Math 60330: Basic Geometry and Topology Problem Set 11

1. Let $\omega \in \mathcal{A}^n(\mathbb{R}^n)$ and let M be an $n \times n$ matrix. Prove that for all $\vec{v}_1, \ldots, \vec{v} \in \mathbb{R}^n$, we have

$$\omega(M(\vec{v}_1),\ldots,M(\vec{v}_n)) = \det(M)\omega(\vec{v}_1,\ldots,\vec{v}_n).$$

- 2. Let V be a vector space and let $\omega_1, \ldots, \omega_k \in V^* = \mathcal{A}^1(V)$. Prove that the ω_i are linearly independent if and only if $\omega_1 \wedge \omega_2 \wedge \cdots \wedge \omega_k = 0$.
- 3. Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be open sets and let $f: U \to V$ be a smooth map. Consider $\omega \in \Omega^k(V)$. Let x_1, \ldots, x_n be the coordinates on \mathbb{R}^n and let y_1, \ldots, y_m be the coordinates on \mathbb{R}^m . Set

$$\mathcal{I} = \{(i_1, \dots, i_k) \mid 1 \leqslant i_1 < \dots < i_k \leqslant n\}$$

and

$$\mathcal{J} = \{(j_1, \dots, j_k) \mid 1 \le j_1 < \dots < j_k \le m\}$$

Write

$$\omega = \sum_{J \in \mathcal{J}} g_J dy_J$$
 and $f^*(\omega) = \sum_{I \in \mathcal{I}} h_I dx_I$.

State and prove a relationship between f, the g_J , and the h_I .

- 4. (a) Letting x_1, \ldots, x_{n+1} be the coordinate functions on \mathbb{R}^{n+1} , give an explicit formula in terms of the dx_i 's for an n-form on \mathbb{R}^{n+1} that restricts to a volume form ω on S^n .
 - (b) Let $\phi: S^n \setminus \{(0,0,1)\} \to \mathbb{R}^n$ be stereographic projection. Letting y_1, \ldots, y_n be the coordinate functions on \mathbb{R}^n , write down the expression for ω in the local coordinates $\phi: S^n \setminus \{(0,0,1)\} \to \mathbb{R}^n$.
- 5. If M^n is a smooth manifold, then a *symplectic form* on M^n is a 2-form ω with the following two properties:
 - ω is closed, i.e. $d\omega = 0$.
 - ω is non-degenerate in the sense that for all points $p \in M^n$ and all nonzero $\vec{v} \in T_p(M^n)$, there exists some $\vec{w} \in T_p(M^n)$ such that $\omega(\vec{v}, \vec{w}) = 1$.

Do the following problems.

(a) Let x_1, \ldots, x_{2n} be the coordinate functions on \mathbb{R}^{2n} . Prove that

$$\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + \dots + dx_{2n-1} \wedge dx_{2n}$$

is a symplectic form on \mathbb{R}^{2n} .

(b) Let M^n be an arbitrary smooth manifold and let $T^*(M^n)$ be its cotangent bundle. Construct a symplectic form on $T^*(M^n)$. Hint: consider a chart $\phi \colon U \to V$ for M^n . Let x_1, \ldots, x_n be the coordinate functions on V. We then get coordinate functions $x_1, \ldots, x_n, y_1, \ldots, y_n$ on $T^*V = V \times (\mathbb{R}^*)^*$ where $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ corresponds to the point

$$((x_1, \dots, x_n), (y_1 dx_1 + \dots + y_n dx_n)) \in T^*V.$$

In these coordinates, your symplectic form should be $dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n$. What you have to prove is that these expressions in different charts "glue up" to give a well-defined global 2-form ω , and that this ω is closed and nondegenerate.