi,1 ∧ dgi,2 ∧ · · · ∧ dgi,k

for some smooth functions f : Mn → R and gi,j : M
n → R. Then

m∑
i=1

dfi ∧ dgi,1 ∧ dgi,2 ∧ · · · ∧ dgi,k ∈ Ωk+1(Mn).

does not depend on the decomposition (8).

Proof. Let

ω =

m′∑
i=1

f ′idg
′
i, ∧ dg′i,2 ∧ · · · ∧ dg′i,k

be another such decomposition. Our goal is to prove that

(9)
m∑
i=1

dfi ∧ dgi,1 ∧ dgi,2 ∧ · · · ∧ dgi,k =

m′∑
i=1

df′i ∧ dg′i,1 ∧ dg′i,2 ∧ · · · ∧ dg′i,k.

Assume first that Mn is an open subset V of Rn. In §6.7, we constructed a
form dω ∈ Ωk+1(V ) from ω ∈ Ωk(V ). We claim that

dω =

m∑
i=1

dfi ∧ dgi,1 ∧ dgi,2 ∧ · · · ∧ dgi,k ∈ Ωk+1(Mn).

The proof of this is by induction on k. The base case k = 0 is trivial, so assume
that k ≥ 1 and that the desired result is true for all smaller values of k. Using
Lemmas 6.8 and 6.9 together with our inductive hypothesis, we have

dω =

m∑
i=1

d(fidgi,1 ∧ · · · ∧ dgi,k−1) + (−1)k−1(fidgi,1 ∧ · · · ∧ dgi,k−1) ∧ d(dgi,k)

=

m∑
i=1

dfi ∧ dgi,1 ∧ dgi,2 ∧ · · · ∧ dgi,k + 0,

as desired. A similar argument shows that

dω =

m′∑
i=1

df′i ∧ dg′i,1 ∧ dg′i,2 ∧ · · · ∧ dg′i,k,

so we conclude that the desired equation (9) holds.
Now assume that Mn is a general manifold. Letting ϕ : U → V be a chart,

the previous paragraph proves that the restrictions to U of the left and right hand
sides of (9) are the same. Since Mn can be covered by such U , we deduce that in
(9) holds, as desired. □
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6.9. The d-operator: global definition

Fix some smooth manifold Mn and some k ≥ 1. Our goal is to construct a
linear map

d : Ωk(Mn) → Ωk+1(Mn).

Consider some ω ∈ Ωk(Mn). We can find an open cover {Uα}α∈A of Mn with the
following property. For each α ∈ A, the restriction of ω to Uα can be written as

(10) ω|Uα
=

m∑
i=1

fidgi,1 ∧ dgi,2 ∧ · · · ∧ dgi,k

for some smooth functions fi : M
n → R and gi,j : M

n → R. For example, we
can take the Uα to be the domains of charts ϕα : Uα → Vα and the gi,j ’s to be
appropriate coordinate functions on these charts. Define dωα ∈ Ωk+1(Uα) via the
formula

dωα =

m∑
i=1

dfi ∧ dgi,1 ∧ dgi,2 ∧ · · · ∧ dgi,k.

Lemma 6.11 implies that this only depends on ω and Uα, not on the decomposition
(10). Lemma 6.11 also shows that for all α, α′ ∈ A, the restrictions of dωα and dωα′

to Uα∩Uα′ are equal; indeed, these restrictions can be computed by restricting the
decompositions (10) associated to Uα and Uα′ to Uα ∩ Uα′ . From this, we see that
the dωα glue together to give a well-defined element dω ∈ Ωk+1(Mn) such that the
restriction of dω to Uα equals dωα for all α ∈ A.

One might worry that dω depends on the choice of open cover {Uα}α∈A. How-
ever, if {U ′

β}β∈B is another choice of cover, then so is the set

{Uα}α∈A ∪ {U ′
β}β∈B .

From this, we see that dω does not depend on our choice of cover.
This completes the construction of d. The following theorem summarizes its

properties.

Theorem 6.12. Let Mn be a smooth manifold. Then the following hold.

• For ω1 ∈ Ωk1(Mn) and ω2 ∈ Ωk2(n), we have

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2.

• For ω ∈ Ωk(Mn), we have d(dω) = 0.
• For ω ∈ Ωk(Mn) and f : Mn2

2 → Mn a smooth map between smooth
manifolds, we have

f∗(dω) = d(f∗(ω)).

Proof. Immediate from Lemmas 6.8 and 6.9 and 6.10, which prove the corre-
sponding local results. □

For later use, we make the following definitions.

Definition. Let Mn be a smooth manifold and let ω ∈ Ωk(Mn). We say that
ω is closed if dω = 0 and is exact if there exists some ω′ ∈ Ωk−1(Mn) such that
dω′ = ω. □

Lemma 6.13. If ω ∈ Ωk(Mn) is an exact form, then ω is closed.

Proof. Write ω = dω′ for some ω′ ∈ Ωk−1(Mn). Then dω = d(dω′) = 0 by
the third property in Theorem 6.12. □



6.9. THE D-OPERATOR: GLOBAL DEFINITION 55

Example. Since Ωk(Mn) = 0 for k > n, all n-forms on Mn are closed. In
particular, all volume forms on Mn are closed. We will later see that on compact
manifolds volume forms are not exact. □





CHAPTER 7

Orientations

This brief chapter is devoted to orientations on manifolds.

7.1. Vector spaces

We begin by discussing orientations on vector spaces, which are defined as
follows.

Definition. Let V be an n-dimensional real vector space with n ≥ 1. An
orientation on V is an equivalence class of ordered basis (v⃗1, . . . , v⃗n) for V under
the following equivalence relation:

• If b = (v⃗1, . . . , v⃗n) and b
′ = (v⃗′1, . . . , v⃗

′
n) are ordered bases for V , then b ∼ b′

if det(f) > 0, where f : V → V is the linear map satisfying f(v⃗i) = v⃗′i for
1 ≤ i ≤ n.

If V is equipped with a fixed orientation, then we will call V an oriented vector space
and any ordered basis representing that orientation an oriented basis for V . □

The first basic property of orientations is as follows.

Lemma 7.1. Let V be an n-dimensional real vector space with n ≥ 1. Then V
has exactly two orientations.

Proof. Let b = (v⃗1, . . . , v⃗n) and b′ = (v⃗′1, . . . , v⃗
′
n) be two ordered bases for

V . Define b′′ = (−v⃗′1, v⃗′2, . . . , v⃗′n). Since multiplying a column of a matrix by −1
has the effect of multiplying its determinant by −1, it follows that b represents the
same orientation as either b′ or b′′. □

This lemma implies that the following definition makes sense.

Definition. Let V be an n-dimensional real vector space and let b be an
orientation of V . Then −b will denote the other orientation. □

As notation, we will write O(V ) for the set of orientations on V . If f : V → V ′

is a vector space isomorphism, then f induces a bijection f∗ : O(V ) → O(V ′). If
V = V ′, then f ∈ Aut(V ) and we can write this bijection using the formula

f∗(b) =

{
b if det(f) > 0,

−b if det(f) < 0.

Finally, the standard orientation on Rn is the orientation corresponding to the
standard basis of Rn.

57
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7.2. The orientation bundle

Let Mn be a smooth manifolds. Informally, an orientation on a smooth mani-
foldMn is a choice of orientation on each tangent space TpM

n that varies smoothly.
To make this precise, we define an orientation bundle onMn. The definition is sim-
ilar to that of the tangent and cotangent bundles.

Given a finite-dimensional real vector space V , let O(V ) be the set consisting
of the two orientations on V . Define O(Mn) to be the set

O(Mn) = {(p, b) | p ∈Mn and b ∈ O(TpM
n)}.

We define a topology on O(Mn) as follows. Let ϕ : U → V be a chart on Mn.
Define O(U) to be the subset

{(p, b) | p ∈ U and b ∈ O(TpM
n)}

of O(Mn). For p ∈ U , our definition of O(TpM
n) identifies it with O(Tϕ(p)V ) =

O(Rn). Define a map O(ϕ) : O(U) → V ×O(Rn) via the formula

O(ϕ)(p, b) = (ϕ(p), b).

Giving O(Rn) the discrete topology, we want to construct a topology on O(Mn)
such that if O(U) is given the subspace topology, then O(ϕ) is a homeomorphism.
Define

U = {O(ϕ)−1(W ) | ϕ : U → V a chart on Mn and W ⊂ V ×O(Rn) is open}.

It is easy to see that U is a basis for a topology, and that under this topology the
induced topology on the subsets O(U) is such that O(ϕ) is a homeomorphism. We
endow O(Mn) with this topology.

Now, the set V × O(Rn) is homeomorphic to two disjoint copies of V . This
is not itself an open subset of Rn, but since Rn contains two disjoint open copies
of itself the set V × O(Rn) is diffeomorphic to an open subset of Rn. Using this
diffeomorphism, we can view the maps O(ϕ) as providing charts on O(Mn), so
O(Mn) is an n-dimensional manifold. We now prove that it is in fact a smooth
manifold.

Lemma 7.2. Let Mn be a smooth manifold. Then the set

A = {O(ϕ) : O(U) → V ×O(Rn) | ϕ : U → V a chart on Mn}

is a smooth atlas on O(Mn).

Proof. Consider two charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 on Mn. Let
τ12 : ϕ1(U1∩U2) → ϕ2(U1∩U2) be the transition map from ϕ1 to ϕ2. By definition,
τ12 is smooth. The transition map on O(Mn) from O(ϕ1) : O(U1) → V1 × O(Rn)
to O(ϕ2) : O(U2) → V2 ×O(Rn) is the map

O(τ12) : ϕ1(U1 ∩ U2)×O(Rn) −→ ϕ2(U1 ∩ U2)×O(Rn)

defined via the formula

O(τ12)(q, b) = (τ12(q), (Dqτ12)∗(b)) ∈ ϕ2(U1 ∩ U2)×O(Rn).

Here (Dqτ12)∗ : O(Rn) → O(Rn) is the map on orientations induced by the deriva-
tive map Dqτ12, which is an isomorphism of vector spaces. This transition map is
clearly smooth, as desired. □
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Figure 7.1. On the left is the open annulus A. The top and
bottom lines are not included. On the right are O(U) = U1 ⊔ U2

and O(U ′) = U ′
1 ⊔ U ′

2. These glue together to give two annuli.

7.3. Orientations on manifolds

If Mn is a smooth manifold, then an orientation on Mn is a smooth map
β : Mn → O(Mn) such that β(p) ∈ O(Tp(M

n)) for all p ∈Mn. A smooth manifold
equipped with an orientation is an oriented manifold. A smooth manifold for which
there exists an orientation is an orientable manifold; if no orientation exists, then
the manifold is nonorientable.

Example. If U is an open subset of Rn, then U is orientable. Indeed, in this
case we have O(U) = U ×O(Rn). Letting b ∈ O(Rn) be the standard orientation,
we can define an orientation β : U → O(Rn) via the formula β(p) = (p, b). This
will be called the standard orientation on an open subset of Rn. □

Example. Consider a 2-dimensional open annulus A. Of course, A can be
realized as an open subset of R2, so we know that O(A) consists of two disjoint
copies of A. However, to help understand the next example we will work this out in
a different way. As in Figure 7.1 we will think of A as the quotient of [0, 1]×(0, 1) by
the equivalence relation ∼ that identifies (0, y) with (1, y) for all y ∈ (0, 1). Define

U = {(x, y) | 0 < y < 1, 1/4 < x < 3/4}/ ∼⊂ A

and

U ′ = {(x, y) | 0 < y < 1 and either 0 ≤ x < 1/3 or 2/3 < x ≤ 1}/ ∼⊂ A.

Both U and U ′ are diffeomorphic to open rectangles in R2. We thus have O(U) =
U1 ⊔U2 and O(U ′) = U ′

1 ⊔U ′
2, where U1 and U2 are the components corresponding

to the two possible orientations on R2, and similarly for U ′
1 and U ′

2. These are both
depicted in Figure 7.1. In O(A), open neighborhoods of the boundary segments of
U1⊔U2 are identified with open neighborhoods of the boundary segments of U ′

1⊔U ′
2

like in Figure 7.1. Examining that figure, we see that in fact O(A) is diffeomorphic
to two disjoint copies of A (as we already knew!). In particular, A is orientable via
either of the two evident maps A→ O(A). □

Example. Consider a 2-dimensional open Möbius band M . As in Figure 7.2
we will think of M as the quotient of [0, 1] × (0, 1) by the equivalence relation ∼
that identifies (0, y) with (1, 1− y) for all y ∈ (0, 1). Define

U = {(x, y) | 0 < y < 1, 1/4 < x < 3/4}/ ∼⊂M
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Figure 7.2. On the left is the open Möbius bandM . The top and
bottom lines are not included. On the right are O(U) = U1 ⊔ U2

and O(U ′) = U ′
1⊔U ′

2. These glue together to give a single annulus.

and

U ′ = {(x, y) | 0 < y < 1 and either 0 ≤ x < 1/3 or 2/3 < x ≤ 1}/ ∼⊂M.

Both U and U ′ are diffeoomorphic to open rectangles in R2. We thus have O(U) =
U1 ⊔U2 and O(U ′) = U ′

1 ⊔U ′
2, where U1 and U2 are the components corresponding

to the two possible orientations on R2, and similarly for U ′
1 and U ′

2. These are both
depicted in Figure 7.2; the one difference from the annulus in Figure 7.1 is that the
orientations are flipped when crossing between the two pieces of the Ui. In O(M),
open neighborhoods of the boundary segments of U1 ⊔ U2 are identified with open
neighborhoods of the boundary segments of U ′

1 ⊔ U ′
2 like in Figure 7.1. Examining

that figure, we see that in fact O(M) is diffeomorphic to a single annulus. It is
intuitively clear that there is no orientation M → O(M); this will be justified in
Lemma 7.3 below. □

The following lemma clarifies what it means for a manifold to be orientable.

Lemma 7.3. Let Mn be a connected smooth manifold. Then exactly one of the
following holds.

• O(Mn) is diffeomorphic to two disjoint copies of Mn and Mn is ori-
entable, or

• O(Mn) is connected and Mn is not orientable.

Proof. There is a natural projection π : O(Mn) →Mn. For p ∈Mn, the fiber
π−1(p) equals = {(p, b), (p,−b)}, where {b,−b} = O(Tp(M

n)). From the definition
of the topology on O(Mn), it is clear that π is a 2-fold covering map. The manifold
O(Mn) is connected if and only if π is a nontrivial cover. We thus must prove that
Mn is orientable if and only if π is a trivial cover.

Assume first that π : O(Mn) → Mn is a trivial covering map, so O(Mn) =
Mn ⊔Mn. In this case, Mn is orientable, and indeed there are two orientations
β : Mn → O(Mn) taking Mn diffeomorphically onto these two copies of Mn.

Now assume thatMn is orientable and let β : Mn → O(Mn) be an orientation.
Since π◦β = id, we see that β is a diffeomorphism onto its image. Define β′ : Mn →
O(Mn) via β′(p) = (p,−b), where β(p) = (p, b). Then β′ is another orientation,
and by the same reasoning β′ is a diffeomorphism onto its image. Since O(Mn) =
Im(β) ⊔ Im(β′), we see that O(Mn) is diffeomorphic to two disjoint copies of Mn

and that π : O(Mn) →Mn is a trivial cover, as desired. □
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7.4. Oriented atlases

We now make the following definition.

Definition. If Mn is a smooth manifold, then an oriented atlas for Mn is a
smooth atlas {ϕα : Uα → Vα}α∈I for Mn with the following property. Consider
α, β ∈ I. Let ταβ : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) be the transition function. For
all q ∈ ϕα(Uα ∩ Uβ), identifying TqVα and Tταβ(q)Vβ with Rn we require that the
determinant of the linear map

Dqταβ : TqVα → Tταβ(q)Vβ

is positive. □
As is usual, we will say that two oriented atlases are equivalent if their union is

an oriented atlas. The following characterization of orientations on manifolds can
be taken as the definition of an orientation.

Theorem 7.4. Let Mn be a smooth manifold. Then equivalence classes of
oriented atlases are in bijection with orientations on Mn. In particular, Mn is
orientable if and only if it has an oriented atlas.

Proof. PROVE IT!!! □

7.5. Orientations and volume forms

Our goal now is to investigate the relationship between orientations and vol-
ume forms. We will need the following important lemma, which will also find use
elsewhere.

Lemma 7.5. Let V be an n-dimensional real vector space, let ω ∈ An(V ), and
let f : V → V be a linear map. Then

ω(f(v⃗1), . . . , f(v⃗n)) = det(f) · ω(v⃗1, . . . , v⃗n)
for all v⃗1, . . . , v⃗n ∈ V .

Proof. For a linear map f : V → V , define νf ∈ An(V ) via the formula

νf (v⃗1, . . . , v⃗n) = ω(f(v⃗1), . . . , f(v⃗n))

and define ν′f ∈ An(V ) via the formula

ν′f (v⃗1, . . . , v⃗n) = det(f) · ω(v⃗1, . . . , v⃗n).
Our goal is to prove that νf = ν′f for all f . Since diagonalizable linear maps
f : V → V are dense in the space of all linear maps, it is enough to prove that
νf = ν′f for a diagonalizable f . Moreover, since An(V ) is 1-dimensional it is enough

to find a single basis {v⃗1, . . . , v⃗n} for V such that νf (v⃗1, . . . , v⃗n) = ν′f (v⃗1, . . . , v⃗n).

Let {v⃗1, . . . , v⃗n} be a basis of eigenvectors for f with eigenvalues {λ1, . . . , λn}, so
f(v⃗i) = λiv⃗i for all 1 ≤ i ≤ n. We then calculate:

νf (v⃗1, . . . , v⃗n) = ω(f(v⃗1), . . . , f(v⃗n))

= ω(λ1v⃗1, . . . , λnv⃗n)

= λ1 · · ·λnω(v⃗1, . . . , v⃗n)
= det(f)ω(v⃗1, . . . , v⃗n)

= ν′f (v⃗1, . . . , v⃗n),

as desired. □
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We now prove the following theorem. Recall that a volume form on a smooth
n-manifold Mn is an n-form ω ∈ Ωn(Mn) such that ω(p) ̸= 0 for all p ∈Mn.

Theorem 7.6. Let Mn be a smooth manifold. Then Mn has a volume form if
and only if Mn is orientable.

Proof. Assume first that Mn has a volume form ω ∈ Ωn(Mn). For p ∈ Mn,
let bp = (v⃗1, . . . , v⃗n) be any basis for TpM

n such that

ω(p)(v⃗1, . . . , v⃗n) > 0.

We claim that if b′p = (w⃗1, . . . , w⃗n) is another such basis, then bp ∼ b′p. Indeed,
let f : TpM

n → TpM
n be the linear map satisfying f(v⃗i) = w⃗i for 1 ≤ i ≤ n. By

Lemma 7.5, we have

ω(p)(w⃗1, . . . , w⃗n) = det(f)ω(p)(v⃗1, . . . , v⃗n).

Since

ω(p)(w⃗1, . . . , w⃗n) > 0 and ω(p)(v⃗1, . . . , v⃗n),

it follows that det(f) > 0 and thus that bp ∼ b′p, as claimed. This implies that we
can define an orientation β : Mn → O(Mn) via the formula β(p) = (p, bp). That β
is smooth is immediate from the definitions.

Assume now that Mn is orientable. Let {ϕα : Uα → Vα}α∈I be an oriented
atlas for Mn. Let {fα : Mn → R}α∈I be a smooth partition of unity subordinate
to the open cover {Uα}α∈I of Mn (see Theorem 1.2). Letting x1, . . . , xn be the
coordinate functions on Rn, define

ωα = ϕ∗α(dx1 ∧ · · · ∧ dxn) ∈ Ωn(Uα).

Next, define ωα ∈ Ωn(Mn) via the formula

ωα(p) =

{
fα(p) · ωα(p) if p ∈ Uα,

0 otherwise.

Since the support of fα lies in Uα, the form ωα is smooth. Finally, define

ω =
∑
α∈I

ωα ∈ Ωn(Mn).

While this is a priori an infinite sum, for any point p it is a finite sum since the fα
form a partition of unity. We claim that ω is a volume form on Mn. To check this,
consider p ∈ Mn. We must show that ω(p) ̸= 0. Let (v⃗1, . . . , v⃗n) be an oriented
basis for TpM

n. Fixing some α ∈ I such that p ∈ Uα, it is enough to prove that

ωα(p)(v⃗1, . . . , v⃗n) > 0;

indeed, this will imply that there is no cancellation in the sum defining ω(p). The
basis ((

ϕ−1
α

)
∗

(
∂

∂x1

)
, . . . ,

(
ϕ−1
α

)
∗

(
∂

∂xn

))
is also an oriented basis for TpM

n. Letting f : TpM
n → TpM

n be the isomorphism
defined via the formula

f

((
ϕ−1
α

)
∗

(
∂

∂xi

))
= v⃗i (1 ≤ i ≤ n),
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we thus have det(f) > 0. Applying Lemma 7.5, we then have

ωα(p)(v⃗1, . . . , v⃗n) = det(f) · (dx1 ∧ · · · dxn)(ϕα(p))(
∂

∂x1
, . . . ,

∂

∂xn
) = det(f) > 0,

as desired. □
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