Math 60330: Basic Geometry and Topology Problem Set 1

1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and let $f: X \rightarrow Y$ be a function. Prove that the following two definitions of f being continuous are equivalent.

- The function f is continuous if for all open sets $U \subset Y$, the preimage $f^{-1}(U) \subset X$ is open.
- The function f is continuous if for all $\epsilon>0$ and all $p \in X$, there exists some $\delta>0$ such that if $q \in X$ satisfy $d_{X}(p, q)<\delta$, then $d_{Y}(f(p), f(q))<\epsilon$.

2. Let X be a topological space and let \sim be an equivalence relation on X. In class, we constructed the quotient space of X by \sim, which is a topological space Y equipped with a projection map $\pi: X \rightarrow Y$ with the following two properties.

- For all $p, q \in X$ such that $p \sim q$, we have $\pi(p)=\pi(q)$.
- If Z is a topological space and $f: X \rightarrow Z$ is a continuous function such that $f(p)=f(q)$ for all $p, q \in X$ satisfying $p \sim q$, then there exists a unique continuous function $\bar{f}: Y \rightarrow Z$ such that $f=\bar{f} \circ \pi$. In other words, the diagram

commutes.
Problem: Let Y^{\prime} be another topological space equipped with a projection $\pi^{\prime}: X \rightarrow Y^{\prime}$ satisfying the above conditions (with Y^{\prime} and π^{\prime} swapped for Y and $\pi)$. Prove that Y is homeomorphic to Y^{\prime}. Hint: First use the above conditions to construct functions $\bar{f}: Y \rightarrow Y^{\prime}$ and $\bar{f}^{\prime}: Y^{\prime} \rightarrow Y$. Next, use the above conditions again to prove that $\bar{f} \circ \bar{f}^{\prime}=\mathrm{id}$ and $\bar{f}^{\prime} \circ \bar{f}=$ id. This second application of the above conditions will use the uniqueness rather than the existence part.
Remark 0.1. The above condition is called a universal mapping property, and the argument in this problem is used throughout mathematics to show that spaces satisfying universal mapping properties are unique up to an appropriate notion of isomorphism.

3. (a) Let \sim be the following equivalence relation on \mathbb{R}^{2} :
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if $x_{1}+y_{1}^{2}=x_{2}+y_{2}^{2}$.
The quotient of \mathbb{R}^{2} by \sim is a familiar space. Which one is it?
(b) Repeat part a for the following equivalence relation:
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if $x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}$.
4. Let \sim be the following equivalence relation on $X=[-1,1] \times \mathbb{R} \subset \mathbb{R}^{2}$: $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if one of the following hold:

- $x_{1}=x_{2}=1$, or
- $x_{1}=x_{2}=-1$, or
- $-1<x_{1}, x_{2}<1$ and $\left(x_{1}^{2}-1\right) e^{y_{1}}=\left(x_{2}^{2}-1\right) e^{y_{2}}$.
(a) Draw the equivalence classes for \sim.
(b) Prove that the quotient of X by \sim is not Hausdorff.

5. Let \sim be the equivalence relation on \mathbb{D}^{n} where $p \sim q$ whenever $\|p\|=\|q\|=1$. Prove that \mathbb{D}^{n} / \sim is homeomorphic to S^{n}. Hint: construct continuous maps $f: \mathbb{D}^{n} / \sim S^{n}$ and $g: S^{n} \rightarrow \mathbb{D}^{n} / \sim$ such that $f \circ g=\mathrm{id}$ and $g \circ f=\mathrm{id}$. The map f should take a line segment through the origin connecting two boundary points of \mathbb{D}^{n} to the great circle on S^{n} based at the north pole (hence the two boundary points go to the north pole).
6. The Jordan curve theorem is as follows.

Theorem 0.2. Let $f:[0,1] \rightarrow \mathbb{R}^{2}$ be a continuous map such that $f(0)=f(1)$ and such that $\left.f\right|_{(0,1)}$ is injective. Then $\mathbb{R}^{2} \backslash$ Image (f) has exactly 2 connected components.

This is not an easy theorem to prove; however, in this problem you will prove a special case of it. Say that a function $f:[0,1] \rightarrow \mathbb{R}^{2}$ is piecewise linear if there exist $0=a_{1}<a_{2}<\cdots<a_{k}=1$ such that $\left.f\right|_{\left[a_{i}, a_{i+1}\right]}$ is linear (i.e. there exist constants $c, c^{\prime}, d, d^{\prime} \in \mathbb{R}$ such that for $x \in\left[a_{i}, a_{i+1}\right]$ we have $f(x)=$ $\left.\left(c x+d, c^{\prime} x+d^{\prime}\right)\right)$.

Now let $f:[0,1] \rightarrow \mathbb{R}^{2}$ be a continuous piecewise linear map such that $f(0)=$ $f(1)$ and such that $\left.f\right|_{(0,1)}$ is injective. Let $0=a_{1}<a_{2}<\cdots<a_{k}=1$ be the subdivision coming from the piecewise linearity of f.
(a) Prove that $\mathbb{R}^{2} \backslash \operatorname{Image}(f)$ has at most 2 path components. Hint: Let $x, y \in$ $\mathbb{R}^{2} \backslash$ Image (f) be two points that are close to each other and to Image (f), but on opposite sides of one of the line segments forming Image (f). Show that any point $p \in \mathbb{R}^{2} \backslash \operatorname{Image}(f)$ can be connected by a path to either x or y.
(b) Prove that $\mathbb{R}^{2} \backslash$ Image (f) has at least 2 path components. Here's an outline. It is enough to find disjoint open sets U and V such that $\mathbb{R}^{2} \backslash \operatorname{Image}(f)=$ $U \cup V$. Consider $p \in \mathbb{R}^{2} \backslash \operatorname{Image}(f)$. Say that a ray emanating from p is generic if it intersects Image (f) in finitely many places and does not intersect $f\left(a_{i}\right)$ for any $1 \leqslant i \leqslant k$. Prove first that every $p \in \mathbb{R}^{2} \backslash$ Image (f) has generic rays emanating from it. Let r be a generic ray emanating from p. Say that p is even if r intersects Image (f) in an even number of points and odd otherwise. Prove next that this is independent of r. Now define $U=\left\{q \in \mathbb{R}^{2} \backslash\right.$ Image $(f) \mid q$ is even $\}$ and $V=\left\{q \in \mathbb{R}^{2} \backslash \operatorname{Image}(f) \mid q\right.$ is odd $\}$. Prove that U and V are disjoint open sets whose union is $\mathbb{R}^{2} \backslash \operatorname{Image}(f)$.

