Math 60330: Basic Geometry and Topology Problem Set 11

1. Let $\omega \in \mathcal{A}^{n}\left(\mathbb{R}^{n}\right)$ and let M be an $n \times n$ matrix. Prove that for all $\vec{v}_{1}, \ldots, \vec{v} \in \mathbb{R}^{n}$, we have

$$
\omega\left(M\left(\vec{v}_{1}\right), \ldots, M\left(\vec{v}_{n}\right)\right)=\operatorname{det}(M) \omega\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right) .
$$

2. Let V be a vector space and let $\omega_{1}, \ldots, \omega_{k} \in V^{*}=\mathcal{A}^{1}(V)$. Prove that the ω_{i} are linearly independent if and only if $\omega_{1} \wedge \omega_{2} \wedge \cdots \wedge \omega_{k}=0$.
3. Let $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ be open sets and let $f: U \rightarrow V$ be a smooth map. Consider $\omega \in \Omega^{k}(V)$. Let x_{1}, \ldots, x_{n} be the coordinates on \mathbb{R}^{n} and let y_{1}, \ldots, y_{m} be the coordinates on \mathbb{R}^{m}. Set

$$
\mathcal{I}=\left\{\left(i_{1}, \ldots, i_{k}\right) \mid 1 \leqslant i_{1}<\cdots<i_{k} \leqslant n\right\}
$$

and

$$
\mathcal{J}=\left\{\left(j_{1}, \ldots, j_{k}\right) \mid 1 \leqslant j_{1}<\cdots<j_{k} \leqslant m\right\}
$$

Write

$$
\omega=\sum_{J \in \mathcal{J}} g_{J} \mathrm{dy}_{J} \quad \text { and } \quad f^{*}(\omega)=\sum_{I \in \mathcal{I}} h_{I} \mathrm{dx}_{I}
$$

State and prove a relationship between f, the g_{J}, and the h_{I}.
4. (a) Letting x_{1}, \ldots, x_{n+1} be the coordinate functions on \mathbb{R}^{n+1}, give an explicit formula in terms of the dx_{i} 's for an n-form on \mathbb{R}^{n+1} that restricts to a volume form ω on S^{n}.
(b) Let $\phi: S^{n} \backslash\{(0,0,1)\} \rightarrow \mathbb{R}^{n}$ be stereographic projection. Letting y_{1}, \ldots, y_{n} be the coordinate functions on \mathbb{R}^{n}, write down the expression for ω in the local coordinates $\phi: S^{n} \backslash\{(0,0,1)\} \rightarrow \mathbb{R}^{n}$.
5. If M^{n} is a smooth manifold, then a symplectic form on M^{n} is a 2 -form ω with the following two properties:

- ω is closed, i.e. $d \omega=0$.
- ω is non-degenerate in the sense that for all points $p \in M^{n}$ and all nonzero $\vec{v} \in T_{p}\left(M^{n}\right)$, there exists some $\vec{w} \in T_{p}\left(M^{n}\right)$ such that $\omega(\vec{v}, \vec{w})=1$.

Do the following problems.
(a) Let $x_{1}, \ldots, x_{2 n}$ be the coordinate functions on $\mathbb{R}^{2 n}$. Prove that

$$
\omega=\mathrm{dx}_{1} \wedge \mathrm{dx}_{2}+\mathrm{dx}_{3} \wedge \mathrm{dx}_{4}+\cdots+\mathrm{dx}_{2 n-1} \wedge \mathrm{dx}_{2 n}
$$

is a symplectic form on $\mathbb{R}^{2 n}$.
(b) Let M^{n} be an arbitrary smooth manifold and let $T^{*}\left(M^{n}\right)$ be its cotangent bundle. Construct a symplectic form on $T^{*}\left(M^{n}\right)$. Hint: consider a chart $\phi: U \rightarrow V$ for M^{n}. Let x_{1}, \ldots, x_{n} be the coordinate functions on V. We then get coordinate functions $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ on $T^{*} V=V \times\left(\mathbb{R}^{*}\right)^{*}$ where $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ corresponds to the point

$$
\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1} \mathrm{dx}_{1}+\cdots+y_{n} \mathrm{dx}_{n}\right)\right) \in T^{*} V
$$

In these coordinates, your symplectic form should be $\mathrm{dx}_{1} \wedge \mathrm{dy}_{1}+\cdots+$ $d x_{n} \wedge d y_{n}$. What you have to prove is that these expressions in different charts "glue up" to give a well-defined global 2 -form ω, and that this ω is closed and nondegenerate.

