Math 60330: Basic Geometry and Topology Problem Set 8

1. (a) Prove that the inclusion map $S^{n} \hookrightarrow \mathbb{R}^{n+1}$ is an embedding (the most important thing to check is that the induced map on tangent spaces in injective).
(b) Prove that under the embedding $S^{n} \hookrightarrow \mathbb{R}^{n+1}$, the image of the tangent bundle $T S^{n}$ consists of

$$
\begin{aligned}
\left\{(x, \vec{v}) \in S^{n} \times \mathbb{R}^{n+1} \mid \text { the vector from } 0 \text { to } x \text { is orthogonal to } \begin{array}{rl}
\vec{v}\} & \subset T \mathbb{R}^{n+1} \\
& =\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}
\end{array} .\right.
\end{aligned}
$$

Of course, this is the tangent bundle to S^{n} you learned about in multivariable calculus!
2. Let $f: M_{1}^{n_{1}} \rightarrow M_{2}^{n_{2}}$ be a submersion.
(a) Prove that if $U \subset M_{1}^{n_{1}}$ is open, then $f(U)$ is open.
(b) If $M_{1}^{n_{1}}$ is compact and $M_{2}^{n_{2}}$ is connected, then prove that f is surjective.
3. A standard projection of \mathbb{R}^{m} onto an n-dimensional subspace is a linear map $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ that can be written in the form $\pi\left(x_{1}, \ldots, x_{m}\right)=\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ for some $1 \leqslant i_{1}<\cdots<i_{n} \leqslant m$. Problem: For an embedding $f: M^{n} \rightarrow \mathbb{R}^{m}$ and a point $p \in M^{n}$, prove that there exists a chart $\phi: U \rightarrow V$ such that $p \in U$ and $\phi=\pi \circ\left(\left.f\right|_{U}\right)$ for some standard projection $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. HINT: Prove that one of the standard projections is a local diffeomorphisms using the tangent space criterion for local diffeomorphisms.

Remark 0.1. We remark that each chart in the system of charts we gave for S^{n} on the first day of class is of this form.
4. A polynomial $f\left(x_{1}, \ldots, x_{k}\right)$ is homogeneous of degree m if

$$
f\left(t x_{1}, \ldots, t x_{k}\right)=t^{m} f\left(x_{1}, \ldots, x_{k}\right) \quad\left(t, x_{1}, \ldots, x_{k} \in \mathbb{R}\right)
$$

Fix some polynomial $f\left(x_{1}, \ldots, x_{k}\right)$ which is homogeneous of degree $m \geqslant 1$.
(a) Prove Euler's Identity:

$$
m f=\sum_{i=1}^{k} x_{i} \frac{\partial f}{\partial x_{i}}
$$

(b) Prove that all nonzero numbers $a \in \mathbb{R}$ are regular values of $f\left(x_{1}, \ldots, x_{k}\right)$, and hence that $f^{-1}(a)$ is a smooth submanifold of \mathbb{R}^{n} of dimension $(n-1)$.
(c) Prove that if $a, b>0$, then the manifolds $f^{-1}(a)$ and $f^{-1}(b)$ are diffeomorphic, and similarly if $a, b<0$.
5. Fix some real numbers $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n+1}$. Regarding S^{n} as a subspace of \mathbb{R}^{n+1}, define a map $f: S^{n} \rightarrow \mathbb{R}$ via the formula $f\left(x_{1}, \ldots, x_{n+1}\right)=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\cdots+\lambda_{n+1} x_{n+1}^{2} \quad$ for $\left(x_{1}, \ldots, x_{n+1}\right) \in S^{n} \subset \mathbb{R}^{n+1}$.
(a) Prove that the regular values of f are exactly the set $\mathbb{R} \backslash\left\{\lambda_{1}, \ldots, \lambda_{n+1}\right\}$.
(b) Consider $a \in \mathbb{R}$ such that $\lambda_{k}<a<\lambda_{k+1}$ for some $1 \leqslant k \leqslant n$. Define $X=f^{-1}(a)$. Prove that X is diffeomorphic to $S^{k-1} \times S^{n-k}$.

