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CHAPTER 1

Examples of spaces
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CHAPTER 2

Basic properties and examples of covering spaces

The main topic of the first part of this book is as follows.

Definition 2.1. Let X be a topological space. A covering space of X (or just

cover for short) is a space X̃ equipped with a continuous map f : X̃ → X such that
the following holds for all x ∈ X.

• There exists a neighborhood U of x such that f−1(U) is the disjoint union

of open sets Ũα for which the restriction f |Ũα
: Ũα → U is a homeomor-

phism.

We will call U a trivialized neighborhood of x and the sets Ũα will be called the

sheets lying above U . We will also call X the base of the cover and X̃ the total space
of the cover. □

Here are two easy examples.

Example 2.2. The identity map X → X is a obviously a covering space of X;
indeed, in this example we can take the entire space X to be our trivialized neigh-
borhood of any x ∈ X. More generally, if F is a discrete set, then the projection
X × F → X is a covering space of X. We will call X × F → X a trivial cover.
Every covering space looks locally like a trivial cover. □

Example 2.3. The map f : R → S1 defined via the formula

f(t) = (cos(2πt), sin(2πt))

is a covering space. To see this, consider x ∈ S1. Letting p ∈ R be any point such
that f(p) = x, we have f−1(x) = {p+ k | k ∈ Z}. Letting U ⊂ S1 be a small open
arc of S1 surrounding x, the preimage f−1(U) consists of a disjoint union of small
intervals surrounding the points p + k for k ∈ Z; see Figure 2.1. It follows that U
is a trivialized neighborhood of x. □

The first basic property of covers is as follows.

Lemma 2.4. Let f : X̃ → X be a covering space such that X is connected. Then
for all x1, x2 ∈ X we have |f−1(x1)| = |f−1(x2)|.

Proof. Define a function ϕ : X → Z ∪ {∞} via the formula

ϕ(x) = |f−1(x)| (x ∈ X).

We must show that ϕ is constant. Since X is connected, it is enough to show that ϕ
is locally constant. Consider x ∈ X and let U ⊂ X be a trivialized neighborhood of

x. Let {Ũα}α∈I be the sheets over f−1(U). Every x ∈ U has precisely 1 preimage

in each Ũα for all α ∈ I, and thus

ϕ(x) = |I| (x ∈ U),
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Figure 2.1. The cover f : R → S1 discussed in Example 2.3.
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Figure 2.2. The map f : S̃ → S that takes each γ̃i to γ and each
Xi to the complement of γ is a degree 3 covering map; see Example
2.8. The shaded circles depict two trivializing neighborhoods and
the sheets above them.

as desired. □

This allows us to make the following definition.

Definition 2.5. Let f : X̃ → X be a covering space. For x ∈ X, the preimage
f−1(x) is the fiber of x. If X is connected, the cardinality of f−1(x) is called the
degree of the cover. Lemma 2.4 implies that this does not depend on x. □

We now give a sequence of important examples of covering spaces.

Example 2.6. Pick n ∈ Z nonzero. Viewing S1 as a subset of C, the map
f : S1 → S1 defined via the formula f(z) = zn is a covering space of degree |n|. For
x ∈ S1, a small open arc U of S1 around x is a trivializing neighborhood of x; the
sheets over U consist of |n| open arcs of S1 evenly spaced around the circle. □

Example 2.7. Recall that RPn is the space of lines through the origin in
Rn+1. The map f : Sn → RPn that takes p ∈ Sn to the line through the origin
passing through p is a covering space of degree 2. For x ∈ RPn, the fiber f−1(x)

consists of two antipodal points p1 and p2 in Sn. Let Ũ1 and Ũ2 be disjoint open

hemispheres such that p1 ∈ Ũ1 and p2 ∈ Ũ2. We then have f(Ũ1) = f(Ũ2); the set

U = f(Ũ1) = f(Ũ2) is a trivializing neighborhood of x and the Ũi are the sheets
over U . □
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Figure 2.3. The map f : X̃ → X that takes all the vertices of

X̃ to the vertex of X and takes the interiors of the edges labeled
a and b homeomorphically to the interiors of the edges labeled a
and b (in the indicated direction) is a degree 3 covering map; see
Example 2.9.
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Figure 2.4. Finding a trivialized neighborhood of a point in the
interior of an edge in Example 2.9.
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Figure 2.5. Finding a trivialized neighborhood of the vertex in
Example 2.9.

Example 2.8. Let S and S̃ be the surfaces in Figure 2.2. We can define

a covering space f : S̃ → S of degree 3 in the following way. The curves γ̃1,

γ̃2, and γ̃3 divide S̃ into three subsurfaces X1, X2, and X3. Each Xi is a genus
2 surface with 2 boundary components. The map f then takes the interiors of
each Xi homeomorphically onto the complement of the curve γ in S and takes
each γ̃i homeomorphically onto γ. See Figure 2.2 for pictures of the trivializing
neighborhoods in this cover. □
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Figure 2.6. Each of these graphs yields a covering space of the
graph X in Figure 2.3; see Example 2.10.

Example 2.9. Let X̃ and X be the graphs depicted in Figure 2.3. The arrows
and labels on the edges are not part of the topological space, but will rather help

us to construct a map f : X̃ → X. The map f is defined as follows.

• The map f takes all of the vertices of X̃ to the single vertex of X.

• The map f takes the interiors of the edges of X̃ that are labeled a home-
omorphically to the interior of the edge of X labeled a, and similarly for
the edges labeled b. The arrows on the edges indicate the direction they

should be traversed: as a point p moves along an edge of X̃ in the indi-
cated direction, the point f(p) moves along the appropriate edge of X in
the indicated direction.

This map f : X̃ → X is a covering map of degree 3. Indeed, consider a point x ∈ X.
There are two cases.

• If x is in the interior of an edge, then for a trivializing neighborhood we
can take a small open arc of that edge surrounding x; see Figure 2.4.

• If x is the vertex, then for a trivializing neighborhood we can take x
together with a small open segment of each of the four half-edges coming
out of x; see Figure 2.5. □

The key property of the graph X̃ in Example 2.9 is that around each vertex of

X̃, there is precisely one a-edge coming in and one a-edge going out, and similarly
for the b-edges. This is what allowed us to find a trivializing neighborhood around
the vertex of X. We can generalize this example as follows.

Example 2.10. Let X be the graph depicted in Figure 2.3 and let X̃ be any
graph whose edges are oriented and labeled with a’s and b’s. Assume that each
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Figure 2.7. Part of an infinite 4-valent tree. Each crossing is
a vertex, each horizontal edge is oriented from left to right and
labeled a, and each vertical edge is oriented from bottom to top
and labeled b.

vertex of X̃ has valence 4 and has precisely one a-edge (resp. b-edge) coming in and
one a-edge (resp. b-edge) coming out. Just like in Example 2.9, we can construct

a covering map f : X̃ → X. The degree of this cover equals the number of vertices

of X̃. This produces a rich collection of covering spaces of X; see Figure 2.6 for a
few examples. □

Our final example is a very special cover of a graph that will show up several
times.

Example 2.11. Let X be the graph depicted in Figure 2.3 and let T be the
oriented labeled infinite 4-valent tree depicted in Figure 2.7. As above, there is a

covering map f : T → X. You will show in the exercises that if X̃ is any other

connected graph of the form used in Example 2.10, there is a covering map T → X̃.
We will later prove that these are all covers of X with connected total space. Using
terminology that we will introduce later in this book, this means that T is the
universal cover of X. □

Exercise 2.12. Carefully prove that the following are covering spaces. Recall
that C∗ = C \ {0}.

(1) The map π : C → C∗ defined by π(z) = ez.
(2) For n ∈ Z \ {0}, the map π : C∗ → C∗ defined by π(z) = zn. □
Exercise 2.13. Prove that the map π : C → C defined by π(z) = z2 is not a

covering space. □
Exercise 2.14. Let f : X̃ → X and g : Ỹ → Y be covering spaces. Define

h : X̃× Ỹ → X × Y via the formula h(p, q) = (f(p), g(q)). Prove that h : X̃× Ỹ →
X × Y is a covering space. □
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Exercise 2.15. Let f : X̃ → X be a cover and let X ′ ⊂ X be a subspace.

Define X̃
′
= f−1(X ′) and f ′ = f |

X̃
′ . Prove that f ′ : X̃

′
→ X ′ is a cover. We will

call this the restriction of f to X ′. □
Exercise 2.16. Let T be the infinite 4-valent tree from Example 2.11 and let

X̃ be any connected graph which is oriented and labeled as in Example 2.10. Also,
let X be the graph from Figure 2.3, so we have covering maps f : T → X and

g : X̃ → X. Let v be any vertex of T and let w be any vertex of X̃. Prove that

there exists a covering map h : T → X̃ such that f = g ◦ h. □

Exercise 2.17. Let π : X̃ → X be a covering space such that π−1(p) is finite

and nonempty for all p ∈ X. Prove that X is compact Hausdorff if and only if X̃ is
compact Hausdorff. □



CHAPTER 3

Lifts, morphisms, and deck groups

To unlock the structure of the set of all covers of a space X, we must study the
following objects.

Definition 3.1. Let f : X̃ → X be a covering space and let g : Y → X be a

continuous map. A lift of g to X̃ is a continuous map g̃ : Y → X̃ such that g = f ◦ g̃,
i.e. such that the diagram

X̃

f

��

Y
g

//

g̃

??��������
X

commutes. □

Lifts are not unique, but the following lemma says that if two agree at a single
point, then they must be equal.

Lemma 3.2. Let f : X̃ → X be a covering space, let g : Y → X be a continuous

map, and let g̃1, g̃2 : Y → X̃ be two lifts of g to X̃. Assume that Y is connected and
that g̃1(y0) = g̃2(y0) for some y0 ∈ Y . Then g̃1(y) = g̃2(y) for all y ∈ Y .

Proof. Set Λ = {y ∈ Y | g̃1(y) = g̃2(y)}. Our goal is to show that Λ = Y . By
assumption y0 ∈ Λ, so Λ is nonempty. Since Y is connected, it is therefore enough
to prove that Λ is both open and closed. The fact that Λ is closed is immediate
from the fact that g̃1 and g̃2 are continuous, so it remains to prove that Λ is open.
Consider a point y1 ∈ Λ. Let U ⊂ X be a trivializing neighborhood of g(y1) and

let Ũ be the subset of f−1(Y ) such that f |Ũ is a homeomorphism that contains
g̃1(y1) = g̃2(y1). Define

V = g̃−1
1 (Ũ) ∩ g̃−1

2 (Ũ),

so V is an open neighborhood of y1 in Y . By construction, the map f |Ũ : Ũ → U
is a homeomorphism and

g|V = (f |Ũ) ◦ (g̃1 |V ) = (f |Ũ) ◦ (g̃2 |V ).

We deduce that

g̃1 |V = g̃2 |V = (f |Ũ)
−1 ◦ (g|V ),

and thus that V ⊂ Λ. This implies that Λ is open, as desired. □

We now introduce the appropriate notion of morphisms between covers, and in
particular give a precise definition of what it means for two covers to be the same.

9
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Definition 3.3. Let f1 : X̃1 → X and f2 : X̃2 → X be covering spaces. A

covering space map from f1 : X̃1 → X to f2 : X̃2 → X is a continuous map ϕ : X̃1 →
X̃2 such that f1 = f2 ◦ ϕ, i.e. such that the diagram

X̃1
ϕ

//

f1

  
@@

@@
@@

@@
X̃2

f2

~~~~
~~
~~
~~

X

commutes. If ϕ is a homeomorphism, then we say that ϕ is a covering space iso-

morphism and that X̃1 and X̃2 are isomorphic covers of X. □

Just like for many other objects in mathematics, it is enlightening to study the
self-isomorphisms of a cover.

Definition 3.4. Let f : X̃ → X be a covering space. An automorphism or

deck transformation of f : X̃ → X is a covering space isomorphism from f : X̃ → X

to itself. The deck group of f : X̃ → X, denoted Deck(f : X̃ → X) (or Deck(X̃) if

the map f is clear), is the set of all deck transformations of f : X̃ → X. The set

Deck(X̃) forms a group under composition. □

The following lemma will allow us to identify the deck groups of many covers.

Lemma 3.5. Let f : X̃ → X be a covering space and let x0 ∈ X. The following
then hold.

(1) The group Deck(X̃) acts on the set f−1(x0).

(2) Assume that X̃ is connected and consider ϕ1, ϕ2 ∈ Deck(X̃). If ϕ1(p) =
ϕ2(p) for some p ∈ f−1(x0), then ϕ1 = ϕ2.

Proof. To see that Deck(X̃) acts on f−1(x0), observe that if ϕ ∈ Deck(X̃) and
p ∈ f−1(x0), then the condition f = f ◦ ϕ implies that

x0 = f(p) = f(ϕ(p)),

and thus ϕ(p) ∈ f−1(x0). The second conclusion follows from Lemma 3.2 using the

fact that both ϕ1 and ϕ2 are lifts of f : X̃ → X to X̃. □

We now give a sequence of examples of deck groups.

Example 3.6. Consider the covering space f : R → S1 defined by the formula
f(t) = (cos(2πt), sin(2πt)). The deck group of this cover is Z, which acts on R
by integer translations. To see this, observe that it is clear that Z ⊂ Deck(R).
Moreover, if ϕ ∈ Deck(R) satisfies ϕ(0) = n ∈ Z, then by Lemma 3.5 the element ϕ
must equal translation by n, and thus Z = Deck(R). □

Example 3.7. Consider the covering space f : Sn → RPn. By a reasoning
similar to that in Example 3.6, the deck group of this cover is Z/2, which acts on
Sn as multiplication by −1. □

Example 3.8. Let f1 : X̃1 → X be the cover depicted in Figure 3.1. By a
reasoning similar to that in Example 3.6, the deck group of this cover is Z, which
acts on X̃1 by horizontal translations. □
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Figure 3.1. Deck(X̃1) = Z and Deck(X̃2) = 1 and Deck(X̃3) =
Z/2; see Examples 3.8, 3.9, and 3.10

Example 3.9. Let f2 : X̃2 → X be the cover depicted in Figure 3.1. Then

Deck(X̃2) = 1; indeed, any element of Deck(X̃2) must preserve the central vertex
since it is the only vertex that is not adjacent to a loop, and thus by Lemma 3.5
must be the identity. □

Example 3.10. Let f3 : X̃3 → X be the cover depicted in Figure 3.1. Then

Deck(X̃3) = Z/2, which acts on X̃3 by a 180 degree rotation. Indeed, this rotation

ρ clearly is an order 2 element of Deck(X̃3), so Z/2 ⊂ Deck(X̃3). Any element ϕ

of Deck(X̃3) must either fix or flip the outermost two vertices since they are the
only vertices that are adjacent to loops, so by Lemma 3.5 we either have ϕ = id or

ϕ = ρ. We conclude that in fact Z/2 = Deck(X̃3). □
The following class of covering spaces will be very important.

Definition 3.11. A covering space f : X̃ → X is regular if for all x0 ∈ X, the

group Deck(X̃) acts transitively on f−1(x0). This means that for p, q ∈ f−1(x0),

there exists some ϕ ∈ Deck(X̃) such that ϕ(p) = q. □
Example 3.12. The covering spaces in Examples 3.6, 3.7, and 3.8 are regular,

while the covering spaces in Examples 3.9 and 3.10 are not regular. □
Our next goal is to characterize regular covers. We begin with the following

definition.

Definition 3.13. Let G be a group acting continuously on a space Z. This
action is a covering space action if for all p ∈ Z, there exists a neighborhood U of
p such that

{g ∈ G | g(U) ∩ U ̸= ∅} = {id}.
□

The following lemma says that deck groups of covers provide examples of cover
space actions.

Lemma 3.14. Let f : X̃ → X be a covering space. Then the action of Deck(X̃)

on X̃ is a covering space action.
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Proof. Consider p ∈ X̃. Let U ⊂ X be a trivializing neighborhood of f(p) and

let {Ũα}α∈I be the disjoint subsets making up f−1(U) such that f |Ũα
: Ũα → U is

a homeomorphism for all α ∈ I. Let β ∈ I be such that p ∈ Ũβ . We will prove that

Ũβ satisfies the condition in the definition of a covering space action. The group

Deck(X̃) permutes the Ũα. If ϕ ∈ Deck(X̃) is such that

ϕ(Ũβ) ∩ Ũβ ̸= ∅,

then we must in fact have ϕ|Ũβ
= id. Lemma 3.5 then implies that ϕ = id. The

lemma follows. □

Lemma 3.15. Let G be a group acting on a space X via covering space action.
Then the projection map f : X → X/G is a regular cover with deck group G.

Proof. Consider a point p ∈ X/G. Write p = f(x), let U ⊂ X be an open
neighborhood of x such that

(1) {g ∈ G | g(U) ∩ U ̸= ∅} = {id},

and let U = f(U). The set U is thus an open neighborhood of p and

f−1(U) =
∪
g∈G

g(U).

For distinct g1, g2 ∈ G, we have

g1(U) ∩ g2(U) = g1(U ∩ g−1
1 g2(U)) = g1(∅) = ∅;

here the second equality uses (1). By construction, f takes g(U) homeomorphi-
cally to U. It follows that f : X → X/G is a covering space. It is clear that
G ⊂ Deck(f : X → X/G); since G permutes the elements in any given fiber of f
transitively, we see that f : X → X/G is a regular cover. Moreover, we can apply
Lemma 3.5 to deduce that G = Deck(f : X → X/G), and we are done. □

Exercise 3.16. Let f : X̃ → X be a degree 2 cover. Prove that X̃ is a regular
cover. □

Exercise 3.17. Let f : X̃ → X be a covering space.

(1) If g : Y → X is a continuous map, then define

g∗(X̃) = {(y, p) | g(y) = f(p)} ⊂ Y × X̃ .

Also, let g∗(f) : g∗(X̃) → Y be the restriction of of the projection Y ×X̃ →
Y onto the first factor. Prove that g∗(f) : g∗(X̃) → Y is a covering space.

(2) If g : X → X is the identity map, then prove that g∗(X̃) is isomorphic to

X̃.
(3) If X ′ is a subspace of X and g : X ′ → X is the inclusion of X ′ into X,

prove that g∗(f) : g∗(X̃) → X ′ is isomorphic to the restriction of f to
X ′. □

(4) If X̃ is a trivial cover of X and g : Y → X is a continuous map, prove that

g∗(X̃) is a trivial cover of Y .
(5) If g : Y → X and h : Z → Y are continuous maps, prove that the cover

(g ◦ h)∗(X̃) of Z is isomorphic to h∗(g∗(X̃)) of Z.
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(6) Let g : Y → X is the constant map that takes every point of Y to a fixed

point p0 ∈ X, prove that g∗(X̃) is a trivial cover of Y . Hint: You can
prove this directly, but it is better to deduce it from the last two parts of
the exercise.





CHAPTER 4

Lifting paths

The following theorem will play a fundamental role in our analysis of covering
spaces.

Theorem 4.1. Let f : X̃ → X be a covering space, let γ : [a, b] → X be a path,

and let p ∈ X̃ be such that f(p) = γ(a). Then there exists a unique lift γ̃ : [a, b] → X̃
of γ such that γ̃(a) = p.

Before we prove Theorem 4.1, we point out a corollary.

Corollary 4.2. All covers of an interval [a, b] are trivial.

Proof. Let f : X̃ → [a, b] be a cover. Set X̃a = f−1(a), so X̃a is a discrete

set. Define a map g : X̃a×[a, b] → X̃ as follows. For p ∈ X̃a, Theorem 4.1 says

that there is a unique lift γ̃p : [a, b] → X̃ of the identity map [a, b] → [a, b] such that
γ̃p(a) = p. We define

g(p, t) = γ̃p(t) (p ∈ X̃a, t ∈ [a, b].

By construction, g is a map of covering spaces of [a, b]. We must prove that it is
an isomorphism of covering spaces, i.e. that g is a homeomorphism.

We will construct an inverse to g. We begin by constructing a map ϕ : X̃ → X̃a
as follows. Consider a point q ∈ X̃. Set tq = f(q) ∈ [a, b]. By Theorem 4.1, there

is a unique lift δ̃q : [a, tq] → X̃ of the inclusion [a, tq] ↪→ [a, b] such that δ̃q(tq) = q.

Define ϕ(q) = δ̃q(0). To see that ϕ is continuous at q, let U ⊂ [a, b] be a trivializing

neighborhood for f of f(q) and let Ũ be the sheet of f over U containing q. Then

it is clear from the construction that ϕ(q′) = ϕ(q) for all q′ ∈ Ũ, which implies that
ϕ is continuous at q.

Define h : X̃ → X̃a×[a, b] via the formula

h(q) = (ϕ(q), f(q)) (q ∈ X̃).

For all q ∈ X̃, the uniqueness in Theorem 4.1 implies that δ̃q = γ̃pq |[a,tq ]. This
implies that h is an inverse to g, as desired. □

We now turn to the proof of Theorem 4.1. We will need the following lemma
from point-set topology.

Lemma 4.3. Let (M,d) be a compact metric space and let {Uα}α∈I be an open
cover of M . Then there exists some ϵ > 0 (called the Lebesgue number of the
covering) such that for all subsets X ⊂ M with diam(X) < ϵ, there exists some
α ∈ I such that X ⊂ Uα.

15



16 4. LIFTING PATHS

Proof. Assume that this is false. This implies that for n ≥ 1 there exists a
subset Kn of M such that diam(Kn) < 1/n and such that Kn is not contained in
any Uα. For all n ≥ 1, pick an arbitrary point pn ∈ Kn. Since M is compact, there
exists a limit point x0 ∈ M of the set {pn}n≥1. Pick α ∈ I such that x0 ∈ Uα.
Since Uα is open, there exists some ϵ > 0 such that the ball B2ϵ(x0) of radius 2ϵ
around x0 is contained in Uα. Let N ≥ 1 be such that 1/N < ϵ. We can find some
n ≥ N such that pn ∈ Bϵ(x0). Since

diam(Kn) < 1/n ≤ 1/N < ϵ,

it follows that
Kn ⊂ B2ϵ(x0) ⊂ Uα,

a contradiction. □
Proof of Theorem 4.1. To simplify our notation, we will deal with the spe-

cial case [a, b] = [0, 1]; the general case is done in a similar way. Let {U(α)}α∈I
be an open cover of X by trivializing neighborhoods for f : X̃ → X. For α ∈ I,
set V (α) = γ−1(Uα). The set {V (α)}α∈I is thus an open cover of [0, 1]. Let ϵ > 0
be a Lebesgue number for {V (α)}α∈I as in Lemma 4.3 and let n ≥ 1 be such that

1/n < ϵ. We then define γ̃ : [0, 1] → X̃ as follows. First, set γ̃(0) = p. Next, assume
that for some 0 ≤ k < n− 1 the lift γ̃ has been defined on [0, k/n] ⊂ [0, 1]. We will
show how to extend γ̃ to [0, (k + 1)/n]. Since 1/n < ϵ, there exists some α0 ∈ I
such that [k/n, (k+1)/n] ⊂ V (α0). This implies that γ([k/n, (k+1)/n]) ⊂ U(α0).

Let {Ũβ(α0)}β∈J be the sheets of X̃ lying over U(α0) and let β0 ∈ J be such that

γ̃(k/n) ∈ Ũβ0(α0). The map f |Ũβ0
(α0)

: Ũβ0(α0) → U(α0) is a homeomorphism,

and we extend γ̃ to [0, (k + 1)/n] by letting

γ̃ |[k/n,(k+1)/n] = (f |Ũβ0
(α0)

)−1 ◦ (γ|[k/n,(k+1)/n]).

Repeating this process, we can define γ̃ on all of [0, 1]. The uniqueness of γ̃ is clear
from the construction. □



CHAPTER 5

Homotopies and their lifts

The following equivalence relation on functions is fundamental in algebraic
topology.

Definition 5.1. Two continuous maps g0 : Y → X and g1 : Y → X are homo-
topic if there exists a continuous map G : Y × [0, 1] → X such that

g0(y) = G(y, 0) and g1(y) = G(y, 1)

for y ∈ Y . For t ∈ [0, 1], define gt : Y → X via the formula gt(y) = G(y, t) for
y ∈ Y . The family of continuous maps gt : Y → X will be called a homotopy from
g0 to g1. □

Example 5.2. Let X be a convex subset of Rn. Then any two continuous
maps g0 : Y → X and g1 : Y → X are homotopic via the “straight-line” homotopy
gt : Y → X defined via the formula

gt(y) = (1− t)g0(y) + tg1(y) (y ∈ Y ). □
Just like paths, homotopies can be lifted to covers.

Theorem 5.3. Let f : X̃ → X be a covering space, let gt : Y → X be a homo-

topy, and let g̃0 : Y → X̃ be a lift of g0 to X̃. Then g̃0 lies in a unique homotopy

g̃t : Y → X̃ such that each g̃t is a lift of gt.

Remark 5.4. Of course, Theorem 5.3 would also hold if we allowed the time
parameter t in our homotopies to range over a general interval [a, b] rather than just
[0, 1]. Using this, Theorem 4.1 is actually the special case of Theorem 5.3 where Y
is a single point. □

Before we prove Theorem 5.3, we point out a corollary.

Corollary 5.5. Let f : X̃ → X×[0, 1] be a covering space. Define g : X̃0 → X

to be the restriction of X̃ to X × {0} = X. Then X̃ is isomorphic to the product

covering space X̃0 ×[0, 1] of X × [0, 1].

Proof. The proof is identical to that of Corollary 4.2, which says that all
covers of an interval [a, b] are trivial. Merely substitute Theorem 5.3 for Theorem
4.1. □

Proof of Theorem 5.3. For y ∈ X, let γy : [0, 1] → X× [0, 1] be defined via
the formula

γy(t) = gt(y) (t ∈ [0, 1]).

Theorem 4.1 says that there exists a unique lift γ̃y(t) : Y → X̃ of γy such that

γ̃y(0) = g̃0(y). For t ∈ [0, 1], we then define g̃t : Y → X̃ via the formula

g̃t(y) = γ̃y(t) (y ∈ Y ).

17
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It is easy to see that g̃t is a continuous homotopy lifting gt. □



CHAPTER 6

Covers of contractible spaces

The main theorem of this section can be informally stated as saying that if a
space can be continuously deformed to a one-point space, then it has no non-trivial
covers. To make this precise, we begin we the following definition.

Definition 6.1. A space X is contractible if for some point p ∈ X, the identity
map X → X is homotopic to the constant map X → X that takes every point in
X to p. The associated homotopy will be called a contraction of X. □

Example 6.2. If A ⊂ Rn is convex, then A is contractible. Indeed, letting
p ∈ A be any point, the identity map A → A is homotopic to the constant map
A→ A taking every point to p via the straight-line homotopy discussed in Example
5.2. □

Our main theorem then is as follows.

Theorem 6.3. Every covering space of a contractible space is trivial.

This theorem will be a consequence of the following important proposition. In
it, we will use the notion of pullbacks of coverss from Exercise 3.17.

Proposition 6.4. Let f : X̃ → X be a covering map and let g0, g1 : Y → X be

homotopic continuous maps. Then the covering spaces g∗0(X̃) and g∗1(X̃) of Y are
isomorphic.

Proof. Let G : Y × [0, 1] → X be a continuous function such that

g0(y) = G(y, 0) and g1(y) = G(y, 1) (y ∈ Y ).

Also, for i = 0, 1 define ιi : Y → Y × [0, 1] via the formula ιi(y) = (y, i). We then

have g0 = G ◦ ι0 and g1 = G ◦ ι1. Defining Z̃ → Y × [0, 1] to be the cover G∗(X̃) of
Y × [0, 1], this implies that

g∗0(X̃) = ι∗0(Z̃) and g∗1(X̃) = ι∗1(Z̃);

see part 5 of Exercise 3.17. Letting Z̃0 → Y be the restriction of Z̃ to Y ×{0} = Y ,

Corollary 5.5 implies that Z̃ is isomorphic to the cover Z̃0 ×[0, 1] of Y × [0, 1].

This implies that ι∗0(Z̃) and ι∗1(Z̃) are both isomorphic to Z̃0, and the proposition
follows. □

Proof of Theorem 6.3. Recall that the statement of the theorem is as fol-
lows. Let X be a contractible space and let X̃ be a cover of X. Then we must prove

that X̃ is a trivial cover. Let gt : X → X be a homotopy such that g0 = id and such
that gt is the constant map taking every point of X to some fixed p ∈ X. Propo-

sition 6.4 implies that g∗0(X̃) and g∗1(X̃) are isomorphic covers. Part 2 of Exercise

3.17 says that g∗0 is isomorphic to X̃ and part 6 of Exercise 3.17 says that g∗1(X̃) is
a trivial cover. The theorem follows. □
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CHAPTER 7

Equivalent paths and their lifts

Let X be a topological space. As notation, set I = [0, 1].

Definition 7.1. A path in X from p ∈ X to q ∈ X is a continuous function
γ : I → X such that γ(0) = p and γ(1) = q. □

Definition 7.2. Let f : X → Y be a continuous map and let γ be a path in
X. Define f∗(γ) to be the path f ◦ γ : I → Y in Y . □

We will study paths in a space up to homotopies that fix the endpoints of the
paths. The proper definition is as follows.

Definition 7.3. Let γ : I → X and γ′ : I → X be paths in X. We will say
that γ is equivalent to γ′ if γ and γ′ both go from the same point p ∈ X to the
same point q ∈ X and there exists a continuous function F : I2 → X such that

F (t, 0) = γ(t) and F (t, 1) = γ′(t) (t ∈ I)

and

F (0, s) = p and F (1, s) = q (s ∈ I).

If γ is equivalent to γ′, then we will write γ ∼ γ′. This is clearly an equivalence
relation on paths; given a path γ : I → X, we will write [γ] for its ∼-equivalence
class. □

Lemma 7.4. Let f : X → Y be a continuous map and let γ1 and γ2 be paths in
X such that γ1 ∼ γ2. Then f∗(γ1) ∼ f∗(γ2).

Proof. If F : I2 → X is a homotopy witnessing the fact that γ1 ∼ γ2, then
f ◦ F is a homotopy witnessing the fact that f∗(γ1) ∼ f∗(γ2). □

It thus makes sense to write f∗([γ]) for a map f : X → Y and a path γ in X.
The importance of paths for the study of covering spaces comes from the fol-

lowing important theorem.

Theorem 7.5. Let f : X̃ → X be a covering space and let x0 ∈ X be a point.

Pick x̃0 ∈ X̃ such that f(x̃0) = x0. There is then a bijection between

{[γ] | γ path in X with γ(0) = x0}
and

{[γ̃] | γ̃ path in X̃ with γ̃(0) = x̃0}.

Proof. Given a path γ in X starting at x0, Theorem 4.1 says that there is a

unique lift γ̃ : I → X̃ with γ̃(0) = x̃0. Conversely, if γ̃ : I → X̃ is a path starting at
x̃0, then f∗(γ̃) is a path in X starting at x0. This establishes a bijection between

{γ | γ path in X with γ(0) = x0}

21



22 7. EQUIVALENT PATHS AND THEIR LIFTS

and
{γ̃ | γ̃ path in X̃ with γ̃(0) = x̃0}.

To see that this descends to a bijection between homotopy classes of paths, we
must prove that if γ0 and γ1 are equivalent paths in X starting at x0 and γ̃0 and

γ̃1 are their lifts to X̃ starting at x̃0, then γ̃0 and γ̃1 are equivalent paths. Let x1
be the common endpoint of γ0 and γ1. Since γ0 and γ1 are equivalent paths, there
exists a homotopy γt of paths such that

γt(0) = x0 and γt(1) = x1

for all t ∈ [0, 1]. Theorem 5.3 says that we can lift γt to a homotopy γ̃′t of paths
in X such that γ̃′0 = γ̃0. We will prove that γ̃′t is a homotopy fixing the endpoints
between γ̃0 and γ̃1. Observe first that

f(γ̃′t(0)) = γt(0) = x0

for all t ∈ [0, 1]. Since the fiber f−1(x0) is discrete, we deduce that γ̃′t(0) is a
constant function of t, i.e. that

γ̃′t(0) = γ̃′0(0) = x̃0

for all t ∈ [0, 1]. In a similar way, we see that γ̃′t(1) is a constant function of t.
Summarizing, γ̃′t is a homotopy fixing the endpoints between γ̃0 and some other

path γ̃′1. The path γ̃
′
1 is a lift of γ1 starting at x̃0; by the uniqueness of path-lifting,

we conclude that γ̃′1 = γ̃1, as desired. □



CHAPTER 8

Operations on paths

Theorem 7.5 suggests that understanding the structure of equivalence classes of
paths in a space will help us unlock the structure of covering spaces. In this section,
we begin to explore the algebraic structure hiding in these equivalence classes.

We begin with the following lemma, which says that reparameterizing a path
does not change its equivalence class.

Lemma 8.1. Let γ : I → X be a path in X from p ∈ X to q ∈ X and let ϕ : I → I
be a continuous function such that ϕ(0) = 0 and ϕ(1) = q. Then [γ] = [γ ◦ ϕ].

Proof. Define F : I2 → X via the formula

F (t, s) = γ((1− s)t+ sϕ(t)) (t ∈ I, s ∈ I).

We then have

F (t, 0) = γ(t) and F (t, 1) = γ(ϕ(t)) (t ∈ I)

and

F (0, s) = γ(sϕ(0)) = γ(0) = p (s ∈ I)

and

F (1, s) = γ((1− s) + sϕ(1)) = γ(1− s+ s) = γ(1) = q (s ∈ I).

The lemma follows. □

We now define a sort of “multiplication” of paths; however, the product γ · γ′
is only defined if the ending point of γ is the same as the starting point of γ′. The
precise definition is as follows.

Definition 8.2. Let γ be a path in X from p ∈ X to q ∈ X and let γ′ be a
path in X from q ∈ X to r ∈ X. We then define γ · γ′ to be the path in X from
p ∈ X to r ∈ X that is defined via the formula

(γ · γ′)(t) =

{
γ(2t) if 0 ≤ t ≤ 1/2,

γ′(2t− 1) if 1/2 ≤ t ≤ 1

for t ∈ I. □

This multiplication respects our equivalence relation in the following sense.

Lemma 8.3. Let γ1 and γ2 be paths in X from p ∈ X to q ∈ X such that
[γ1] = [γ2]. Also, let γ′1 and γ′2 be paths in X from q ∈ X to r ∈ X such that
[γ′1] = [γ′2]. Then [γ1 · γ′1] = [γ2 · γ′2].

Proof. Trivial. □
23
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It thus makes sense to multiply equivalence classes of paths. The multiplication
of paths is not itself associative, but as the following lemma shows that it becomes
associative when we pass to equivalence classes.

Lemma 8.4. Let γ be a path in X from p ∈ X to q ∈ X, let γ′ be a path in
X from q ∈ X to r ∈ X, and let γ′′ be a path in X from r ∈ X to s ∈ X. Then
[(γ · γ′) · γ′′] = [γ · (γ′ · γ′′)].

Proof. Observe that for t ∈ I, we have

((γ · γ′) · γ′′)(t) =


γ(4t) if 0 ≤ t ≤ 1/4,

γ′(4t− 1) if 1/4 ≤ t ≤ 1/2,

γ′′(2t− 1) if 1/2 ≤ t ≤ 1

and

(γ · (γ′ · γ′′))(t) =


γ(2t) if 0 ≤ t ≤ 1/2,

γ′(4t− 2) if 1/2 ≤ t ≤ 3/4,

γ′′(4t− 3 if 3/4 ≤ t ≤ 1.

Thus

(γ · (γ′ · γ′′)) = ((γ · γ′) · γ′′) ◦ ϕ,
where ϕ : I → I is defined via the formula

ϕ(t) =


t/2 if 0 ≤ t ≤ 1/2,

t− 1/2 if 1/2 ≤ t ≤ 3/4,

2t− 1 if 3/4 ≤ t ≤ 1.

The lemma now follows from Lemma 8.1. □

We now dicusss identity elements for this multiplication. Since paths can only
be multiplied if their endpoints match up, we will need a different identity element
for every point of X.

Definition 8.5. For p ∈ X, let ep : I → X be the constant path ep(t) = p. □

Lemma 8.6. Let γ be a path in X from p ∈ X to q ∈ X. Then [ep · γ] =
[γ · eq] = [γ].

Proof. We have

(ep · γ)(t) =

{
p if 0 ≤ t ≤ 1/2,

γ(2t− 1) if 1/2 ≤ t ≤ 1
(t ∈ I).

This implies that ep · γ = γ ◦ ϕ, where ϕ : I → I is defined via the formula

ϕ(t) =

{
0 if 0 ≤ t ≤ 1/2,

2t− 1 if 1 ≤ t ≤ 1
(t ∈ I).

Lemma 8.1 then implies that [ep ·γ] = [γ]. A similar argument shows that [γ · eq] =
[γ]. □

We now discuss inverses.

Definition 8.7. Let γ be a path in X from p ∈ X to q ∈ X. Define γ to be
the path in X from q to p defined via the formula γ(t) = γ(1− t). □
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Lemma 8.8. If γ is a path in X from p ∈ X to q ∈ X, then [γ · γ] = [ep] and
[γ ·γ] = [eq].

Proof. Since γ = γ, it is enough to prove that [γ ·γ] = [ep]. Define F : I2 → X
via the formula

F (t, s) =


γ(2t) if 0 ≤ t ≤ s/2,

γ(s) if s/2 ≤ t ≤ 1− s/2,

γ(2− 2t) if 1− s/2 ≤ t ≤ 1

(s, t ∈ I).

For a fixed s0 ∈ I, the path t 7→ F (t, s0) starts at p, then goes along γ until it hits
γ(s0), then waits for a while, and then goes back along γ to p. We have

F (0, s) = γ(0) = p and F (1, s) = γ(1) = p

for s ∈ I and
F (t, 0) = γ(0) = p and F (t, 1) = (γ · γ)(t)

for t ∈ I. It follows that [γ · γ] = [ep], as desired. □





CHAPTER 9

The fundamental group

We now begin to do stuff that is well-covered in Hatcher. We first define the
fundamental group as on page 27 of Hatcher. We then discussed how to change the
basepoint as on page 28. We then jumped ahead and proved Proposition 1.31 in
Hatcher, which says that if f : (Y, y) → (X,x) is a based covering space, then the
induced map f∗ : π1(Y, y) → π1(X,x) is injective. We then proved Proposition 1.39
(in a slightly different language), which says that if f : (Y, y) → (X,x) is a based
regular G-cover with Y path-connected, then there is an induced homomorphism
ψ : π1(X,x) → G fitting into a short exact sequence

1 −→ π1(Y, y)
f∗−→ π1(X,x)

ψ−→ G −→ 1.

This allows us to compute the fundamental group of many spaces (X,x) by the
following procedure:

• Find a based regular G-cover f : (Y, y) → (X,x) such that Y is path-
connected and π1(Y, y) = 1 (these two conditions are often summarized
by saying that Y is simply-connected). Then π1(X,x) ∼= G via the above
homomorphism ψ.

Here are three basic examples of this.

(1) You can see that π1(S
1, 1) = Z using the cover R → S1.

(2) You can see that π1(RPn, p) = Z/2 using the cover Sn → RPn.
(3) Let X be the wedge of two circles with wedge point p. Then you can see

that π1(X, p) is the free group F2 on two letters using the cover associated
to the infinite 4-valent tree.

After this, we prove the lifting criterion for covers (Proposition 1.33 in Hatcher)
and give the following corollaries:

• If f : (Y1, y1) → (X,x) and g : (Y2, y2) → (X,x) are such that each Yi is
path connected and locally path connected and satisfy Im(f∗) ⊂ Im(g∗),
then there exists a unique covering map h : (Y1, y1) → (Y2, y2) such that
f = g◦h. This is not quite in Hatcher, but Proposition 1.37 is a special case
(where Im(f∗) = Im(g∗)), and the general case is proved in an identical
way.

• If f : (Y1, y1) → (X,x) and g : (Y2, y2) → (X,x) are such that each Yi is
path connected and locally path connected and satisfy Im(f∗) = Im(g∗),
then there is an isomorphism of covers from (Y1, y1) to (Y2, y2). This is
precisely Proposition 1.37 of Hatcher.

• A cover f : (Y, y) → (X,x) with Y path-connected and locally path-
connected is regular if and only if Im(f∗) is a normal subgroup of π1(X,x).
This is Proposition 1.39 of Hatcher.
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The next thing we proved is that if (X,x) is path-connected and semilocally simply-
connected, then for every subgroup H of π1(X,x) there is a (unique by the above)
cover f : (Y, y) → (X,x) such that Im(f∗) = H. This is Proposition 1.36 in Hatcher;
the key is constructing the universal cover.

All of this can be summarized by saying that if (X,x) is path-connected and
semilocally simply-connected, then there is a bijection between

{subgroups of π1(X,x)
and

{based covers f : (Y, y) → (X,x) with Y path-connected}.
This bijection associates to a based cover f : (Y, y) → (X,x) the subgroup Im(f∗) of
π1(X,x). It restricts to a bijection between normal subgroups and regular covers.

We then proved the Seifert-Van Kampen theorem. For examples of how this is
used, see Chapter 1.2 of Hatcher. For the proof we gave, see the document

http://www.nd.edu/∼andyp/notes/SeifertVanKampen.pdf
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