Math 60330: Basic Geometry and Topology Problem Set 1

- 1. Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$ be a function. Prove that the following two definitions of f being continuous are equivalent.
 - The function f is continuous if for all open sets $U \subset Y$, the preimage $f^{-1}(U) \subset X$ is open.
 - The function f is continuous if for all $\epsilon > 0$ and all $p \in X$, there exists some $\delta > 0$ such that if $q \in X$ satisfy $d_X(p,q) < \delta$, then $d_Y(f(p), f(q)) < \epsilon$.
- 2. Let X be a topological space and let \sim be an equivalence relation on X. In class, we constructed the *quotient space* of X by \sim , which is a topological space Y equipped with a projection map $\pi: X \to Y$ with the following two properties.
 - For all $p, q \in X$ such that $p \sim q$, we have $\pi(p) = \pi(q)$.
 - If Z is a topological space and $f: X \to Z$ is a continuous function such that f(p) = f(q) for all $p, q \in X$ satisfying $p \sim q$, then there exists a **unique** continuous function $\overline{f}: Y \to Z$ such that $f = \overline{f} \circ \pi$. In other words, the diagram

commutes.

Problem: Let Y' be another topological space equipped with a projection $\pi': X \to Y'$ satisfying the above conditions (with Y' and π' swapped for Y and π). Prove that Y is homeomorphic to Y'. Hint: First use the above conditions to construct functions $\overline{f}: Y \to Y'$ and $\overline{f}': Y' \to Y$. Next, use the above conditions again to prove that $\overline{f} \circ \overline{f}' = \text{id}$ and $\overline{f}' \circ \overline{f} = \text{id}$. This second application of the above conditions will use the uniqueness rather than the existence part.

Remark 0.1. The above condition is called a *universal mapping property*, and the argument in this problem is used throughout mathematics to show that spaces satisfying universal mapping properties are unique up to an appropriate notion of isomorphism.

3. (a) Let ~ be the following equivalence relation on \mathbb{R}^2 :

 $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1 + y_1^2 = x_2 + y_2^2$. The quotient of \mathbb{R}^2 by \sim is a familiar space. Which one is it?

- (b) Repeat part a for the following equivalence relation: $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.
- 4. Let ~ be the following equivalence relation on $X = [-1, 1] \times \mathbb{R} \subset \mathbb{R}^2$: $(x_1, y_1) \sim (x_2, y_2)$ if and only if one of the following hold:

- $x_1 = x_2 = 1$, or
- $x_1 = x_2 = -1$, or
- $-1 < x_1, x_2 < 1$ and $(x_1^2 1)e^{y_1} = (x_2^2 1)e^{y_2}$.
- (a) Draw the equivalence classes for \sim .
- (b) Prove that the quotient of X by \sim is not Hausdorff.
- 5. Let \sim be the equivalence relation on \mathbb{D}^n where $p \sim q$ whenever ||p|| = ||q|| = 1. Prove that \mathbb{D}^n/\sim is homeomorphic to S^n . Hint: construct continuous maps $f: \mathbb{D}^n/\sim \to S^n$ and $g: S^n \to \mathbb{D}^n/\sim$ such that $f \circ g = \text{id}$ and $g \circ f = \text{id}$. The map f should take a line segment through the origin connecting two boundary points of \mathbb{D}^n to the great circle on S^n based at the north pole (hence the two boundary points go to the north pole).
- 6. The Jordan curve theorem is as follows.

Theorem 0.2. Let $f : [0,1] \to \mathbb{R}^2$ be a continuous map such that f(0) = f(1)and such that $f|_{(0,1)}$ is injective. Then $\mathbb{R}^2 \setminus \text{Image}(f)$ has exactly 2 connected components.

This is not an easy theorem to prove; however, in this problem you will prove a special case of it. Say that a function $f : [0,1] \to \mathbb{R}^2$ is *piecewise linear* if there exist $0 = a_1 < a_2 < \cdots < a_k = 1$ such that $f|_{[a_i,a_{i+1}]}$ is linear (i.e. there exist constants $c, c', d, d' \in \mathbb{R}$ such that for $x \in [a_i, a_{i+1}]$ we have f(x) = (cx + d, c'x + d')).

Now let $f : [0,1] \to \mathbb{R}^2$ be a continuous piecewise linear map such that f(0) = f(1) and such that $f|_{(0,1)}$ is injective. Let $0 = a_1 < a_2 < \cdots < a_k = 1$ be the subdivision coming from the piecewise linearity of f.

- (a) Prove that $\mathbb{R}^2 \setminus \text{Image}(f)$ has at most 2 path components. Hint: Let $x, y \in \mathbb{R}^2 \setminus \text{Image}(f)$ be two points that are close to each other and to Image(f), but on opposite sides of one of the line segments forming Image(f). Show that any point $p \in \mathbb{R}^2 \setminus \text{Image}(f)$ can be connected by a path to either x or y.
- (b) Prove that $\mathbb{R}^2 \setminus \operatorname{Image}(f)$ has at least 2 path components. Here's an outline. It is enough to find disjoint open sets U and V such that $\mathbb{R}^2 \setminus \operatorname{Image}(f) = U \cup V$. Consider $p \in \mathbb{R}^2 \setminus \operatorname{Image}(f)$. Say that a ray emanating from p is generic if it intersects $\operatorname{Image}(f)$ in finitely many places and does not intersect $f(a_i)$ for any $1 \leq i \leq k$. Prove first that every $p \in \mathbb{R}^2 \setminus \operatorname{Image}(f)$ has generic rays emanating from it. Let r be a generic ray emanating from p. Say that p is even if r intersects $\operatorname{Image}(f)$ in an even number of points and odd otherwise. Prove next that this is independent of r. Now define $U = \{q \in \mathbb{R}^2 \setminus \operatorname{Image}(f) \mid q \text{ is even}\}$ and $V = \{q \in \mathbb{R}^2 \setminus \operatorname{Image}(f) \mid q \text{ is odd}\}$. Prove that U and V are disjoint open sets whose union is $\mathbb{R}^2 \setminus \operatorname{Image}(f)$.