Math 60330: Basic Geometry and Topology Problem Set 2

1. Let X be a CW complex.
(a) Prove that if X has finitely many cells, then X is compact.
(b) Let $C \subset X$ be a compact subset (not necessarily a subcomplex). Prove that C only intersects finitely many cells of X.
2. Construct CW complex structures on the following spaces.
(a) An n-dimensional torus.
(b) Letting $\left\{p_{1}, \ldots, p_{n}\right\}$ be n distinct points on S^{2}, the quotient space of S^{2} that identifies all the p_{i} to a single point.
3. (a) Carefully prove that the following are covering spaces. Recall that $\mathbb{C}^{*}=$ $\mathbb{C} \backslash\{0\}$.
i. The map $\pi: \mathbb{C} \rightarrow \mathbb{C}^{*}$ defined by $\pi(z)=e^{z}$.
ii. For $n \in \mathbb{Z} \backslash\{0\}$, the map $\pi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ defined by $\pi(z)=z^{n}$.
(b) Prove that the map $\pi: \mathbb{C} \rightarrow \mathbb{C}$ defined by $\pi(z)=z^{2}$ is not a covering space.
4. Let $\pi: \widetilde{X} \rightarrow X$ be a covering space such that $\pi^{-1}(p)$ is finite and nonempty for all $p \in X$. Prove that X is compact Hausdorff if and only if \tilde{X} is compact Hausdorff.
5. Let X be a Hausdorff space and G be a group acting on X. Assume the following two conditions hold.

- The action is free, i.e. the stabilizer of every point in X is trivial.
- The action is properly discontinuous, i.e. for all $x \in X$, there exists a neighborhood U of x such that the set $\{g \in G \mid g(U) \cap U \neq \varnothing\}$ is finite.

Prove that the action of G on X is a covering space action.
Remark 0.1. The second condition is immediate if G is finite, so this implies that all free actions of finite groups on Hausdorff spaces are covering space actions.
6. Let $\pi: \widetilde{X} \rightarrow X$ be a covering space and let $f: Y \rightarrow X$ be an arbitrary continuous map. Define

$$
f^{*}(Y)=\{(y, \widetilde{x}) \in Y \times \widetilde{X} \mid f(y)=\pi(\widetilde{x})\} \subset Y \times \widetilde{X}
$$

and let

$$
f^{*}(\pi): f^{*}(Y) \rightarrow Y
$$

be the restriction of the projection $Y \times \widetilde{X} \rightarrow Y$ to the first factor. Prove that $f^{*}(\pi): f^{*}(Y) \rightarrow Y$ is a covering map.
7. Set $X=\mathbb{R}^{2} \backslash\{0\}$. Define an action of the additive group \mathbb{Z} on X via the formula

$$
n \cdot(x, y)=\left(2^{n} x, 2^{-n} y\right) \quad(n \in \mathbb{Z},(x, y) \in X)
$$

(a) Prove that this is a covering space action.
(b) Prove that the quotient X / \mathbb{Z} is not Hausdorff.
(c) Explain how X / \mathbb{Z} is the union of four subspaces homeomorphic to $S^{1} \times \mathbb{R}$ coming from the complementary components of the x -axis and the y -axis.

