Math 60330: Basic Geometry and Topology Problem Set 2

- 1. Let X be a CW complex.
 - (a) Prove that if X has finitely many cells, then X is compact.
 - (b) Let $C \subset X$ be a compact subset (not necessarily a subcomplex). Prove that C only intersects finitely many cells of X.
- 2. Construct CW complex structures on the following spaces.
 - (a) An *n*-dimensional torus.
 - (b) Letting $\{p_1, \ldots, p_n\}$ be *n* distinct points on S^2 , the quotient space of S^2 that identifies all the p_i to a single point.
- 3. (a) Carefully prove that the following are covering spaces. Recall that $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.
 - i. The map $\pi \colon \mathbb{C} \to \mathbb{C}^*$ defined by $\pi(z) = e^z$.
 - ii. For $n \in \mathbb{Z} \setminus \{0\}$, the map $\pi \colon \mathbb{C}^* \to \mathbb{C}^*$ defined by $\pi(z) = z^n$.
 - (b) Prove that the map $\pi \colon \mathbb{C} \to \mathbb{C}$ defined by $\pi(z) = z^2$ is not a covering space.
- 4. Let $\pi: \widetilde{X} \to X$ be a covering space such that $\pi^{-1}(p)$ is finite and nonempty for all $p \in X$. Prove that X is compact Hausdorff if and only if \widetilde{X} is compact Hausdorff.
- 5. Let X be a Hausdorff space and G be a group acting on X. Assume the following two conditions hold.
 - The action is *free*, i.e. the stabilizer of every point in X is trivial.
 - The action is properly discontinuous, i.e. for all $x \in X$, there exists a neighborhood U of x such that the set $\{g \in G \mid g(U) \cap U \neq \emptyset\}$ is finite.

Prove that the action of G on X is a covering space action.

Remark 0.1. The second condition is immediate if G is finite, so this implies that all free actions of finite groups on Hausdorff spaces are covering space actions.

6. Let $\pi \colon \widetilde{X} \to X$ be a covering space and let $f \colon Y \to X$ be an arbitrary continuous map. Define

$$f^*(Y) = \{(y, \widetilde{x}) \in Y \times \widetilde{X} \mid f(y) = \pi(\widetilde{x})\} \subset Y \times \widetilde{X}$$

and let

$$f^*(\pi)\colon f^*(Y)\to Y$$

be the restriction of the projection $Y \times \widetilde{X} \to Y$ to the first factor. Prove that $f^*(\pi) \colon f^*(Y) \to Y$ is a covering map.

7. Set $X = \mathbb{R}^2 \setminus \{0\}$. Define an action of the additive group \mathbb{Z} on X via the formula

$$n \cdot (x, y) = (2^n x, 2^{-n} y) \qquad (n \in \mathbb{Z}, (x, y) \in X).$$

- (a) Prove that this is a covering space action.
- (b) Prove that the quotient X/\mathbb{Z} is not Hausdorff.
- (c) Explain how X/\mathbb{Z} is the union of four subspaces homeomorphic to $S^1 \times \mathbb{R}$ coming from the complementary components of the x-axis and the y-axis.