Lectures on the Torelli group

Andrew Putman

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY MS-136, 6100 MAIN
St., HousToN, TX 77005
E-mail address: andyp@rice.edu



2010 Mathematics Subject Classification. Primary 20F05; Secondary: 20F38,
57MO07, 57N05

Key words and phrases. Torelli group, mapping class group, Johnson
homomorphism, Johnson filtration

The author was supported in part by NSF grant DMS-1255350 and the Alfred P.
Sloan Foundation.



Contents

Part 1. Foundational Material
Introduction to Part 1

Chapter 1. The mapping class group
1.1. Definitions and basic examples
1.2. Dehn twists
1.3. The classification of surfaces trick
1.4. The Birman exact sequence and curve stabilizers
1.5.  Some relations between Dehn twists

Chapter 2. The symplectic representation
2.1. The algebraic intersection form
2.2.  The symplectic representation : statement of surjectivity
2.3. Realizing primitive homology classes
2.4. Realizing symplectic bases
2.5. Proof of surjectivity
2.6. Variants on realizing symplectic bases

Chapter 3. Basic properties of the Torelli group
3.1. Definition and low-complexity examples
3.2.  Generators for Torelli
3.3. Torsion
3.4. Action of Torelli on curves and conjugacy classes in Torelli
3.5. Closed surfaces vs surfaces with boundary

Part 2. Combinatorial Group Theory
Introduction to Part 2

Chapter 4. The complex of cycles
4.1. Basic definitions
4.2. Basic properties of cells
4.3. Prerequisites for contractibility
4.4. Contractibility

Chapter 5. Stabilizers of simple closed curves
5.1. Stabilizers in the symplectic group
5.2.  The symplectic representation of Mod, .
5.3. Stabilizers in the Torelli group

Chapter 6. The genus 2 Torelli group

iii

39
41

43
43
45
47
52

57
o7
99
62

65



CONTENTS

6.1. The complex of cycles in genus 2
6.2. A little Bass—Serre theory

6.3. Mess’s theorem

6.4. Curve stabilizers

Chapter 7.
Chapter 8.

The decomposition theorem and generators for Torelli

Finite generation of Torelli

Part 3. The Johnson Homomorphism

Chapter 9.

A commutator quotient

9.1. Via Magnus expansions
9.2. Via the Fox free differential calculus
9.3. Via group cohomology

Chapter 10.

Introduction to the Johnson homomorphism

10.1. Construction of the Johnson homomorphism

Chapter 11.
Chapter 12.
Chapter 13.
Chapter 14.

The Johnson homomorphism via mapping tori
The Johnson homomorphism via cup products
The kernel of the Johnson homomorphism

The Johnson filtration and the higher Johnson homomorphisms

Part 4. 3-Manifolds

Chapter 15.
Chapter 16.
Chapter 17.

Chapter 18.

Bibliography

The Casson invariant
The Johnson kernel and the Casson-Morita algebra

The Rochlin invariant and the Birman—Craggs—Johnson
homomorphism

The abelianization of the Torelli group

65
70
73
(0]

81
83

85

87
87
91
97

99
99

101
103
105
107

109
111

113

115
117
119



Part 1

Foundational Material






Introduction to Part 1

Part 1 is devoted to fundamental topics that are used throughout the remainder
of the book. Chapter 1 is an introduction to the mapping class group, Chapter 2
discusses the symplectic representation of the mapping class group obtained from
its action on the first homology group of the surface, and Chapter 3 defines the
Torelli group and discusses its basic properties.






CHAPTER 1

The mapping class group

This chapter introduces the mapping class group of a surface. Though we
will discuss all the results needed elsewhere in this book, we will omit some of the
lengthier proofs. There are many fine sources that discuss this material. We learned
much of it from Ivanov’s survey [Iva02] and Farb—Margalit’s book [FM12], and we
refer the interested reader to these sources for the missing proofs (and much more).
Many readers will probably skip this chapter, though we recommend skimming it
to learn our notational conventions.

1.1. Definitions and basic examples

We start by defining the mapping class group.

Surfaces and the mapping class group. In this book, a surface will always
mean a compact oriented surface with boundary. If ¥ is a surface, then the mapping
class group of X, denoted Mod(X), is the group of isotopy classes of orientation-
preserving diffeomorphisms of ¥ that restrict to the identity on the boundary. We
emphasize that the isotopies must themselves fix the boundary pointwise. We will
often denote a compact oriented genus g surface with b boundary components by
Zg and its mapping class group by Modz; the b will sometimes be omitted when it
vanishes.

Homotopies vs isotopies. A fundamental result of Baer [Bae27, Bae28]
says that two diffeomorphisms of a closed orientable surface which are homotopic
are also isotopic. This was later extended by Epstein [Eps66] to diffeomorphisms of
orientable surfaces with boundary that fix the boundary pointwise (Epstein worked
in the PL category, but it is easy to modify his proof to work in the smooth category).
We therefore do not need to worry about the distinction between homotopies and
isotopies. In fact, for much of this book it would be reasonable to simply define
the mapping class group as the group of homotopy classes of orientation-preserving
diffeomorphisms. However, this would cause some small technical difficulties later
when we use mapping classes to glue 3-manifolds together along their boundaries;
the result would not be obviously well-defined.

Discs and spheres. We now turn to the mapping class groups of low-
complexity surfaces. We start with the disc D? = 8.
PROPOSITION 1.1. Mod(D?) = 1.

ProoF. Consider an orientation-preserving diffeomorphism F : D? — D? such
that F|sp2 = id. Regarding D? as a subset of C, we can homotope F to the identity
via the straight-line homotopy

F, :D? - D?

5



6 1. THE MAPPING CLASS GROUP

Fi(zx) = (1 —t)F(x) + tx O

REMARK 1.2. Observe that in the proof of Proposition 1.1, the homotopy we
wrote down is not necessarily an isotopy, so we are silently appealing to the afore-
mentioned theorem of Epstein. With a bit more care one can directly produce
an isotopy; see the discussion in [FM12]. We will ignore the distinction between
homotopies and isotopies in many proofs in this section.

A similar result holds for the sphere S? = ¥
PROPOSITION 1.3. Mod(S?) = 1.

ProoF. Consider an orientation-preserving diffeomorphism F : S? — S2. Fix-
ing a basepoint py € S?, we homotope F such that F(pg) = pg by postcomposing F
with rotations of S2. Let U — S? be the open hemisphere centered at py. Both U
and F(U) are tubular neighborhoods of pg, so by the usual uniqueness up to isotopy
of tubular neighborhoods (see, e.g., [Hir94, Theorem 4.5.3]; this is where we use
the fact that F is orientation-preserving) we can isotope F' such that F|y = id. Set
D = S?\U, so D =~ D?. The map F restricts to a diffeomorphism F|p : D — D
that fixes dD pointwise. Using Proposition 1.1, we can therefore homotope F' to
the identity. O

The annulus. We now turn to the annulus A = 32, which provides us with
our first example of a nontrivial mapping class.

PROPOSITION 1.4. Mod(A) = Z.

PRrOOF. We first define a homomorphism ¢ : Mod(A) — Z. Let 7 : A — A

be the universal cover. We will identify A with {z € C | 0 < Im(z) < 1}; the deck
group Z acts by horizontal translations z — z + n. Define
—{z|zeR}cA and T={z+i|zeR}cA.

Consider f € Mod(A) which is represented by an orientation-preserving diffeomor-
phlsm F: A > A with Flpp = id. We can uniquely lift F to a dlffeomorphlsm
F : A — A satisfying F(0) = 0. This latter condition _implies that Flp = id.
However, we do not necessarily have F|p = id; instead, F(z +14) = (z + np) + i
for some np € Z. The homotopy lifting property implies that ng is unchanged by
homotopies of F' that fix 0A pointwise. We can therefore define ¢(f) = np. It is
clear that v is a homomorphism.

To see that v is injective, consider h € Mod(A) such that ¥ (h) = 0. Letting
H : A — A be a representative diffeomorphism, we can lift H to a diffeomorphism
H: A — A satisfying H |,z = id. The straight-line homotopy

H,:A—A
Hy(z) = (1—t)H(2) + tz

from H to id commutes with the deck group, and therefore projects to a homotopy
from H to id. This projected homotopy fixes 0A pointwise (this is where we use
the fact that i(h) = 0), so we conclude that h = 1.

To see that 1) is surjective, consider some n € Z. Defining

Fo:A—A
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FIGURE 1.1. Mod(A) is generated by the mapping class that holds
the outer boundary of A fixed while rotating the inner boundary by
2m7; as shown here, this causes an arc connecting the two boundary
components to acquire a segment going around the annulus.

E,(2) = z +nlm(z),

the diffeomorphism Z?'n commutes with the deck group and therefore projects to a
diffeomorphism F,, : A — A. By construction we have F},|sn = id, so F,, defines a
mapping class f,, € Mod(A) which satisfies ¥(f,) = n. O

REMARK 1.5. The generator for Mod(A) =~ Z constructed in the above proof
is illustrated in Figure 1.1.

The algebraic intersection pairing. Below we will study the mapping class
group of the 2-torus T = ;. To do this, we will need the algebraic intersection
pairing. For a surface X, this is a Z-valued bilinear form 4(-,-) on H;(X;Z) which
satisfies the following two properties (see [Bre97, §VI.11] for more details).

e It is alternating in the sense that %(hl,hg) = —%(hg,hl) for all hy,hy €
H,(3;Z). This implies in particular that i(h, h) = 0 for all h € H;(X;Z).

e For hy,hy € Hy(X;Z), the number i(hi,hy) € Z can be calculated as
follows. Choose cycles ¢; and co representing h; and ho, respectively,
such that the ¢; intersect transversely. We then have

i(hy,ho) = > #1,

PpECINCY
where the sign +1 is the sign of the intersection at p.

We will have much more to say about i(-,-) in Chapter 2.

The torus. The group Mod(T) is richer than any of the other mapping
class groups considered so far, and its study will lead us to the main topic of this
book. Observe that the group Mod(T) acts on Hy(T;Z) =~ Z2. This action induces a
homomorphism Mod(T) — Aut(Z?) =~ GL2(Z). However, this map is not surjective.
The issue is that the image of this map preserves the algebraic intersection pairing
i(-, ) on Hy(T;Z). Let o and 8 be the two oriented curves on T depicted in Figure
1.2 and let @ and b be their homology classes, so %(a, b) = 1. The homology classes
a and b form a basis for Hy(T;Z). For f € Mod(T), write f(a) = c1a + c2b and
f(b) = dya + d2b with ¢1, ¢a,d1,ds € Z. We then have

=i(a,b) = i(f(a), f(b)) = i(cra + cab,dya + dab) = c1dy — cady;

the minus sign appears because the algebraic intersection pairing is alternating. The
expression c¢;ds —cad; is the determinant of the action of ¢ on Hy (T;Z). The upshot
is that the action of Mod(T?) on H;(T?;Z) yields a homomorphism Mod(T?) —
SLo(Z). The following proposition says that this is an isomorphism.
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FIGURE 1.2. The curves o and 3 on the torus T? whose homology
classes a and b generate Hy(T?;Z) and satisfy i(a,b) = 1.

PROPOSITION 1.6. The map Mod(T?) — SLa(Z) obtained from the action of
Mod(T?) on Hy(T?;Z) is an isomorphism.

PROOF. Let p: Mod(T?) — SLy(Z) be the map in question. Regard T? as the
quotient of R? by Z2, and let 7 : R? — T? be the projection.

To see that p is surjective, consider M € SLy(Z). The action of M on R? gives
a diffeomorphism Fy; : R2 — R? that projects to a diffeomorphism Fy; : T2 — T2.
The resulting mapping class fa; € Mod(T?) clearly satisfies p(far) = M.

To see that p is injective, consider f € ker(p). Choose a diffeomorphism F :
T? — T? representing f. Letting py = 7(0), we can homotope F such that F(py) =
po. Lift F' to a diffeomorphism F:R? > R? satisfying ﬁ’(O) = 0. Since f € ker(p),
it follows that F(z +n,y+m) = F(z,y) + (n,m) for all (z,y) € R? and (n, m) € Z2.
This implies that the straight-line homotopy

F,:R? > R?
Fy(x,y) = (1= )F(x,y) + t(z,y)
projects to a homotopy from F to id, so f = 1. (I

Higher genus. For genus at least 2, there is no simple description of the
mapping class group analogous to Proposition 1.6. Indeed, while there is still a
representation Mod(X) — Aut(H;(X;Z)), this representation is far from injective.
Its kernel is known as the Torelli group and is the main subject of this book.

An abuse of notation. In the above proofs, we maintained the distinction
between an element of the mapping class group and a diffeomorphism representing
it. Continuing to do this would seriously complicate our notation, so as is traditional
in the mapping class group literature we will cease to make this distinction (except
in a few cases where this might lead to confusion).

1.2. Dehn twists

We can parlay the fact that Mod(A) =~ Z from Proposition 1.4 above into a
construction of an important class of elements of Mod(X) for an arbitrary surface
x.

Dehn twists. Consider a simple closed curve v on X. Let A, be a closed
tubular neighborhood of v, so A, =~ A. There is a natural map Mod(A,) — Mod(X)
that extends a mapping class on A, to X by the identity (this works because we
required that mapping classes act as the identity on the boundary). The image of
a generator of Mod(A,) = Z is a Dehn twist. Of course, there are two generators
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FIGURE 1.3. The effect of a Dehn twist T,.

of Z; we will denote by T, € Mod(X) the image of the generator of Mod(A,) that
has the effect depicted in Figure 1.3 (the other generator goes to T. 5 1. the mapping
class T, is sometimes called a “right-handed Dehn twist” and the mapping class

T 1 is sometimes called a “left-handed Dehn twist”).

Properties of Dehn twists. Here are several important properties of 7.

(1) The mapping class T, does not depend on the choice of N. This follows
from the uniqueness up to isotopy of tubular neighborhoods; see, e.g.,
[Hir94, Theorem 4.5.3].

(2) If v and + are isotopic simple closed curves, then T, = T,,. This is
immediate once the previous property is established.

(3) If v is not nullhomotopic, then 7, is an infinite-order element of Mod(X);
see [FM12, Chapter 3]. If v is instead nullhomotopic, then T, = 1.

In light of the second property above, it makes sense to talk about the Dehn twist
about an isotopy class of simple closed curves. In fact, for the most part in this
book we will not distinguish between a simple closed curve and its isotopy class
(this is similar to the fact that we will usually not distinguish between a mapping
class and a diffeomorphism representing that mapping class).

The torus. Let a and 3 be the simple closed curves on the torus T? depicted
in Figure 1.2 and let a and b be their homology classes. Recalling from Proposition
1.6 that Mod(T?) =~ SLy(Z), it is easy to see that with respect to the basis {a,b}
for Hy(T?; Z), the Dehn twists T,, and Tj correspond to the matrices

11 1 0
(1) = (40

Generating the mapping class group. Dehn twists were discovered by
Dehn [Deh38] in 1938, but were forgotten until they were rediscovered by Licko-
rish [Lic64] in 1964 (for a while, they were known as “Lickorish twists”). Their
importance is underlined by the following theorem, which was also proven by both
Dehn and Lickorish (at least for closed surfaces).

respectively.

THEOREM 1.7. If ¥ is a surface, then Mod(X) is generated by the set of all
Dehn tunsts.

The proof of Theorem 1.7 is lengthy, so we will omit it (see [FM12] or [Iva02] for
the details).

Finite generation. In fact, even more is true : the mapping class group is
generated by finitely many Dehn twists. For closed surfaces X4, this was proved
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FIGURE 1.4. The Dehn twists about the curves a1,...,04 and

Yi5--+>Yg—1 and pi, po generate Modz. The figure depicts E;; to
get the curves on Y4, glue a disc to the boundary component.

by Dehn [Deh38], who found a set of 2g(g — 1) Dehn twists that generated Mod,.
Lickorish [Lic64] later proved that 3g—1 Dehn twists suffice to generate Mod,. The
definitive result in this direction is due to Humphries [Hum79], who found a set of
2g+1 Dehn twists that generate Mod, and proved that no smaller set sufficed. One
can show that the same result also holds for surfaces with one boundary component;
in fact, we have the following.

THEOREM 1.8. For g = 2 and 0 < b < 1, the group Modz is generated by the
29 + 1 Dehn twists T,y Toy, Tyyy oo, Ty s Ty s Ty depicted in Figure 1.4.

g—17 " M1

Again, the proof is lengthy and thus omitted; see [FM12] or [Iva02] for the details.
Also see [FM12, §4.4.4] for an explicit set of Dehn twists that generate Modg for
b= 2.

1.3. The classification of surfaces trick

In this book, the word curve will always mean the homotopy class of a curve.
One of the most important techniques for studying the mapping class group is to
utilize its action on the set of curves on the surface. This section is devoted to an
important trick that we will call the classification of surfaces trick which elucidates
this action.

Single curve. The proof of the following lemma is an easy example of the
classification of surfaces trick.

LEMMA 1.9. Let ¥ be a surface and let a and o' be oriented simple closed
curves on Y. Assume that neither a nor o separate the surface. Then there exists

some f € Mod(X) such that f(a) = o'.

PrOOF. Let b = 0 be the number of boundary components of ¥. Let 3, and
Y be the surfaces that result from cutting ¥ along « and o/, respectively. Since
neither o nor o/ separate ¥, both X, and X,/ are connected surfaces. It is also clear
that x(Xa) = x(Zo) and that both X, and ¥, have b + 2 boundary components.
The classification of surfaces therefore says that they are diffeomorphic. Let ¢; and
02 (resp. 97 and %) be the boundary components of ¥, (resp. X,/) coming from
a (resp. o). The orientations of @ and o induce orientations on the ¢; and the
0.; order them so that ¥ lies to the left of 01 and 9] and to the right of 0 and
04. We can then choose an orientation-preserving diffeomorphism ¢ : ¥, — X/
such that ¢(0;) = 0, (as oriented curves) for ¢ = 1,2 and such that ¢ matches up
the boundary components of ¥, and X, that come from ¥. Gluing the ¢; and 7}
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FIiGURE 1.5. Cutting X first along « and then along [ causes the
genus to drop by 1 and the number of boundary components to
increase by 1.

back together, we obtain a diffeomorphism ¢ : ¥ — ¥ with ¢|sx = id satisfying
Y(a) = o, as desired. O

This has the following corollary.

COROLLARY 1.10. Let ¥ be a surface and let a and o' be nonseparating simple
closed curves on . Then T, and T, are conjugate in Mod(X).

PROOF. Orienting the « arbitrarily, Lemma 1.9 says that there exists some
f € Mod(X) such that f(a) = a’. We then have the following calculation; the first
equality is an easy exercise.

fToéf_l = Tf(a) =Tw ([l

Handles. Here is another example of the classification of surfaces trick.

LEMMA 1.11. Let ¥ be a surface and let {«, B} and {a/, '} be collections of
oriented simple closed curves on X. Assume that o and 3 intersect once with a
positive sign. Similarly, assume that o' and ' intersect once with a positive sign.
Then there exists some f € Mod(X) such that f(a) = o and f(B8) = F'.

PROOF. Assume that ¥ =~ Eg. Define ¥, g and X, g be the surfaces that
result from cutting ¥ along oo U 8 and o U f’, respectively. As is shown in Figure
1.5, we have X, g = thll. This figure also shows that the boundary component
0 of ¥4, coming from o U 8 can be divided into four oriented arcs, two of which
glue up to form « and two of which glue up to form 8. A similar thing is true for
Y p and its new boundary component ¢’. Using the classification of surfaces, we
can find an orientation-preserving homeomorphism ¢ : ¥, g — X,/ g that matches
up the boundary components coming from ¥ and that takes ¢ to ¢’. Moreover, we
can choose ¢ such that it respects the division of ¢ and ¢’ into oriented arcs and
takes the arcs corresponding to o and 8 to the arcs corresponding to o’ and ',
respectively (this is where we use the fact that the intersections have positive sign;
otherwise, we might not be able to match up the orientations on these arcs). Gluing
0 and ¢’ back together, we obtain a diffecomorphism ¢ : ¥ — ¥ with ¢|sx = id
satisfying ¥ (a) = o and ¥(8) = §', as desired. O

Other examples of trick. The trick in the proofs of Lemmas 1.9-1.11 can
be used in a wide variety of situations to show that the mapping class group acts
transitively on collections of submanifolds of a surface that “cut the surface up in
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FIGURE 1.6. Examples of configurations in Lemmas 1.12-1.14

the same way”. Here are some other examples of it in action. We leave their proofs
as exercises. Figure 1.6 gives examples of the configurations in these lemmas.

LEMMA 1.12. Let ¥ be a surface and let {1, ..., ax} and {f, ..., a}} be col-
lections of oriented simple closed curves on 3. Assume that the «; are pairwise
disjoint and that a; U -+ U ay, does not disconnect .. Similarly, assume that the
o} are pairwise disjoint and that oy U --- U o), does not disconnect ¥.. Then there
exists some f € Mod(X) such that f(a;) = o) for 1 <i<k.

LEMMA 1.13. Let ¥ be a closed surface and let v and ' be simple closed curves
on Y. Assume that v separates ¥ into two subsurfaces S1 and Sz and that '
separates ¥ into two subsurfaces S; and S4. Furthermore, assume that S; = S} for
i =1,2. Then there exists some f € Mod(X) such that f(v) =+'.

LEMMA 1.14. Let ¥ be a closed surface and let {y1,v2} and {~,v4} be collec-
tions of simple closed curves on . Assume that neither 1 nor o separate ¥ but
that v1 U 72 separates ¥ into two subsurfaces S1 and So. Similarly, assume that
neither v nor 4 separate 2 but that | U 75 separates X into two subsurfaces S]
and S4. Furthermore, assume that S; = S} for i = 1,2. Then there exists some

f € Mod(X) such that f(v;) =~} fori=1,2.

REMARK 1.15. In Lemma 1.14, the pairs {y1,72} and {v},~4} form what we
will call bounding pairs in Chapter 3.

REMARK 1.16. There are also versions of Lemmas 1.13-1.14 for surfaces with
boundary and for oriented curves, but they require small tweaks in their statements;
we invite the reader to figure out the appropriate generalizations.

For the reader who has not seen this idea before, we recommend perusing [FM12,
§1.1.3], which contains many examples of it (we remark that [FM12] calls it the
“change of coordinates principle”).

1.4. The Birman exact sequence and curve stabilizers

The Birman exact sequence is a basic tool that relates the mapping class groups
of surfaces with differing numbers of boundary components. We will use it to
understand the stabilizers in the mapping class group of nonseparating simple closed
curves.

Statement. The form of the Birman exact sequence we will use was first
proved by Johnson [Joh83]. It is a variant on a theorem of Birman [Bir69] which
dealt with punctured surfaces instead of surfaces with boundary.

THEOREM 1.17. Let ¥ be a surface such that ¥ # ¥} and let 8 be a boundary
component of X.. Define ¥ to be the result of gluing a disc to 3. Then there is a
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FIGURE 1.7. The effect of pushing a boundary component 3 of X
about a simple closed curve v € 71(2) is T5, 7%, L

short exact sequence
1 — m(US) — Mod(E) — Mod(Z) —> 1,
where US is the unit tangent bundle of s,

The map Mod(X) — Mod(f]) in Theorem 1.17 is the map which extends mapping
classes over the glued-in disc by the identity. The mapping classes in the kernel
m(UY) € Mod(X) “drag” the boundary component 8 around the surface while

allowing it to rotate; the loop around the fiber in Us corresponds to Tg. See
[FM12, §4.2.5] for a proof of Theorem 1.17, which we omit.

One-holed torus.  The condition ¥ # ¥i in Theorem 1.17 is necessary.
The issue is that the map ﬂl(Ufl) — Mod(X) constructed in Theorem 1.17 is not
injective in this case (for instance, this follows from the explicit formulas below).
The correct statement is as follows.

THEOREM 1.18. There is a short exact sequence
1 — Z — Mod} — Mod; — 1,

where the kernel Z is generated by the Dehn twist about the boundary component of
i

For the proof, see [FM12, p. 57 & Theorem 3.1.9].

Pushing along simple closed curves. Let ¥ and 8 and S be as in
Theorem 1.17. The kernel Wl(Ufl) c Mod(X) of the exact sequence in Theorem
1.17 is known as the disc-pushing subgroup. We will occasionally need explicit
formulas for elements of it. First, the loop around the fiber of the unit tangent
bundle US corresponds to the Dehn twist T3. As far as other elements go, it is
easiest to deal with their projections to 1 (3). Let 4 € m1(S) be an element that
can be represented by a simple closed curve. Taking the derivative of a smooth
representative of v, we get a lift 4 € ﬁl(Ufl). Two smooth representatives of ~
which are homotopic are smoothly isotopic, so 4 does not depend on the choice of
a smooth representative. We will denote the mapping class in Mod(X) associated
toy € Wl(UfJ) c Mod(X) by Push,. As is shown in Figure 1.7, we can write

Push, = T3, 1, 1
for two simple closed curves 77 and 72 in 3 that map to the boundary components
of a tubular neighborhood of v in . The curve 71 lies to the right of v and the
curve 95 lies to the left of ~.
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S

FIGURE 1.8. On the right is a surface ¥, and an oriented nonsep-
arating simple closed curve . On the left is the cut-open surface
¥,y and a y-splitting surface S

Stabilizer of nonseparating curve. For some g > 2, let v be an oriented
nonseparating simple closed curve on ;. We will use the Birman exact sequence
to understand the stabilizer (Mod,)~ in Mody of v. Define ¥, , to be the result of
cutting X, along v, let Mod,, ~ be the mapping class group of £, -, and let {1, 02} be
the boundary components of 3, . There is a surjective map 7 : Mod,  — (Mod,),
obtained by gluing 0; and 02 back together (see Figure 1.8)

REMARK 1.19. The map 7 is surjective because +y is oriented; if it were unori-
ented, then the image of m would be an index 2 subgroup of (Mod,)..

The map 7 is not injective; indeed,
W(Tal) = W(Taz) = T’yv

so 15,15, ! € ker(n). The following lemma says that this is the only thing that goes
wrong.

LEMMA 1.20. For g = 2, let v be an oriented nonseparating simple closed curve
on Xg. Let {01, 02} be the boundary components of ¥, . Then there is a short exact
sequence

1 — Z — Mody,, — (Mody), — 1,
where Z is generated by TalTaj.

While the proof of Lemma 1.20 is not hard, it would require a small digression, so
we omit it. See [FM12, Theorem 3.18] for a proof.

Letting flgﬁ be the surface obtained by gluing a disc to ¥, , along d;, Theorem
1.17 says that there is a short exact sequence

(1) 1 — m(US, ) — Mody , — Mod(S,.,) — 1.

In this case, it turns out that the Birman exact sequence splits. A ~y-splitting
surface is a subsurface S of ¥/, such that ¥, .\ Int(S) is a 3-holed sphere two
of whose boundary components are 0; and 0y (see Figure 1.8). Letting S be a
~v-splitting surface, observe that S =~ igﬁ; indeed, regarding S as a subsurface
of ig,v via the inclusion g, — igm the surface f]gﬁ deformation retracts onto
S. Identifying Mod(igﬁ) with Mod(S) via this deformation retraction, the map
Mod(S) — Mod,, , that extends mapping classes on S by the identity provides a
splitting of (1). We summarize this discussion in the following lemma.

LEMMA 1.21. For g = 2, let v be an oriented nonseparating simple closed curve
on X4. Let {01,02} be the boundary components of ¥4, and let f]gﬁ be the surface
obtained by gluing a disc to X4~ along 01. Finally, let S be a y-splitting surface in
Yg.~- Then we have a decomposition

Mody, = 71 (24.) % Mod(S).
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FIGURE 1.9. The left hand figure depicts the curves in involved
in the lantern relation T, 7T.,,T.,T,, = 15 T5,Ts,. The right hand
figure depicts the relation zyz = 1 in 71(33) which “lifts” to the
lantern relation.

1.5. Some relations between Dehn twists

McCool [McC75] proved that the mapping class group is finitely presentable
(there is also an influential later proof by Hatcher—Thurston [HT80]). See [FM12,
§5.5.3] for a detailed proof of this. While we will not need to know a complete
presentation for the mapping class group, we will need to know three important
families of relations.

Disjointness relation. The first says that Dehn twists about disjoint simple
closed curves commute.

LeEmMA 1.22 (Disjointness relation). Let X be a surface and let v and ~' be
disjoint simple closed curves on ¥. Then T, commutes with T...

PROOF. Recall that the support of a diffeomorphism F : 3 — X is the clo-
sure of the set {pe ¥ | F(p) # id}. Our assumptions imply that we can choose
diffeomorphisms representing 7, and T, whose supports are disjoint. This clearly
implies that these diffeomorphisms commute. (I

Conjugation. The second reflects the fact that conjugation in Mod(X)
behaves similarly to conjugation in groups of matrices : it “changes coordinates”.
We have already used it in the proof of Corollary 1.10.

LeEmMA 1.23 (Conjugation relation). Let ¥ be a surface and v be a simple
closed curve on X. Then for all f € Mod(X) we have fT.,f~! = Tt (y)-

PRrOOF. Obvious. O

Lantern relation. Our final relation is called the lantern relation. It was first
discovered by Dehn [Deh38] in 1938, but was forgotten until it was rediscovered
by Johnson [Joh79] in 1979. It is the most important relation for the study of the
Torelli group, and we will use it many times. The proof we will give was discovered
independently by Margalit-McCammond [MMO09] and Putman [Put09].

LEMMA 1.24 (Lantern relation). Let ¥ be a surface and let v1, v2, 73, Y4, 01,
b2, and 03 be simple closed curves on X which are arranged like the curves in Figure
1.9. Then

Ty, T, 15, Ty, = T5,T5,T5, -
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PROOF. The purported relation is supported on a 4-holed sphere, so we can
assume without loss of generality that ¥ = X3 and that 71, .. .,7y are the boundary
components of 3. Let S be the result of gluing a disc to v4 and let x,y, z € my (f))
be the curves depicted in Figure 1.9, so xyz = 1. The relation zyz = 1 in m (f))
lifts to a relation

(2) Push,Push,Push, = TZ;“

in Wl(Ui) c Mod(X) for some k € Z; the Tg appears because the loop around the

fiber generates the kernel of the projection Wl(Uf)) — ﬂl(fl), and the order is re-
versed because functions are composed right-to-left while curves in the fundamental
group are composed left-to-right. Observe that

Push, = T53T7;1 and Push, = T52T,;21 and Push, = T51T,;11.

Lemma 1.22 implies that the 7', commute with each other and with the Ts,. We
can thus rearrange the terms in (2) to get

1,171, T']yi = T5, 15,15,

It is an easy exercise to see that k = 1. O



CHAPTER 2

The symplectic representation

The Torelli group is the kernel of the action of Mod, on H;(X,;Z). This
chapter is devoted to a preliminary study of this action. As we will see, it induces
a surjective representation from Mod, to SpQQ(Z). As notation, if v is an oriented

simple closed curve on a surface ¥, then [vy] will denote the associated element of
H(2;Z).

2.1. The algebraic intersection form

We already met the algebraic intersection form i(, -) when we proved that
Mod(T?) =~ SLy(Z) (Proposition 1.6).

Nondegeneracy. For a closed surface X, Poincaré duality implies that 2(7 )
is nondegenerate in the sense that the map

Hi(Xg;Z) — (Hi(2g; Z))*

h— (z — i(h,z))
is an isomorphism. Here (Hi(X,;Z))* is the dual Z-module Hom(H,(X4;Z),Z);
of course, (H;(X,;Z))* =~ H'(Z,;Z). Since the map Hi (3} Z) — Hi(Ey;7Z) is
an isomorphism, it follows that (-, ) is also nondegenerate for a surface with one
boundary component.

Summary. This is summarized in the following lemma. A symplectic form
on a free finite-rank Z-module M is a nondegenerate alternating bilinear form on
M.

LEMMA 2.1. For g =0 and 0 < b < 1, the algebraic intersection form i(-,-) on
Hl(Zg;Z) is a symplectic form.

REMARK 2.2. Lemma 2.1 is false for b > 2; indeed, if b > 2 and (3 is an oriented
boundary component of X!, then [3] # 0 but i([8],h) = 0 for all h e Hy (30 Z).
In other words, [f] is a nonzero element of the kernel of the map Hy(X%;Z) —
(Hl(Zg; Z))* discussed above, so i(-, -) is degenerate.

Symplectic basis. If M is a free finite-rank Z-module equipped with a sym-
plectic form w(-,-), then a symplectic basis for M is a free basis {a1,b1,...,a4,b4}
for M such that

w(ai,aj) = w(bi,bj) =0 and w(ai,bj) = §ij

for all 1 <i,j < g. For example, if aq, B1,..., a4, 84 are the oriented simple closed
curves on ¥} depicted in Figure 2.1, then {[au], [B1], ..., [ag], [B]} is a symplectic

17
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basis for Hy (Xy;Z). The following lemma says that these always exist; it implies in
particular that the rank of M is always even.

LEMMA 2.3. Let M be a free finite-rank Z-module equipped with a symplectic
form w(-,+). Then M has a symplectic basis.

PROOF. The proof will be by induction on the rank n of M. The base case is
n = 0, where the lemma is trivial. Now assume that n > 0 and that the lemma is
true for all smaller n. Let {x1,...,2,} be a free basis for M. The nondegeneracy
of w(:,-) implies that there exists some b; € M such that

w(wi, b1) = 01; (1<i<n).

Set a1 = x1, so w(ay,by) = 1. Define a surjective homomorphism = : M — {ay,b;)
via the formula
m(x) = w(z,by) a3 —w(x,a1) - by.
Clearly 7 is a split surjection whose kernel is the orthogonal complement of {ay,b; ),
that is, the set
lay, b))t = {x e M | w(a,z) = w(by,z) = 0}.

It follows that M = {ay,b1) ® {ai,b;)*. It is easy to see that the restriction of
w to {ay,b)* is still nondegenerate, so by induction {a;,b;)* has a symplectic
basis {az, b, ..., a4,by} for some g = 0. The desired symplectic basis for M is then
{al,bl,...,ag,bg}. [l

COROLLARY 2.4 (Uniqueness of symplectic forms). Let M and M’ be a rank 2g
free Z-modules equipped with symplectic forms w(-,-) and &'(-,-), respectively. Then
there exists a Z-linear isomorphism 1) : M — M’ such that

w(z,y) =w' (), ¥(y)  (z,yeM).

PROOF. Let {a1,b1,...,a4,b4} (vesp. {a},b},...,ay,b,}) be a symplectic basis
for M (resp. M') with respect to w(-,-) (resp. w'(-,-)). The isomorphism 1 is then
defined via the formulas

¥(a;) = a; and ¥(b;) = b;

for1<i<g. O

2.2. The symplectic representation : statement of surjectivity

We now introduce the symplectic representation of the mapping class group.

The symplectic group. The genus g symplectic group, denoted Spy,(Z), is
defined as follows. Let M be a rank 2g free Z-module equipped with a symplectic
form w(-,-); for instance, M might be H;(X,;Z) and w(-,-) might be the algebraic
intersection pairing. Define

Sp(M,w) = {¢ € GL(M) | w(z,y) = w(¢(x), ¢(y)) for all z,y € M} = GL(M)

Then Sp,,(Z) is the subgroup of GLay(Z) obtained by considering Sp(M,w) with
respect to a symplectic basis for M. Corollary 2.4 implies that SpQg(Z) is well-
defined.
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FIGURE 2.1. A geometric symplectic basis on 33

REMARK 2.5. It is also common to order the symplectic basis as
{a1,a2,...,a4,b1,b2,...,b,}
when defining Sp,,(Z).

REMARK 2.6. The calculation we performed right before Proposition 1.6 can
be interpreted as saying that Sp,(Z) = SLy(Z).

The mapping class group. If ¥ is a surface, then the action of Mod(X%)
on H;(3;Z) preserves the algebraic intersection form. For ¢ > 0 and 0 < b < 1,
Lemma 2.1 implies that this yields a representation

Mod, —> Sp,,(Z).

The following theorem says that this is surjective; it is the main result of this
chapter. It was originally proved by Burkhardt in 1890 [Bur90, pp. 209-212],
who wrote down mapping classes that map to generators of szg(Z) that were
previously found by Clebsch—Gordan [CG66]. The first modern proof is due to
Meeks-Patrusky [MP78, Theorem 2], and our proof is a variant of theirs.

THEOREM 2.7. For g = 0 and 0 < b < 1, the map Modi’7 — Spyy(Z) coming
from the action of Modg on Hl(Eg;Z) is surjective.

The proof of Theorem 2.7 is in §2.5. This is prefaced with two sections of prelimi-
naries.

2.3. Realizing primitive homology classes

The first step towards proving Theorem 2.7 is to determine which elements of
Hl(Eg; Z) can be realized by simple closed curves. An element a of a free abelian
group A is primitive if we cannot write a = n - a’ for some '’ € A and n € Z
satisfying n > 2. The earliest proofs of the following theorem that we are aware
of are due to Schafer [Sch76] (who actually deduced it from Theorem 2.7!) and
Meyerson [Mey76]. Our proof is inspired by Meeks—Patrusky [MP78|.

THEOREM 2.8. For g >0 and 0 < b < 1, consider some nonzero h € Hy(X%; Z).
Then there exists an oriented simple closed curve vy on Eg with [y] = h if and only
if h is primitive.

REMARK 2.9. If b > 2, then not all primitive elements of Hj (EZ;Z) can be

realized by oriented simple closed curves. See [MP78] for how to correct the
statement in this case.



20 2. THE SYMPLECTIC REPRESENTATION

X

FIGURE 2.2. The left hand figure shows how to resolve the inter-
sections and self-intersection of the +/; the result is a collection of
disjoint oriented simple closed curves. In the right hand figure, the
surface S lies on the same size of b;, and b;,. The simple closed
curves 0 on S satisfies [6] = [bj, ] + [b}, ].

PROOF OF THEOREM 2.8. First assume that such a «y exists and that h = n-h’/
for some h' € Hl(ZZ;Z). We will prove that n = +1. Separating curves are
nullhomologous, so v does not separate Eg (this uses the fact that 0 < b < 1). This
implies that there exists an oriented simple closed curve ¢ on Eg that intersects ~
once. Observe that 2([y],[6]) = +1. We conclude that

1= ([, [8)) = i 1, [5)) = m - 8K, [9)),

so n = *£1. We remark that this argument first appeared in [Mey76], which
attributes it to Samelson.
Now assume that h is primitive. We will construct v in two steps.

STEP 1. There exist disjoint oriented simple closed curves ~i,...,7v, in the
interior of XY such that h = [v1] + -+ + [%].

Clearly we can write h = [y{] + --- + [7;] for some oriented curves 71, ...,7,
in the interior of Eg (not necessarily simple or disjoint). As is shown in Figure 2.2,
we can then “resolve” the intersections and self-intersections of the 7/ to obtain the
desired set of disjoint oriented simple closed curves.

STEP 2. There exists an oriented simple closed curve v such that [y] = h.

Using Step 1, we can write

®) b=l et )
for some disjoint oriented simple closed curves 7i,...,7; in the interior of Eg.
Choose (3) such that k is as small as possible. We will prove that k& = 1.

Consider any component S of the result of cutting Eg along the ;. Let
b1,...,by, be the boundary components of .S that lie in the interior of Eg, so each
b; equals vy;, for some 1 < j; < k (the j; are not necessarily distinct); orient b; using
the orientation of «;,. If m = 1, then b; is nullhomologous (this uses the fact that
0 < b < 1), so we can discard v;, from (3), contradicting the minimality of k. Thus
m > 1. If 1 < j; < jo < m are such that the interior of S lies on the same side
of bj, and bj,, then ;; # ~;;, and as shown in Figure 2.2 we can replace v;; and
Vij, I (3) with a single oriented curve 4, again contradicting the minimality of k.
We conclude that the interior of S must lie on different sides of b;, and b;, for all
I<sp<jasm.

The upshot of the above considerations is that m = 2 and that S lies on different
sides of by and be. This implies that [y;,] = [vi,] (here we are again using the fact
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that 0 < b < 1). Since this holds for all components S of the result of cutting EZ
along the ~;, we deduce that [y;] = [y;] for all 1 <4,j <k, so h = k- [y1]. Since h
is primitive, we conclude that k = 1. (Il

2.4. Realizing symplectic bases

We now extend Theorem 2.8 to certain systems of curves.

Geometric symplectic bases. Fix g > 0and 0 < b < 1. A geometric
symplectic basis on ZZ is a set {ov, f1,...,aq,fg} of oriented simple closed curves
on EZ with the following two properties.

e For 1 <i < g, the curves «; and 3; intersect once with a positive sign.
e All other pairs of distinct curves in the set are disjoint.

See Figure 2.1. Observe that if {a1, 81,..., g, 84} is a geometric symplectic basis
on Xb then {[an], [B1];. .., [ag], [Bg]} is a symplectic basis for Hy (X5 Z).

Realizing symplectic bases. The following proposition says that any sym-
plectic basis can be realized by a geometric symplectic basis.

PROPOSITION 2.10. For g = 0 and 0 < b < 1, consider a symplectic ba-
sis {a1,b1,...,a4,b4} for Hl(Eg;Z). There is then a geometric symplectic basis
{ar,B1,..., 04,04} on Eg satisfying [o;] = a; and [B;] =b; for 1 <i<g.

For the proof of Proposition 2.10, we will need the following lemma.

LEMMA 2.11. Let ¥ be a surface and let o be an oriented nonseparating simple
closed curve on %. Set a = [a] and let b € Hy(3;Z) satisfy i(a,b) = 1. Then we
can find an oriented simple closed curve 3 on % that intersects a once and satisfies

(8] = b.
Proor. We divide the proof into two steps.

STEP 1. We can find an oriented closed curve ' on ¥ (not necessarily simple)
that intersects o once and satisfies [B'] = b.

Since « is nonseparating, we can find an oriented simple closed curve v/ on X
that intersects o once with i(a, [¢/]) = 1. Let T < X be a closed regular neighbor-
hood of a U v/, so T is homeomorphic to a 1-holed torus. Also, let S = X\ Int(7T).
We then have Hy(2;Z) = U @V, where U and V are the images of Hy(7;Z) and
H1(S;Z) in Hy(X;Z), respectively. Write b = u+v with u € U and v € V. We thus
have i(a,u) = 1 and i(a,v) = 0.

The set {a, [V']} is a basis for U; write u = p-a + ¢ - [']. Since

1 =i(a,u) =i(a,p-a+q-[]) =g,
we have ¢ = 1. Setting v = T?(v'), the oriented simple closed curve v lies in T,
intersects a once, and satisfies [v] = u.
Let n be an oriented closed curve on S such that [n] = v. The homology class
v need not be primitive, so we might not be able to choose 1 to be simple.
We have b = [v] + [n]. The desired closed curve /5’ can be obtained by “band-
summing” the curves v and n as shown in Figure 2.3.

STEP 2. We can find an oriented simple closed curve 3 on X that intersects «
once and satisfies [B] = b.
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FI1GURE 2.3. The left hand figure shows the entire simple closed
curve v and a segment of the (not necessarily simple) closed curve
1. Let 6 be an arc which starts on the left side of v and ends on
the right side of n and is disjoint from « (see the figure; as shown
here, it might not be possible for 6 to be disjoint from 7). We can
then “band-sum” v and 7 by removing small segments of v and 7
around the endpoints of # and gluing in two parallel copies of 8;
the result is a (not necessarily simple) closed curve (' satisfying
[8'] = [v]+[n].- The right hand figure shows the segment of 5’ that
intersects a plus some segments of 3’ that intersect 3. As is shown
there, we can “comb” those intersections towards the intersection
point of o and 3’ and then “pass them through a”; the result is a
simple closed curve 8” that intersects « once.

As shown in Figure 2.3.b, we can “comb” all of the self-intersections of 5’ to
the point 8’ n o and then “pass them through «”. The result is a simple closed
curve 3” on ¥ that intersects a once. However, we no longer have [5”] = b; instead,
we have [3”] = b+ n - a for some n € Z. The desired simple closed curve S is then
T (5"). 0

PROOF OF PROPOSITION 2.10. The proof will be by induction on g. The base
case is ¢ = 0, where the theorem is vacuous. Assume now that g > 0. Using
Theorem 2.8 and Lemma 2.11, we can find oriented simple closed curves oy and (1
on ¥ that intersect once and satisfy [o1] = ay and [81] = by. Let T be a closed
regular neighborhood of i U 1, so T is a one-holed torus. Define S = X!\ Int(T).
We then have a decomposition H; (Eg; Z) = U@V, where U is the image of Hy (T'; Z)
in Hy (Eg; Z) and V is the image of Hy (S;Z). This decomposition is orthogonal with
respect to i(-,-). Also, ay,by € U. Tt follows that as, by, . . ., ag,05€ V.

The kernel of the map H;(S;Z) — Hl(Zg; Z) (possibly 0) is generated by the
homology class of 61" < S. Let S be the result of gluing a disc to S along 07
There is then a natural isomorphism V =~ H1(§ ;Z). Using this identification, we
can identify ag,ba,...,a4,by; with elements of H1(§; Z). The surface S has the
same number of boundary components as Eg (i.e. at most 1), so by induction we
can find a geometric symplectic basis {Qq, 32, ..., 0y, Bg} on S satisfying [&;] = a;
and [BZ] = b; for 2 < i < g. Homotoping the &; and Bi, we can assume that
they are disjoint from the disc that was glued to S to form S. They thus are the
images of curves as, f2,...,04,8; in S Zg under the inclusion S < S. Clearly
{a1,B1,..., a4, B4} is the desired geometric symplectic basis. a

2.5. Proof of surjectivity

We are finally ready to prove Theorem 2.7.
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FIGURE 2.4. All the boundary components of the subsurface S of
%! are separating curves; the image of Hy(S;Z) in Hy(X%;Z) is
isomorphic to H1(§; Z), where S is the result of gluing discs to S
along all of its boundary components.

PROOF OF THEOREM 2.7. Let {aq,f1,...,a4,84} be a geometric symplectic
basis on X0, Set a; = [a;] and b; = [3;] for 1 < i < g, so {a1,b1,...,a4,by} is a
symplectic basis for Hy (Y;Z). Consider M € Spy,(Z). Observe that

M(a1), M (b1),..., M(ag), M(by)

is a symplectic basis for Hl(Zg;Z), so Proposition 2.10 says that there exists a
geometric symplectic basis {af, 5],...,a}, 8} on X% such that [a}] = M(a;) and
[B]] = M(b;) for 1 < i < g. Using the classification of surface trick (see §1.3), we
can find some f € Modg such that f(a;) = o} and f(5;) = 5} for 1 <i < g. Clearly
(f) =M. O

2.6. Variants on realizing symplectic bases

This section is a bit of detour : it contains some variants on the results in §2.4
that will be needed in subsequent chapters. The reader is advised to skip reading
it the first time they read this chapter.

Realizing a symplectic basis on a subsurface. If M is a free Z-module
equipped with a symplectic form and V < M is a Z-submodule, then we will say
that V is a symplectic subspace of M if the restriction of the symplectic form on M to
V' is symplectic. Fix g > 0and 0 <b <1, and let S < Eg be a subsurface. If S has
multiple boundary components, then its algebraic intersection form is degenerate
and the image of Hy(S;Z) in Hy (Eg; Z) need not be symplectic. However, if all of
the boundary components of S are separating (i.e. nullhomologous) curves in Eg,
then the image of Hy(S;Z) in Hl(Eg;Z) is symplectic. Indeed, letting S be the
closed surface obtained by gluing discs to all of the boundary components of S,
the image of H;(S;Z) in Hl(Eg; Z) is easily seen to be isomorphic to H1(§; Z); see
Figure 2.4. This leads us to the following result.

PROPOSITION 2.12. For g 2 0 and 0 < b < 1, let S < Zg be a subsur-
face. Assume that all of the boundary components of S are separating curves in
%Y and let U < Hi(XY;Z) be the image of Hy(S;Z) in Hy(X);Z). Finally, let
{a1,b1,...,an, by} be a symplectic basis for U. Then there exist oriented simple
closed curves {aq, B1,...,an,Br} in S c ZZ with the following properties.

o [o;] = a; and [B;] = b; for all 1 < i < h, where these homology classes
are in Hy (X4 Z).



24 2. THE SYMPLECTIC REPRESENTATION

e For 1 <i<h, the curves a; and 3; intersect once.
o All other pairs of distinct curves in the set are disjoint.

PROOF. Let S be the closed genus h surface obtained by gluing discs to all of
the boundary components of S, so U =~ H1(§; Z). Proposition 2.10 says that there
exists a geometric symplectic basis {a1,S1,...,an, Bn} on S such that [a;] = a;
and [B;] = b; for 1 < i < h. Homotoping the «o; and 5;, we can assume that they
are disjoint from all the glued-on discs, and thus lie in S. O

Completing a partial geometric symplectic basis. For ¢ > 0 and
0 < b < 1, a partial geometric symplectic basis on ZZ isaset {a1,...,an,01,...,Bn}
of oriented simple closed curves on EZ with the following properties.
e For 1 < i < min(h,h'), the curves o; and S, intersect once with a positive
sign.
e All other pairs of distinct curves in the set are disjoint.
We then have the following generalization of Proposition 2.10.

PROPOSITION 2.13. For g = 0 and 0 < b < 1, consider a symplectic basis
{a1,b1,...,a4,b,} for Hl(Eg;Z). Assume that {a, ..., an,B1,...,0w} is a partial
geometric symplectic basis on XY with [oy] = a; for 1 < i < h and [B;] = b,
for 1 < j < h. We can then extend our partial geometric symplectic basis to
a geometric symplectic basis {a1, P, ..., 0q, 84} on Eg satisfying [o;] = a; and
[Bi] =bi for1<i<g.

For the proof of Proposition 2.13, we will need the following generalization of
Lemma 2.11.

LEMMA 2.14. Let X be a surface and let {1, ..., an} be disjoint oriented simple
closed curves on 3 such that ay U --- U ay does not separate Y. For 1 < i < h, set
a; = [a;]. Let by € Hy(3;Z) satisfy i(ay,b1) = 1 and i(a;,by) = 0 for 2 < i < h.
Then we can find an oriented simple closed curve B1 on X that intersects oy once,
is disjoint from «; for 2 < i < h, and satisfies [31] = b1.

PRrROOF. Let ¥’ < X be the complement of an open regular neighborhood of
U Uap; if Y > Eg, then ¥/ ~ Egtih. Letting o be a; regarded as a curve
on ¥, the curve o does not separate %'. Moreover, it is an easy exercise to see
that the image of Hy(X';Z) in Hy (%;Z) is

lag,...,ap)t = {he H|(Z;Z) | i(as, h) = 0 for 2 <i < h}.

In particular, we can find some b} € Hy(X';Z) that maps to by € Hi(X;Z). We
have i([e/],b}) = 1, so Lemma 2.11 implies that we can find an oriented simple
closed curve ] in ¥’ that intersects o) once and satisfies [8]] = b1. Letting 81 be
the image of 5] in ¥ under the inclusion ¥’ < ¥, the curve /31 satisfies the desired
properties. (|

PRrROOF OF PROPOSITION 2.13. The proof is a straightforward generalization
of the proof of Proposition 2.10, with Lemma 2.14 used in place of 2.11. (]

A variant on finding 8. The final result we need is the following variant
of Lemma 2.11. In it, the pair of curves {a, '} form what we will call a bounding
pair in Chapter 3.
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FIGURE 2.5. A bounding pair {«, @'} contained in a 2-holed torus 7.

LEMMA 2.15. Let ¥ be a surface and let o and o' be disjoint oriented simple
closed nonseparating curves such that [a] = [&/]. Set a = [a] = [¢/], and let
be Hi(%;Z) satisfy i(a,b) = 1. Then we can find an oriented simple closed curve
B on X that intersects both o and o once and satisfies [B] = b.

PROOF. The proof is very similar to the proof of Lemma 2.11. There are two
steps.

STEP 1. We can find an oriented closed curve 8 on ¥ (not necessarily simple)
that intersects both o and o once and satisfies [8'] = b.

Since [a] = [@], the union o U o must separate the surface. As is shown in
Figure 2.5, we can then find a 2-holed torus T' = ¥ containing oo U o’. Let S be
the component of ¥\ Int(7T) lying to the left of & and S’ be the component lying
to the right. We then have Hy(X;Z) = U®V @ V', where U and V and V' are
the images of Hy(T;Z) and H;y(S;Z) and Hy(S";Z) in Hy(3;Z), respectively. Write
b=u+v+v withue U and veV and v/ € V. We thus have i(a,u) = 1 and
i(a,v) = i(a,v’) = 0.

Let v/ be an oriented simple closed curve on T' that intersects both o and o’
once with a positive sign. The set {a, [v]} is a basis for U; write u = p-a+q- [V'].
Since

1=i(a,u) =i(a,p-a+q-[V]) =q,
we have ¢ = 1. Setting v = T?(v'), the oriented simple closed curve v lies in T,
intersects both « and o once, and satisfies [v] = u.

Let 7 be an oriented closed curve on S such that [1] = v. The homology class v
need not be primitive, so we might not be able to choose 7 to be simple. Similarly,
let 7’ be an oriented closed curve on S’ such that [n'] = v'.

We have b = [v] + [n] + [1]. Just like in the proof of Lemma 2.11, the desired
closed curve 8’ can be obtained by “band-summing” the curves v and 7 and 7.

STEP 2. We can find an oriented simple closed curve § on X that intersects
both a and o once and satisfies 3] = b.

Like like we did in the proof of Lemma 2.11, we can “comb” the self-intersections
of ' to a and them “pass them through «” (some intersections will be on the left
of a and some on the right; we avoid combing intersections through «’). The result
is an oriented simple closed curve 8” on X that intersects both o and o’ once and
satisfies [3”] = b+ n - a for some n € Z. The desired oriented simple closed curve
B is then T, ™(8"). O






CHAPTER 3

Basic properties of the Torelli group

We finally come to the Torelli group. This chapter defines the Torelli group
and discusses a number of its basic properties.

3.1. Definition and low-complexity examples

We start by defining the Torelli group.

Definition. For g > 0 and 0 < b < 1, the Torelli group, denoted Ig, is the

kernel of the action of Modg on Hl(ZZ; 7). Using Theorem 2.7, we have an exact
sequence
1— Ig — Modz —> Spy,(Z) — 1.

Just like for Modz, we will often omit the b when it vanishes. We will also use the
notation Z(X) for the Torelli group of a surface . We emphasize that ¥ is allowed
to have at most 1 boundary component.

REMARK 3.1. The reader probably wonders why we have not defined the Torelli
group on a surface with multiple boundary components. The issue is that it is not
clear what the correct definition should be. This is related to the fact (see Remark
2.2) that on these surfaces the algebraic intersection pairing is degenerate. One
obvious thing to do would be to simply define it to be the kernel of the action of
the mapping class group on homology, but this turns out not to be particularly well-
behaved. See [Put07] for a discussion of the issues here and for an enumeration
of different reasonable definitions. Our point of view in this book is that the most
important surfaces are the closed surfaces; however, it turns out that many of our
constructions work better on surfaces with one boundary component. We view
surfaces with multiple boundary components as technical tools for understanding
the closed case, and we will only study them when necessary.

Disc, sphere, and torus. The Torelli groups of sufficiently simple surfaces
are trivial.

LEMMA 3.2. If X is either a sphere S?, a disc D, or a torus T2, then Z(X) = 1.

PROOF. Propositions 1.1 and 1.3 say that Mod(D) = 1 and Mod(S') = 1, so
the lemma is trivial in those cases. As for the torus, Proposition 1.6 says that the
action of Mod(T?) on H; (T?; Z) is faithful, which clearly implies that Z(T?) = 1. O

One-holed torus. The first example of a surface whose Torelli group is
nontrivial is a one-holed torus.

27
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LEMMA 3.3. We have Z! =~ Z with generator the Dehn twist Tz about the
boundary component 3 of ¥1.

PROOF. Regarding Y1 as a subsurface of ¥; with ¥;\¥{ an open disc, there is
a map ¥ : Mod} — Mod; that extends a mapping class by the identity. Keeping
in mind the equality Spy(Z) = SL3(Z) from Remark 2.6, the symplectic represen-
tations of Mod] and Mod; fit into a commutative diagram

Mod}

| \
Mod; —— SL2 (Z)

Proposition 1.6 says that the map Mod; — SL2(Z) is an isomorphism, so we con-
clude that Z} = ker(¢)). Theorem 1.18 implies that ker(y)) =~ Z with generator
Tgs. O

Higher genus. There is no simple description of Ig for g = 2; as we will see,
it is a very large and complicated group. The only case for which we have anything
like a complete description is (g,b) = (2,0). Here a theorem of Mess [Mes92] (see
Theorem 3.14 below) says that Z, is an infinitely generated free group, though this
theorem only gives an implicit description of the free generators. We will carefully
state and prove Mess’s theorem in Chapter 6.

3.2. Generators for Torelli

We now discuss several basic elements of the Torelli group.

Action of Dehn twist on homology. We begin by describing how a Dehn
twist acts on homology.

LEMMA 3.4. Let ¥ be a surface and let v be a simple closed curve on X. Orient
v in an arbitrary way. We then have

(4) To(h) = h+i([v],h) -] (he Hi(352)).

REMARK 3.5. Equation (4) seems to depend on the orientation of v. However,
changing the orientation of «y replaces [y] with —[7y] and the two minus signs in (4)
cancel, so in reality (4) does not depend on the orientation.

REMARK 3.6. The map
h—h+i([v],h)-[v]  (heH(Z;2))
is often called the symplectic transvection with respect to [].

PROOF OF LEMMA 3.4. Using Theorem 2.8, it is enough to prove (4) for h =
[6], where ¢ is an oriented simple closed curve on ¥. Homotoping d, we can assume
that ¢ is immersed and transverse to . Equation (4) now follows from contemplat-
ing the effect of T, on §. Namely, T, (6) is obtained from ¢ by splicing in an arc
running parallel to v for each p € v n §. This arc runs in the same direction as ~y
if the sign of the intersection point p is positive, and this arc runs in the opposite
direction of -y if the sign of the intersection point p is negative. In homology, this arc
contributes t[v] with the sign the same as the sign of the intersection p. Equation
(4) follows. O
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FIGURE 3.1. T, is a separating twist and 7%, T ! is a bounding
pair map.

Basic elements. From Lemma 3.4, we can obtain some simple elements of
the Torelli group. Let X be a surface with at most one boundary component.

e If v is a simple closed curve on ¥ such that [y] = 0, then Lemma 3.4
implies that T, acts trivially on H;(X;Z), i.e. that T, € Z(X). A simple
closed curve « satisfies [y] = 0 if and only if v separates ¥ into two pieces
(see Figure 3.1); such elements T, € Z(X) are therefore called separating
twists.

e If 71 and 75 are two simple closed curves on ¥ such that [y1] = [y2] for
some choice of orientations on the v;, then Lemma 3.4 implies that 7', and
T, act identically on H;(%;Z), so T,,T;," € Z(X). The simplest such v;
are bounding pairs, which are disjoint nonhomotopic nonseparating simple
closed curves 77 and v such that v1 U 75 separates ¥ into two pieces (see
Figure 3.1); the associated elements T, T.' € Z(X) are called bounding
Pair maps.

REMARK 3.7. Though technically the boundary component /3 of Eé does not

separate Z; into two pieces, we nevertheless regard Tz as a separating twist (of
course, 3 is homotopic to a curve that separates E; into two pieces).

REMARK 3.8. It is easy to see that there are no bounding pairs on ¥s.

Generating Torelli. Building on work of Birman [Bir71], Powell [Pow78]
proved the following theorem.

THEOREM 3.9. For g >0 and 0 < b < 1, the group Ig is generated by the set
of all separating twists and all bounding pair maps.

REMARK 3.10. Observe that the generating set in Theorem 3.9 is an infinite
generating set.

REMARK 3.11. Powell actually only explicitly deals with closed surfaces of
genus at least 3, but his arguments can be easily extended to the general case.

Powell’s proof of Theorem 3.9 relies on difficult combinatorial group theoretic cal-
culations in the group Spgg(Z). More topological proofs of Theorem 3.9 were later
given by Putman [Put07] and by Hatcher—Margalit [HM12]. We will give a vari-
ant of Hatcher—-Margalit’s proof in Chapter 7. That chapter also contains a proof
of the following extension of Theorem 3.9, which is due to Johnson [Joh79]. The
genus of a bounding pair {y1,v2} on Eg with ¢ > 0 and 0 < b < 1 is defined as
follows. Let S; and S be the subsurfaces into which Zg is divided by 1 U yo. If
b =1, then order them so that S, contains the boundary component of ZZ'

e If b =1, then the genus of {71,792} is the genus of S;.
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e If b =0, then the genus of {71,772} is the minimal genus of S; and Ss.
The genus of a bounding pair map 7T, TA/_Q1 is the genus of its underlying bounding
pair.

THEOREM 3.12. For g = 3 and 0 < b < 1, the group Ig is generated by the set
of all genus 1 bounding pair maps.

REMARK 3.13. Theorem 3.12 is false for ¢ = 2. Indeed, as was mentioned in
Remark 3.8, there are no bounding pair maps in Zs. Also, as we will see in §3.5,
the surjection Mod; — Mod, in the Birman exact sequence (see §1.4) restricts to a
surjection I; — Z4. This map takes bounding pair maps to bounding pair maps, so
for g = 2 all bounding pair maps must be in its kernel (and thus ZJ is not generated
by bounding pair maps).

Finite generation. McCullough—Miller [MM86] proved that Z, is not
finitely generated. As we mentioned at the end of §3.1, Mess [Mes92] later proved
the following.

THEOREM 3.14. The group Zs is an infinite rank free group.

We will prove Theorem 3.14 in Chapter 6. We will soon show that there is
a surjection Z} — Zy (see Theorem 3.31 below), so the group Zi is not finitely
generated either. We summarize this discussion in the following theorem.

THEOREM 3.15. Neither Iy nor I} is finitely generated.
In contrast, Johnson [Joh83] proved the following remarkable theorem.
THEOREM 3.16. For g = 3 and 0 < b < 1, the group I; is finitely generated.

We will give a proof of Theorem 3.16 in Chapter 8 that combines Johnson’s ideas
with some later work of Putman [Put12].

3.3. Torsion
The main result of this section is as follows.
THEOREM 3.17. For g >0 and 0 < b < 1, the group I;’ is torsion-free.

REMARK 3.18. The mapping class group of a closed surface contains lots of
torsion; however, the mapping class group of a surface with boundary is itself
torsion-free. See Corollary 3.21 below.

The proof of Theorem 3.17 requires some preliminary results.

Realization by diffeomorphisms. The first preliminary result needed is
the following theorem of Nielsen [Nie43].

THEOREM 3.19. For g,b = 0, every finite-order element of Modf7 can be repre-
sented by a finite-order diffeomorphism of Eg,

For a simple proof of Theorem 3.19 due to Fenchel [Fen50], see [FM12, §13.2].
We remark that a deep generalization of Theorem 3.19 due to Kerckhoff [Ker83|
says that every finite subgroup of Modz can be represented by a finite group of
diffeomorphisms (this is often called the Nielsen realization problem).

Isolated fixed points. The second result we need is the following lemma.
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LEMMA 3.20. Let ¥ be a surface and let F' : ¥ — X be a finite-order orientation-
preserving diffeomorphism of ¥ such that F' # id. Then all of the fized points of f
are isolated.

PROOF. Let n be the order of F' and let 4/ be a Riemannian metric on X. Set
n—1
p= > FFW).
k=0

Then g is a Riemannian metric on 3 and F' is an isometry of (X, ). Let p be a
fixed point of F'. With respect to an orthonormal basis of the tangent space to
at p, the derivative of F' lies in SO3(R). If this derivative is the identity, then a
standard exercise in Riemannian geometry says that F' = id; the point here is that
the set of points that are fixed by F' and where the derivative of F is the identity
is both open and closed. Since we are assuming that F' # id, this cannot happen,
so the derivative of F' at p is not the identity. Using the fact that the derivative
lies in SO5(R), we conclude that the derivative of F' at p fixes no nonzero tangent
vectors, which implies that p is an isolated fixed point of F', as desired. ([l

COROLLARY 3.21. For g =0 and b > 1, the group Modg is torsion-free.

PrOOF. Let f € Modg be a finite-order element. Theorem 3.19 says that we
can represent f by a finite-order diffeomorphism F' : EZ — Zg. Since F fixes the
boundary, the fixed points of F' are not isolated. Lemma 3.20 then implies that
F = id, as desired. [l

Finite-order diffeomorphisms and homology. The final ingredient in
the proof of Theorem 3.17 is the following theorem, which was originally proved by
Hurwitz [Hur93] in 1893 (in the same paper where he proved the Riemann-Hurwitz
formula and the 84(g — 1)-theorem). The proof we will give should probably be
attributed to Lefschetz [Lef26] (though it only appears implicitly in [Lef26, §71]).

THEOREM 3.22. For g > 2, let F' : ¥, — X, be a finite-order orientation-
preserving diffeomorphism such that F' # id. Then the action of F on Hi(X4;Z) is
nontrivial.

PROOF. Lemma 3.20 says that all of the fixed points of F are isolated, so we can
apply the Lefschetz fixed point theorem to it. Since F' is an orientation-preserving
diffeomorphism of ¥, the indices of all of its fixed points are 1. Letting N be the
number of fixed points of F', the Lefschetz fixed point theorem implies that

N =tr(Fy : Ho(24;Q)) — tr(Fy : Hi(X4;Q)) + tr(Fy : Ha(E4;Q)).

By assumption, all of these maps are the identity. We thus conclude that N = 2—2g.
Since g > 2, the quantify 2 — 2g is negative, a contradiction. O

REMARK 3.23. The assumption g > 2 in Theorem 3.22 is necessary. Indeed, for
some n > 2 let F,, : T2 — T2 be the diffeomorphism that rotates the first factor of
T? = S x §% by 27/n. Then F,, has order n, but is homotopic to the identity and
thus induces the identity on H;(T?;Z). Observe that as required by Proposition
1.6, the diffeomorphism F), defines the trivial element in Mod(T?). Theorem 3.22
implies in particular that if g > 2, then no element of Diffy(3,) can have finite
order.
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Putting everything together. We close this section by proving Theorem
3.17.

PrOOF OF THEOREM 3.17. Corollary 3.21 says that Mod_(ll is torsion-free, so
certainly Ig1 is torsion-free. It remains to show that Z, is torsion-free. Lemma
3.3 implies that it is enough to deal with the case g > 2. Consider a nonidentity
torsion element f € Mod,. Theorem 3.19 says that f can be represented by a
finite-order diffeomorphism F': ¥, — 3,. Theorem 3.22 then implies that ' must
act nontrivially on Hy(X4;Z), so f ¢ Z,, as desired. |

3.4. Action of Torelli on curves and conjugacy classes in Torelli

As we said at the beginning of §1.3, one of our main tools for studying the
mapping class group is its action on the set of simple closed curves. This section is
devoted to the analogue for the Torelli group of the classification of surfaces trick
discussed in §1.3. This trick showed that the mapping class group acted transitively
on submanifolds of the surface that “cut the surface up the same way”. For the
Torelli group, we will have to add appropriate homology information. The proofs
here will be modeled on our proof in Chapter 2 that the symplectic representation
is surjective (Theorem 2.7).

Single curves. Our first result is the following proposition (compare with
Lemma 1.9). It is asserted without proof by Johnson in [Joh80, p. 253]; Johnson
only needed a special case of it, which he proved in [Joh80, Lemma 10]. Our
proof is modeled after [Put07, proof of Lemma 6.2], which proves a more precise
statement that also contains Proposition 3.25 below.

PROPOSITION 3.24. For g > 0 and 0 < b < 1, let o and o be oriented simple
closed curves on Eg. Assume that neither a nor o separates X% and that [a] = [o/].

Then there exists some f € I} such that f(o) = o

PROOF. Set a; = a and o) = o and a1 = [a] = [¢/]. Extend {a;} to a
symplectic basis {a1,b1,...,a4,bq} for Hl(ZZ;Z). Proposition 2.13 implies that
{a1} and {¢/} can be extended to geometric symplectic bases {aq,B1,..., a4, Bq}
and {a}, B, ..., ay, By} for Hl(EZ; Z) such that

a; = [oq] = [af] and b; = [B;] = [B]]
for 1 < i < g. The classification of surfaces trick then can be used to show that
there exists some [ € Modz such that f(a;) = o} and f(B;) = 8, for 1 <i < g. By
construction, f fixes the basis {a1,b1,...,aq, by} for H1(Zg; Z) pointwise, so f acts
as the identity on Hy(%%;Z) and therefore lies in Z}. O

Variants.  The proof of Proposition 3.24 can be used to show many other
similar results. For instance, it goes through without change to prove the following
two propositions (compare with Lemmas 1.12 and 1.11).

PROPOSITION 3.25. For g >0 and 0 <b <1, let {ai,...,ax} and {o], ..., a}}
be collections of oriented simple closed curves on EZ. Assume that the a; are pair-
wise disjoint and that aq U -+ - U oy, does not disconnect ¥. Similarly, assume that
the o are pairwise disjoint and that of U --- U o, does not disconnect . Finally,
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assume that [o;] = [of] for 1 < i < k. Then there exists some f € I} such that
floy) =af for1 <i<k.

PROPOSITION 3.26. For g =0 and 0 < b < 1, let {«, 8} and {a/, B’} be collec-
tions of oriented simple closed curves on ZZ. Assume that o and 8 intersect once
with a positive sign. Similarly, assume that o/ and B’ intersect once with a positive
sign. Finally, assume that [o] = [a'] and [8] = [B]. Then there exists some f € I}
such that f(a) =o' and f(B8) = 0.

Separating curves. For g > 0 and 0 < b < 1, let v be a separating simple
closed curve on Zg. We have [y] = 0; however, it is definitely not the case that Ig
acts transitively on separating simple closed curves (even ones that cut the surface
up in the same say; see Lemma 1.13). More subtle homological information is
needed.

Let S; and S be the subsurfaces of ZZ on either side of . If b = 1, then order
the S; such that S, contains the boundary component of Eg. Let U; and Us be
the images of Hy(S1;Z) and Hi(S2;Z) in Hy(X%; Z), respectively. We then have
Hl(ZZ; Z) = Uy ® Us. Moreover, U; and Us are symplectic subspaces of Hl(Eg; Z)
(see §2.6) which are orthogonal in the sense that i(u1,us) = 0 for all u; € U; and
ug € Us. The separating splitting of Hl(Eg; Z) induced by -y is then as follows.

e If b = 1, then it is the ordered pair (Uy,Us); observe that this does not
depend on any choices.

o If b = 0, then it is the unordered pair (Uy,Us). In other words, if b = 0
then we will identify (Uy,Us) and (Us, U;). This is required since the S;
are not canonically ordered.

With these definitions, we have the following.

PROPOSITION 3.27. For g = 0 and 0 < b < 1, let v and v be simple closed
separating curves on Eg. Then there exists some f € Ig such that f(v) =~ if and
only if v and ' induce the same separating splitting of Hl(Eg;Z).

PROOF. It is clear that v and 4/ induce the same separating splitting if such an
f exists. Conversely, assume that « and +' induce the same separating splitting of
H; (X% Z). Let Si and Sy (resp. S§ and S5) be the subsurfaces of X} on either side
of v (resp. v). If b = 1, then order the S; and S/ such that Sp and S} contain the
boundary component of Zg; by assumption, the images of Hy(S;;Z) and H; (S};Z)
in Hl(Eg; Z) are then the same for ¢ = 1,2. If b = 0, then simply order the S; and
S; such that the images of Hy(S;;Z) and H;(S};Z) in Hy(X0;Z) are the same for
i = 1,2. Observe that these choices of orderings implies that S; = S; for i = 1,2.
For i = 1,2, let U; be the common image of Hy(S;;Z) and Hy(S}; Z) in Hy (3%; Z),
SO Hl(Eg, Z) = U1 (&) UQ.

Let h be the genus of Sy; by construction, h is also the genus of S7. Both Sy
and S% then have genus g — h. Let {a1,b1,...,an,br} be a symplectic basis for Uy
and let {ap41,bn41,...,0a4,by} be a symplectic basis for Us. Applying Proposition
2.12 twice, we can find a geometric symplectic basis {1, 81, . .., g, B4} on ZZ such
that

alaﬁl,' . 'aahvﬂh c Sl and ah+17ﬂh+la .. '7a9359 c 52
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and such that

[ai] =a; and [Bi] =b; (I<i<y).
Similarly, we can find a geometric symplectic basis {a7, 51, ..., ag, 8;} on Eg such
that

ay, B .o, B, ST and ag iy, B, .,o/g,ﬁ; c S

and such that

[a;] =a; and [Bi] =b; (I<i<g).
Using the classification of surfaces trick (see §1.3), we can find f € Modz such that
f(v) =~ and such that

flei) =) and f(B;) =8 (1<i<yg).

By construction, f fixes a; and b; for 1 <i < g, s0 f € I_g. (I

N

This has the following corollary, which was originally proven by Johnson [Joh80].

COROLLARY 3.28. For g =20 and 0 < b <1, let T, and T, be separating twists
on Zg. Then T, and T, are conjugate in Ig if and only if v and ~' induce the same
separating splitting of Hl(Eg; 7).

Proor. The separating twists 7., and T, are conjugate in Ig if and only if
there exists some f € If]’ such that fT.,f~' = T,. Since fI,f~ ' = Ty (see
Lemma 1.23), this holds if and only if there exists some f € Ig such that f(y) =
~'. Proposition 3.27 says that this holds if and only if v and v/ induce the same
separating splitting of Hl(EZ; Z). Here we are using the fact that two Dehn twists
are equal if and only if their associated curves are homotopic; see [FM12, Fact
3.6]. O

Bounding pairs. We now turn to the action of the Torelli group on bounding
pairs. Again, the necessary invariant will be the homology of the subsurfaces on
either side of the bounding pair. This will require the following two pieces of
notation. First, if M is a free finite-rank Z-module equipped with a symplectic
form w(-,-) and z € M, then define 2+ = {y € M | w(x,y) = 0}. Second, if 1 is an
oriented simple closed curve on a surface, then 77 is 7 with the opposite orientation.

For g > 0 and 0 < b < 1, let {71,72} be a bounding pair. If b = 1, then orient
~v1 and 73 such that the boundary component of EZ is in the subsurface of Eg to
the right of «1 U 7,; this will ensure that [y1] = [y2]. If b = 0, then orient v; and
72 arbitrarily such that [y1] = [y2]. Let Si be the subsurface of ¥} to the left
of 71 U7, and S5 be the subsurface of ZZ to their right. For i = 1,2 let U; be
the image of Hy(S;;Z) in Hy(X%;Z). Clearly Uy and U, together span [y;]* and
U n Uz = {{n]). The BP-splitting induced by {y1,72} is as follows.

e If b =1, then it is the ordered triple ([y1], U1, Uz2). Observe that this does
not depend on any choices.

e If b = 0, then it is the ordered triple ([y1],U1,Usz). However, since this
depends on a choice of orientation for 1, we will identify ([v1], U1, Us)
and (—[v1], Uz, U1). With these identifications, this is well-defined.

With these definitions, we have the following.
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FIGURE 3.2. The bounding pair {71,72} and the curve § that in-
tersects both 1 and ~5 once. The surface S; is the subsurface of
Eg on the left of v; U%, and T3 is the complement in S; of a regular
neighborhood of 71 U (6 N S1) U 2. Similarly, So is the subsurface
of Zg on the right of 4 U %, and 75 is the complement in Sy of a
regular neighborhood of 1 U (6 N S3) U 2.

PROPOSITION 3.29. For g = 0 and 0 < b < 1, let {v1,7v} and {v],7%} be
bounding pairs on Eg. Then there exists some f € IS such that f(v;) = ~i for
i=1,2 if and only if {y1,72} and {71,745} induce the same BP-splitting.

PRrROOF. It is clear that {y1,72} and {v],~4} induce the same BP-splitting if
such an f exists. Conversely, assume that {y1,72} and {7,745} induce the same
BP-splitting. Orient the v; as in the definition of a BP-splitting, so [y1] = [12] and
if b = 1 then the boundary component of Eg lies in the subsurface of Eg to the
right of 43 U 7,. Orient the 7, in a similar way; if b = 0, then make the choice of
orientation that assures that [v1] = [y1] (if b = 1, then this is automatic).

Let the common BP-splitting of {v1,72} and {v1,75} be ([11],U1,Uz). Let Sy
and Sy (resp. S] and Sj) be the subsurfaces of X% to the left and to the right of
71 U 74 (resp. v; U 7%), respectively. By definition, for ¢ = 1,2 the subspace U; of
H, (X% Z) is the image of both Hi(S;;Z) and Hy(S];Z) in Hy(X%;Z).

Let d € Hy(3%; Z) be such that i(d, [y1]) = i(d, [{]) = 1. Using Lemma 2.15,
we can find oriented simple closed curves § and ¢’ such that [§] = [¢'] = d and such
that § (resp. ¢’) intersects both 1 and 72 (resp. 74 and ~4) once. For i = 1,2 define
T; to be the complement in S; of an open regular neighborhood of 1 U (§ N S;) U y2;
see Figure 3.2. Similarly, for ¢ = 1,2 define 7} to be the complement in S} of an
open regular neighborhood of 4] U (6’ N S}) U 72. Observe that all of the boundary
components of T; and T are separating curves in Eg. As we discussed in §2.6, this
implies that the image V; (vesp. V/) of Hy(T}; Z) (vesp. Hy(T}; Z)) in Hy(E5;Z) is a
symplectic subspace.

The key to our proof now is the observation that for ¢ = 1,2 we have V; = V/;
indeed, these are both equal to {z € U; | i(z,d) = 0}. Moreover, as is clear from
Figure 3.2, if Ty and 7T} have genus h, then T and T3 have genus g — h — 1. Let
{ai,b1,...,an, by} be a symplectic basis for V4 = V{ and let {ap+t2,bp+2,..., 04,04}
be a symplectic basis for V5 = V3; the set

{alabla vy Apy bh7d7 [’Yl], Gh+2, bh+27 e ,a'g7 bg}

is then a symplectic basis for H1(ZZ; Z). Using Proposition 2.12; we can find the
following.

e Simple closed curves {a1, f1,...,an, fr} in Ty such that [a;] = a; and
[Bi] = bi for 1 <i < h.
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e Simple closed curves {of,B1,...,a}, 8} in T7 such that [a}] = a; and
[8i] =b; for 1 <i < h.

e Simple closed curves {any2,Bht2,. .., 04, B¢} in To such that [a;] = a;
and [8;] =b; for h+2<i<g.

e Simple closed curves {aj, o, 5}, 0., ap, By} in T3 such that [o}] = a;

and [B]] = b; for h +2 <i<g.

The intersection patterns of these curves will be such that the sets

{a1, B, an, Bry 0,71, Qny2, Brt2, - -5 g, By}
and
{al, B1, - ay, B, 5/7717Q;L+2’IB;L+27 ce 0‘;75;}
are both geometric symplectic bases for H1(Eg; Z). The classification of surfaces

trick then implies that there exists some f € Modg such that f(a;) = o} and
f(B:) =Bl for 1 <i< g withi# h+ 1 and such that

f(0)=0" and f(y1)=91 and f(y2) =15
Since by construction f pointwise fixes a symplectic basis for Hl(ZZ; Z), we have
that f € Ig, and we are done. (]

This has the following corollary, which was originally proven by Johnson [Joh80].

COROLLARY 3.30. For g > 0 and 0 < b < 1, let T’nT»y;l and T,HT,Y;1 be

bounding pair maps on Zg. Then T, TAY_z1 and T, TJ; are comjugate in If; if and
only if {y1,v2} and {~],7%} induce the same BP-splitting.
Proor. The bounding pair maps T, TA/_Z1 and TViTv_/l are conjugate in Ig if
2
and only if there exists some f € Ig such that

—1p-1 -1
fT’YlT"/z = T’)’{T’yé .

Since
—1 -1 -1
T, T = Ty Ty

Y12

this holds if and only if there exists some f € Ig such that f(y1) = 7] and f(y2) = 5.
Proposition 3.27 says that this holds if and only if {y1,72} and {71,754} induce the
same BP-splitting. (I

3.5. Closed surfaces vs surfaces with boundary

We close this chapter by discussing the relationship between the Torelli groups
on closed surfaces and on surfaces with boundary. Recall that for the mapping class
group, this is given by the Birman exact sequence (see Theorem 1.17). There is a
similar result for the Torelli group.

THEOREM 3.31. For g > 2, there is a short exact sequence
1—m(U%y) —I) — I, — 1.

PROOF. Our proof builds on the proof of Lemma 3.3 above. Theorem 1.17 says
that there is a short exact sequence

(5) 1 — m (US,) — Mod! % Mod, —> 1.
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Regarding X} as a subsurface of ¥, with ¥,\X} an open disc, recall that the map
P Mod; — Mod, in (5) is the map that extends mapping classes by the identity.
The symplectic representations of Mod; and Mod, fit into a commutative diagram

Mod,,

Jw \
Mod;, —— Sp2g(Z)

It follows this that ker(y) = m1(U%,) is contained in Z. Since ¢ is surjective, it
also follows that the image of ¢|I; is Z,. Summing up, (5) restricts to a short exact
sequence

1—mU%y) — I, — I, — 1,
as desired. (]






Part 2

Combinatorial Group Theory






Introduction to Part 2

In Chapter 3, we stated without proof the following four fundamental theorems
about the combinatorial group theory of the Torelli group.

e Birman and Powell’s theorem [Bir71, Pow78]| asserting that the Torelli
group is generated by separating twists and bounding pair maps (Theorem
3.9).

e Johnson’s theorem [Joh79] asserting that in genus at least 3 the Torelli
group is generated by bounding pair maps (Theorem 3.12).

e Mess’s theorem [Mes92] asserting that the genus 2 Torelli group is an
infinite rank free group (Theorem 3.14).

e Johnson’s theorem [Joh83] asserting that the Torelli group is finitely gen-
erated when the genus is at least 3 (Theorem 3.16).

This part of the book is devoted to the proofs of these four results.

Results needed later. A reader encountering the Torelli group for the
first time might want to take the results of this part of the book on faith and
skip immediately to Parts 3 and 4, which cover the Johnson homomorphism and
connections to 3-manifolds. In fact, for the vast majority of Parts 3 and 4 the
only result needed from Part 2 is the fact that the Torelli group is generated by
separating twists and bounding pair maps. There are only two exceptions to this.

e Chapter 13 of Part 3 is devoted to proving a theorem of Johnson [Joh85a]
which says that the subgroup of the Torelli group generated by separating
twists is exactly the kernel of the Johnson homomorphism. This needs
two additional results from Part 2. The first is the decomposition theorem,
which is a technical result proved in Chapter 7 that describes how the
genus g Torelli group is “built” from lower-genus pieces. The second is a
theorem from Chapter 5 which describes the stabilizer in the Torelli group
of a nonseparating simple closed curve.

e Chapter 18 of Part 4 is devoted to proving a theorem of Johnson [Joh85b]
which gives the abelianization of the Torelli group. This chapter has the
same set of prerequisites as Chapter 13.

Outline. The outline of this part of the book is as follows. We begin with
two technical chapters. Chapter 4 discusses the complex of reduced cycles, which
is a space encoding all the ways that a fixed homology class can be written as a
cycle on the surface, and Chapter 5 describes the stabilizer in the Torelli group
of a nonseparating simple closed curve. We then prove Theorem 3.14 in Chapters
6, Theorems 3.9 and 3.12 in Chapter 7 (which also contains the decomposition
theorem), and Theorem 3.16 in Chapter 8.
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CHAPTER 4

The complex of cycles

This chapter is devoted to the complex of reduced cycles on a surface, which
is a space that encodes all the ways that a fixed homology class can be written as
a cycle. This complex was introduced by Bestvina-Bux—Margalit [BBM10], who
used it to calculate the cohomological dimension of the Torelli group and to give a
topological proof of a theorem of Mess [Mes92] that says that Z, is an infinitely
generated free group. We will give this proof of Mess’s theorem in Chapter 6. We
will also use the complex of reduced cycles to prove the decomposition theorem in
Chapter 7, which is basic structural result about the Torelli group that we will use
to prove many things.

The main result in this chapter is Theorem 4.14, which asserts that the complex
of reduced cycles is contractible. Our proof follows the “second proof” of this fact
from [BBM10]. See [HM12] for an alternate exposition of it.

Throughout this section, ¥ is a closed surface and = € Hy(X;Z) is a fixed
primitive element.

4.1. Basic definitions

We will first define the complex of cycles as a set and then discuss its topology.

Multicurves and weighted multicurves. An oriented multicurve v on
> is an unordered collection v; U -+ U 7 of disjoint oriented nonnullhomotopic
simple closed curves which are pairwise non-homotopic (as unoriented curves, i.e.
we do not allow one of the 7; to be homotopic to another v; but with a reversed
orientation). We will not distinguish between homotopic oriented multicurves. A
submulticurve of an oriented multicurve ~y is an oriented multicurve each of whose
curves is also a curve in 7.

A weighted oriented multicurve is a formal expression c1y; + -+ + ¢y, with
v =71 U- - U an oriented multicurve and ¢y, ...,c; € R. The ordering of the
~; in this expression does not matter. The number ¢; is the weight of 7; and the
support of c17y1 + - - - + vk is the submulticurve of v composed of all of the ~; whose
weights are nonzero. We will identify two weighted oriented multicurves that differ
by inserting or deleting oriented curves of weight 0. The homology class represented
by c1y1 + -+ epve is e[y ]+ - Fer[ye] € Hi(Z;Z). We will call e1y1 + -+ - 4 cpy
a positively weighted oriented multicurve if all the weights ¢; are nonnegative.

Complex of unreduced cycles as a set. The complex of unreduced cycles,
denoted C:,:(E)7 is the set of positively weighted oriented multicurves representing
the fixed primitive homology class x. We will soon define a topology on C}(E)
Intuitively, one moves around in this topology by continuously varying the weights
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Xz
y
% %
x=[C%) x309] +20%,)
)
X, Y A L 2 %427,

FIGURE 4.1. Example of multicurves 7 whose associated cells
X () are compact 1-dimensional polyhedra. Under each multi-
curve is how to write = as a linear combination of the multicurves.
The points in the interior of the left edge are ty; + sv2 + sy2 with
s,t > 0and t+ s = 1. The points in the interior of the right edge
are (3t + s)y1 + 2tya + (2¢ + 25)y3 with s, > 0 and s +¢ = 1.

X:[)’D X= EX\]

B a0 1 deeed

1

FIGURE 4.2. Examples of multicurves 7 whose associated cells
X, () are noncompact 1-dimensional polyhedra. Under each mul-
ticurve is how to write « as a linear combination of the multicurves.

in positively weighted oriented multicurves while keeping the represented homology
class constant. When one of the weights goes to 0, that curve disappears.

Cells. Let v be some oriented multicurve on ¥. The cell associated to 7,
denoted X, (7), is the subset of é\x(Z) consisting of positively weighted oriented
multicurves representing x whose support is a submulticurve of v. We will say
that X () is nondegenerate if it contains a positively weighted oriented multicurve
whose support is equal to y. Writing v = 41 U+ - - U7, there is an inclusion of X, ()
into R’;O that takes ¢1y1+- - -+cxyk to (c1, - . ., ¢k ). This inclusion defines a topology
on X;(7); in fact, it endows X, () with the structure of a (not necessarily compact)
polyhedron, possibly empty. This structure does not depend the ordering of the ~;.
If 4/ is a submulticurve of 7, then X,(7') is in a natural way a subpolyhedron of
Xy (7). See Figures 4.1-4.3 for some examples of cells.

Topology on complex of unreduced cycles. If v is an oriented multicurve
on X, then X,(v) can be regarded as a subset of é\z(Z) We will give é\z(E) the
weak topology with regards to the X, (). In other words, a set U c @(E) is open
if and only if U n X, (7y) is open for all oriented multicurves ~.

Complex of reduced cycles. We will say that a cell X, (y) is reduced if
it is compact. Below in Lemma 4.4 we will give an easy-to-check characterization
of when a cell is reduced. We will call a positively weighted oriented multicurve
ce é\z(E) with support v reduced if X, (y) is reduced. The complex of reduced cycles,
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x=[7)+C%)
Ly LG4,

XD
X%y 2(%0{6-

FIGURE 4.3. Examples of multicurves v whose associated cells
X, (v) are compact 2-dimensional polyhedra. Under each multi-
curve is how to write x as a linear combination of the multicurves.
The points in the interior of the triangle are t1y; + t2y2 + 373 with
t1,ta,t3 = 0 and t1 + t5 + t3 = 1. The points in the interior of the
square are ty; + sy2 + 873 + t'v4 + 8’5 + §'v6 with ¢,¢',s,8 = 0
and t +s =1and t' + s = 1. We remark that one can also find
cells that are pentagons, hexagons, etc.

denoted C,(X), is the subset of @(E) consisting of reduced positively weighted ori-
ented multicurves representing x. The reduced cells endow C,(X) with the structure
of a polyhedral complex.

4.2. Basic properties of cells

We now discuss some basic properties of cells. Throughout this section, v =
Y1 U Uy s a fixed oriented multicurve on 3 such that X, () is nondegenerate.

Zero sets. Define Z(v) to be the set of all weighted oriented multicurves
171 + -+ + epy that represent 0 € Hy(X;Z). Just like for X, (), we can identify
Z(y) with a subset (in fact, a linear subspace) of R*. Since we are assuming that
X, () is nondegenerate, under these identifications X, () is the intersection of an
affine subset of R parallel to Z(v) with the positive orthant R% .

Generators and relations for zero sets. Let R be a subsurface of ¥
whose boundary components (considered as unoriented curves) lie in . Letting
1 <4 <ig <--- <1y <k be the indices such that the boundary components of R
are Y, , - - -, %, define

OR =+, +---+ %,
where the signs reflect whether or not the orientation of v;, agrees or not with the
orientation it acquires from R. Clearly 0R € Z(y). We then have the following.

LEMMA 4.1. Let v be an oriented multicurve on . Let Ry,..., Ry be the
connected subsurfaces of ¥ obtained by cutting ¥ alongy. Then Z(7) is generated by
{OR1,...,0Rs}, and the only relation between these generators is OR; +-+-+ 0Ry =
0.

This lemma has the following corollary.



46 4. THE COMPLEX OF CYCLES

=N "‘
>0

2 Z/y

FIGURE 4.4. The result E/w of collapsing a multicurve to a point.
For ¢ = 1,2, the surface R; can both be obtained from a torus by
identifying two of its points together.

COROLLARY 4.2. Let v be an oriented multicurve on ¥ such that X(v) is
nondegenerate. Let ¢ = 1 be the number of components of ¥ cut along ~y. Then
Xz (v) is an (¢ — 1)-dimensional (not necessarily compact) polyhedron.

PROOF OF LEMMA 4.1. We can identify Z(v) with the kernel of the map
Hi(v;Z) — Hi(X;Z). The long exact sequence in homology associated to the
pair (X, ) therefore induces an exact sequence

H2 (%5 Z) — Ha(3/1:Z) = Z(y) — 0.
Letting R; be the image of R; in ¥/ (see Figure 4.4), we have an element [R;] €

Hy(¥/v;Z) satistying ﬂ'([ﬁi]lz O0R;. The group Ho(X/v;Z) is the free abelian

group with basis {[R1],...,[Re]}, and the generator [X] of Ho(3;Z) = Z maps to
[Ri] + -+ [R¢]- The lemma follows. O

Vertices. We now give a concrete description of the vertices of CALC(E) (which
of course coincide with the vertices of C,(X)).

LEMMA 4.3. The vertices ofCAm(E) consist of c1y1+- - -+, where y1 U+ UYE
18 an oriented multicurve on Y that does mot separate ¥ and the c; are positive
integers such that

e[yl + -+ e[ = 2.

Proor. Consider a point ¢ = ¢y + -+ - + ¢y of @(E) Assume that none of
the ¢; vanish, so the support of cis v =y U -+ U y,. The cell X, () is therefore
nondegenerate. The point ¢ is a vertex of C, (32) exactly when X, (y) is 0-dimensional
(and hence consists of the single point ¢). Corollary 4.2 says that this holds if and
only if 1 U - -+ U v, does not separate Y. It remains to prove that if ¢ is a vertex,
then each ¢; is an integer.

Consider some 1 < ¢ < k. Since 1 U - -+ U 7, does not separate X, we can find
an oriented simple closed curve ¢ on X that intersects ; once with a positive sign
and is disjoint from v; for 1 < j < k with j # ¢. We then have

ci = i([0], ealm] + -+ enln]) = i([6], 2) € Z;
the final inequality follows from the fact that « € Hy(%;7Z). O

Criterion for being reduced. We now prove the following simple descrip-
tion of when a cell is reduced (compare with the examples in Figure 4.2).
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LEMMA 4.4. Let v = 71 U -+ U vy, be a multicurve such that that X,(vy) is
nondegenerate. The cell X, () is reduced if and only if there does not exist 1 <
i1 < --- <ip <k such that [v;,] + -+ [v3,] = 0.

PrOOF. If there exist 1 < i1 < --- < i, < k such that [v;, ] + -+ [v,] = 0,

then fixing some point ¢ € X, () we have an infinite ray
{e+t(yvi +--+7,) | 120} € X(9).
Thus X, (v) is noncompact, and hence not reduced.

We will prove the contrapositive of the other implication of the lemma. Assume
that X, () is nonreduced, i.e. not compact. We first prove that there exist real
numbers ¢1, ..., cx = 0 (not all 0) such that ¢1[y1]+ - - +cx[yk] = 0. Since X, () is
a noncompact polyhedron, it must contain an infinite ray. Let ¢/ = ¢jv1 +- -+ ¢,k
be the initial point of this ray and let ¢’ = ¢{y1 + - -+ + ¢}y, be some other point
on this ray. For 1 < ¢ <k, set ¢; = ¢/ — ¢,. We thus have

) + -+ exle] = () + -+ hlel) — (n] + -+ ) =2~z =0,
Moreover, the points

{(} +ter)y + -+ (cf + tew)vi | =0}
all lie in X, (), i.e. ¢ +tc; = 0 for all t > 0 and all 1 < i < k. We conclude that
c; = 0, as desired.

Let Ry,..., Ry be the connected subsurfaces of ¥ obtained by cutting ¥ along
~v. Lemma 4.1 implies that there exists some dy,...,dy € R such that

v+ e = dlaRl + - dEaRZ'

Since 0Ry + --- 4+ 0Ry = 0, we can add a large positive constant F to each d; and
ensure that d; > 0 for 1 < ¢ < {. Set d = max{ds,...,d,}, and assume that the R;
are ordered such that d; = --- =d, = d and d,11,...,dy < d. Since not all the ¢;
are 0 and 0Ry + - -- + 0Ry = 0, we must have r < £. Setting R = Ry u---uU R,., the
surface R is thus a proper subsurface of X, so dR # 0. Observe that

11+ -+ epyy = dOR 4+ dry10Ry1 + - + dpORy.
Each «; occurs as the boundary of exactly two of the R;. Since d; < d for r +1 <

j < /fandc; >0 for all 1 < ¢ < k, the coefficients of all of the «; which appear in
O0R must be +1 (as opposed to —1). In other words,

OR =iy + -+,

for some 1 <4 < --- <14y < k, as desired. O

4.3. Prerequisites for contractibility

As we said at the beginning of this chapter, our main result will be that the com-
plex C,(X) is contractible. This will be proven in the next section after we discuss
some preliminary results. The heart of our proof will be an explicit deformation
retraction of C, (3) to a point; we will then deduce that C,(3) is contractible by
giving an explicit (and fairly simple) deformation retraction of é\z(E) to Cx(2). To
construct a deformation retraction of CAE(E) to a point, we will construct canonical
“straight lines” between any two points in CAE(E) This will be done via a parame-
terization of é;(E) by a set of differential forms; see the map A constructed below.
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While the entirety of this set of differential forms is not convex, it is close enough
to being convex that we can use it to get the desired “straight lines”.

Hyperbolic geometry. This proof is the one place in this book where we
will use a tiny amount of hyperbolic geometry. Recall that a hyperbolic metric is a
Riemannian metric with constant sectional curvature —1. These exist on all closed
surfaces whose genus is at least 2. Fixing a hyperbolic metric on X, the following
three facts then hold.

¢ Every nonnullhomotopic simple closed curve on ¥ is homotopic to a unique
simple geodesic.

e Any two distinct simple geodesics on ¥ intersect transversely.

e Let v and ~ be disjoint nonnullhomotopic simple closed curves on .
Assume that v and +' are not homotopic to each other. Then the geodesics
that are homotopic to v and ~' are disjoint.

See [FM12, §1.1] for this and much more.

Cleaning up curves. If~y; u---uU~; is a collection of disjoint oriented simple
closed curves on ¥ and c¢yp,...,cx € R, then ¢17y; + -+ - + cpyr is not necessarily a
positively weighted oriented multicurve : some of the ¢; might be negative, some of
the ; might be homotopic to each other (possibly with opposite orientations), and
some of the ~; might be nullhomotopic. However, by discarding the nullhomotopic
i, reversing the orientations of some of the «; (and changing the signs of the
corresponding ¢;), and collecting together the homotopic ~;, we obtain a canonical
positively weighted oriented multicurve c. We will say that c is obtained by cleaning
up c17y1 + -+ + cpyk. This definition extends in an obvious way if some of the ;
are oriented 1-submanifolds with multiple components.

Maps to circle.  Consider a smooth map f : ¥ — S'. For any regular
value p € St of f, the pullback f~!(p) is an oriented 1-submanifold of . We will
say that f represents the associated element [f~1(p)] of Hy(X;Z); this makes sense
since [f~1(p)] = [f~*(q)] for any two regular values p,q € S*. This latter assertion
follows from the fact that if A is an oriented arc of S with oriented boundary p — g,
then f~1()) is a subsurface whose oriented boundary is f~1(p) L —f~1(q). Another
way of describing [f~1(p)] is that it is the element of H;(¥;Z) which is Poincaré
dual to f*([S']) € H'(2;Z). This can be derived from the relationship between cup
products on cohomology and intersection products on homology; see, e.g., [Bre97,
§VI.12].

Weighted multicurve from map to circle. Now assume that f: ¥ — S!
represents € Hy(X;Z) and has finitely many critical values. These critical values
divide S' into arcs Ay, ..., A,. Normalize S! such that its circumference is 1. Setting
¢; = length()\;), we thus have ¢; + -+ ¢, = 1. For all 1 < i < n, let ¢; be an
arbitrary point in the interior of \; and let §; = f~!(g;). Since [§;] = z for all
1 <i < n, we have

o] + -+ cg[on] = (1 + -+ + ep)[z] = [2].

Define ¥(f) € C,(2) to be the result of cleaning up ¢161 + - - - + ¢,6,. The element
U(f) appears to depend on the choice of the ¢;; however, different choices of ¢; will
yield homotopic §;, and thus U(f) is well-defined.



4.3. PREREQUISITES FOR CONTRACTIBILITY 49

Globalizing the construction. Define F, (%, S!) to be the space of smooth
maps ¥ — S! representing x which have finitely many critical values. Give
Fo (%, S1) the C*-topology. The above construction yields a map ¥ : F, (X, S!) —
C.(%).

LEMMA 4.5. The map ¥ : F, (8, 5") — C,(E) is continuous.

PROOF. As f moves around F, (¥, S!), the critical values of f move continu-
ously around S*. The 1-submanifolds of ¥ used to define ¥(f) therefore also move
homotopically around in ¥. When two critical values come together (causing one
of the arcs used to define ¥(f) to disappear), the weight on the corresponding
submanifold of ¥ shrinks to 0. O

The following two lemmas show that ¥ is insensitive to certain deformations of its
input.

LEMMA 4.6. Letr : S — St be a rotation. Then for all f € F,(X,S') we have
U(f)=w(rof).

Proor. Obvious. (]

LEMMA 4.7. Let f; € F.(3,S) be a continuous family of maps for t € [0,1].
Assume that the critical values of fi and fy are equal for all t,t' € [0,1]. Then
U(fo) = ¥(f1)-

PROOF. Let Aq,..., A, be the arcs into which S! is divided by the common
critical values of the f;, and set ¢; = length();). For 1 < i < m, let ¢; be an
arbitrary point in the interior of \;. Finally, for 0 < t < 1 let v (¢) = f; (q:).
The key observation is that the curve v;(t) depends continuously on ¢, so v;(0) is
homotopic to v;(1). Thus

6171(0) +eet Cn'Yn(O) = 0171(1) + -+ C'rﬂ/n(mv

and the lemma follows. O

Constructing maps using one-forms. To make the above results useful,
we need a way of constructing elements of F, (¥, S'). Consider a smooth closed
1-form w on ¥ which is Poincaré dual to z € H;(X;Z). In other words,

Lw =i(xz,h)  (heH(%;2)).

For all basepoints pg € ¥, we can define a smooth map ®(w,pg) : ¥ — S* as follows.
Regard S' as R/Z. The for any g € ¥, we define ®(w,po)(¢) to be the image of §_w
in S, where a is a smooth path on ¥ from py to q. The fact that w is Poincaré
dual to z implies that the integral of w around any closed loop is an integer, so this
is well-defined. The critical points of ®(w, pg) are exactly the zeros of w.

Define Q,(X) to be the set of smooth closed 1-forms w on ¥ with the following
two properties.

e w is Poincaré dual to z € Hy(X;Z).
e The zero set of w has finitely many connected components.

Endow €, (%) with the C*-topology. The above discussion is summarized in the
following lemma.
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FIGURE 4.5. An e-strip.

LEMMA 4.8. There exists a continuous map ® : Q,(X) x ¥ — F. (3, Sh).

PrROOF. The only new assertion here is the continuity of ®, but this is obvious
from its definition. O

Changing the basepoint pg has the following effect on ®(w, po).

LEMMA 4.9. Let w € Q4(X) and po,py € . Then ®(w,pj)) = ro®(w, po), where
r: St — S' is a rotation.

PROOF. We can take r to be a rotation of S! by Saw, where « is a smooth
path on X from pj to po. O

Combining the constructions.  Define a map A : Q,;(X) — (?Z(E) by
setting A(w) = ¥(®(w,po)), where pg € ¥ is an arbitrary base point. Lemmas 4.6
and 4.9 show that A(w) does not depend on the choice of pg. The main properties
of A are contained in the following two lemmas.

LEMMA 4.10. The map A : Qy(X) — Co () is continuous.
PrOOF. An immediate consequence of Lemmas 4.5 and 4.8. (]

LEMMA 4.11. For 0 < t < 1, let wy € Q.(X) be a continuous family of 1-
forms. Assume that we can find a set {po,...,pe} of points on X with the following
properties.

e Forall0 <t <1, the set {po,...,pe} consists of exactly one point in each
connected component of the zero set of wy.

e Foralll < i</, there exists an arc a; in X connecting pg to p; such that
Sai wy = Sai wy for all 0 < ¢,/ < 1.

Then A(wo) = Alw).

PRrROOF. By construction, for all 0 < ¢ < 1 the critical values of ®(wy,pg) are
exactly the images in S' = R/Z of the set {0,§, w,...,{, wi}. The lemma thus
follows from Lemma 4.7. ([l

Example I : single curve. @ We now give the first of two examples of the
above techniques. Let v be an oriented simple closed curve on X such that [y] = x.
We will construct some w € ,(2) such that A(w) = . Assume that we have fixed a
hyperbolic metric on Y. Homotoping -y, we can assume that it is a geodesic. Param-
eterize the annulus A in polar coordinates as {(r,6) | 1 <r <3 and 0 < 0 < 27}.
For € > 0, an e-strip map around + is an embedding ¢ : A — ¥ with the following
properties.
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e The map ¢ takes the oriented “core” curve {(r,0) | r =2,0 <0 < 27} of
A to v, parameterized at constant speed.

e For all angles 0 < 0y < 2w, the map ¢ takes the oriented line segment
{(r,00) | 1 <r <3} in A to a geodesic segment of length 2e that inter-
sects v orthogonally with a positive sign. Again, this geodesic segment is
parameterized at constant speed.

See Figure 4.5. For e¢ > 0 sufficiently small these exist and are unique up to
precomposition with a rotation of A. The image A of + will be called an e-strip
around . Define y : R — R to be the function

(@)= {7 g o e 0TE0de ifee([1,3],
’u xT) = —a0
0 if z ¢ [1,3].

Thus p is a smooth nonnegative function of total integral 1 which is supported on
[1,3]. There is a smooth closed 1-form p(r)dr on A. We can therefore define a
smooth closed 1-form w on ¥ via the formulas

wla = ts(p(r)dr) and wlsma = 0.

We will call w the e-strip form dual to 7. It is clear that w represents [y] = x.
Additionally, we have the following lemma

LEMMA 4.12. With the notation as above, we have A(w) = 7.

PRrOOF. Fix a basepoint py € ¥\ A. Regarding S! as R/Z, it is then clear from
the definitions that ®(w,pg) : ¥ — St is the map

§ip(r)dr if g = u(r,0) € A with (r,0) € A,

®(w, po)(q) = {0 fad A

In particular, the only critical value of ®(w, pg) is 0, and the preimage under ®(w, po)
of a regular value ¢; € (0,1) = St is a loop of the form {c(r1,0) | 0 < 6 < 27} for
some 1 < r; < 3. This loop is homotopic to =y, so we conclude that

Aw) = U(2(w,po)) = 1- A=A,
as desired. O

Example II : multicurve. We now generalize the previous example. Let
c=c17vy1 + -+ + ¢y be an arbitrary positively weighted oriented multicurve on ¥
which represents x. Again assume that we have fixed a hyperbolic metric on ¥ and
that each +; is a geodesic. Let € > 0 be small enough that there are e-strips around
each ~; which are pairwise disjoint. For 1 <1 < k let w; be the e-strip form dual to
Vi, 80 w; represents [v;]. Finally, define w = cywy + -+ + cpwg. It is then an easy
exercise in the definitions to see that w represents c1[y1] + -+ + cx[yx]- Moreover,
we have the following generalization of Lemma 4.12.

LEMMA 4.13. With the notation as above, we have Alw) = c.

ProoOF. For 1 < ¢ < k, let A; be the e-strip around ~;. Pick a basepoint
po € ¥\ UF_| A;. Just like in the proof of Lemma 4.12, the map ®(%,pg) : & — St
takes pp to 0 € S = R/Z, takes each component of ¥\ U¥_; A; to a critical value,
and takes A; to an arc of S' = R/Z of length ¢; (starting and ending at a critical
value; observe that this arc can contain critical values in its interior). Let A1,..., A,
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be the arcs into which S! is divided by the critical values, let d; = length(};), and
let g; be an arbitrary point in the interior of \;. Define §; = ®(X,po) ~1(¢), so A(w)
is the result of cleaning up

(6) di61 + -+ dpo,.

It is clear that U7_d; Uk A

Fix some 1 < i < k. The components of §; U -+ U 4, lying in A; consist of a
set of curves each of which is homotopic to ;. From (6), each of these curves has
a weight from among the numbers di,...,d,. It is easy to see that these weights
add up to ¢;. The lemma follows. (I

4.4. Contractibility

We finally prove the following theorem of Bestvina-Bux—Margalit [BBM10)].
In its proof, we will use all of the notation introduced in §4.3.

THEOREM 4.14. Let ¥ be a closed surface and let x € Hy(X;Z) be a primitive
vector. Then C,(X) is contractible.

PROOF. The theorem has no content if the genus of X is 0 since in that case
H;(X;Z) = 0 contains no primitive vectors. If the genus of ¥ is 1, then ¥ contains no
oriented multicurves with more than one component. The complex C,(3) therefore
is a discrete set of points, one for each homotopy class of oriented simple closed
curve v with [y] = z. Theorem 2.8 says that there is at least one such curve,
and Proposition 3.24 says that the Torelli group Z(X) acts transitively on them.
However, Lemma 3.2 says that Z(X) = 1. We conclude that if the genus of ¥ is 1,
then C,(X) consists of exactly one point and is hence contractible.

We can therefore assume without loss of generality that X has genus at least 2,
which allows us to fix a hyperbolic metric on X. The proof of the theorem now has
two steps.

STEP 1. The space Cy(X) is contractible.

Using Theorem 2.8, we can find an oriented simple closed curve 7y on ¥ such
that [y9] = z. Homotoping 7y, we can assume that it is a hyperbolic geodesic. We
will construct an explicit homotopy f; : (:’;(E) — CAE(E) such that fy = id and such
that f1(c) = o for all c e (:’;(E) This construction is divided into three substeps.
In the first, we construct f; on a fixed cell X, (). This construction depends on a
parameter ¢ > 0; the second substep shows that in fact its output is independent

of €. The final substep shows how to piece together the maps on the various cells
to define f;.

SUBSTEP 1.1. Let vy be an oriented multicurve such that X, (7y) is nondegenerate.
For all € > 0 sufficiently small, we construct a homotopy f5 ; : Xp(vy) — Cx(X) such
that fs o is the inclusion and f5 ,(c) = yo for all c € X.(7).

Write v = 41 U -+ - U ;. Homotoping the ~;, we can assume that they are all
hyperbolic geodesics. For 0 < i < k, let A$ be an e-strip around ;. Choosing € > 0
small enough, we can assume that that the following hold.

e For 1 <i<j <k, wehave A7 n Aj = (.
e For 1 <4 <k, the e-strips Af and A intersect transversely as in Figure
4.6.
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E(A)

GA)

FIGURE 4.6. Left : Two transverse e-strips. Right : The arc o
crosses some of the e-strips.

For 0 < i < k, let w§ be the e-strip form dual to ;. For a point c1vy1 + -+ + cxyx
of X;(v) and some 0 <t < 1, the 1-form

(7) twy + (1 —t)erw] + -+ + (1 — t)cpwy,
represents x. Moreover, the following hold.

e For t = 0, the zero set of (7) is the complement of A{ U --- U Af.
e For 0 < t < 1, the zero set of (7) is the complement of A§ U --- U Af
(this follows from our assumptions on the intersections of A§ and A for
1<i<k).
e For ¢t = 1, the zero set of (7) is the complement of A§.
In particular, the zero set of (7) has finitely many components. The upshot of all
of this is that (7) is an element of 2, (%) for all 0 < ¢ < 1. We can therefore define
a function f5 ;@ Xy (y) — C.(X) via the formula

foleim + -+ aer) = Altwg + (1 = t)erw] + - + (1 — t)epwy).

Lemma 4.10 implies that f5 ; is continuous (both as a function and as a homotopy).
Also, it follows from Lemma 4.13 that f5 ; is the inclusion and f5 ;(c) = 7o for all
c € Xy (7).

SUBSTEP 1.2. Let v be an oriented multicurve such that X, (7) is nondegenerate
and let e,¢' > 0 be small enough that f5, and f;lt are defined. Then f5 , = f;lt

Without loss of generality, ¢ < e. As in Substep 1.1, write v = v U -+ U Y4
with 7; a hyperbolic geodesic for 1 < i < k. Fix some ¢17y1 + -+ + cxyr € X ()
and some 0 < tg < 1. Our goal is to show that

(8) Fyioleim + -+ epv) = fy (e + -+ crve).

To simplify our notation, we will deal with the case where 0 < ty < 1; the other
cases are similar.

We now set up some notation. For 0 < i < k let A be an e-strip around ;.
Also, for 0 < i < k and € < e < € let w§ be the e-strip form dual to «;. Finally, for
€ <e<elet

w® =twi + (1 —t)eqwi + -+ + (1 — t)cpwy.

The assertion of (8) is thus equivalent to the assertion that A(w€) = A(w®).
We will prove this using Lemma 4.11, whose conditions we now verify. First, by
construction the differential forms w® depend continuously on e. Let {pg,...,pe}



54 4. THE COMPLEX OF CYCLES

be a set of points on X that contains exactly one point in the interior of each
component of

k
o\ 45
i=0

Clearly {po, ..., p¢} also contains exactly one point in the interior of each component
of

2\ 0 Ae
i=0

for each ¢ < e < e. As we said in Substep 1.1, these are exactly the components
of the zero set of w® (this is where we use the fact that 0 < tg < 1). Finally, for
1 < i < /¢ let a; be any smooth arc from py to p; that crosses the ; transversely.
Letting %(ai,fyj) be the algebraic intersection number between the arc a; and the
simple closed curve 7;, it is clear that for 1 <4 </ and € < e < € we have

k

f W = tiai, 7o) + 31— t)esilas, 7).
(o7} j:1

See Figure 4.6. As this does not depend on e, the conditions of Lemma 4.11 are
satisfied and we conclude that A(w®) = A(w'), as desired.

SUBSTEP 1.3. We construct a homotopy f; : Co(X) — Co() such that fo = id
and such that f1(c) = do for all c € C,(X).

If v is any oriented multicurve such that X, (v) is nondegenerate, then using
Substep 1.2 we can write f; : X, (y) — Cy (%) for < t» where € > 0 is an sufficiently
small number. To show that the f, . piece together to give a function f; : CAI X)) —
C;(E), it is enough to show that if v and « are any oriented multicurves such that
Xy (v) and X, (7') are nondegenerate, then f,; and f, , agree on the intersection
of X,(7) and X,(y') in C,(X). If this intersection is nonempty, then it is exactly
Xz (7"), where 4" is the oriented multicurve consisting of all oriented simple closed
curves that appear in both v and +’. But it is clear from their definitions that if
€ > 0 is small enough that all three of f5; and f7, ; and fﬁ,ﬁt are defined, then all

three of them agree on X, (v").
STEP 2. The space CAE(E) deformation retracts to C,(X) < (:’;(E)

Consider a point ¢ = ¢1y1 + -+ + Y In é\I(Z) Discarding some the the ~;,
we can assume that ¢; > 0 for all 1 < < k. We will write down a canonical (i.e.
independent of all choices) path from ¢ to C,(X). It will be clear that this path
depends continuously on ¢ and that it is the constant path if ¢ € C,(X).

If ¢ ¢ C,(X), then the cell X,() is not reduced. Lemma 4.4 therefore implies
that there exists some subsurface R of ¥ such that

OR =iy + -+,
for some 1 < iy < --- <1, < k. Let Ry,..., Ry be all such subsurfaces. It follows
that
6R1+---+(?Rq =dim + -+ dpk
for some d; = 0 (not all 0). Setting T' = min{c;/d; | d; > 0}, we have a path

t—c—t(0R1 +---+ 0Ry)
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in C}(Z) defined for 0 <t < T. At the endpoint of this path, the coefficient of at
least one of the 7; has become 0. Repeat this process until ¢ ends up in C,(¥). O






CHAPTER 5

Stabilizers of simple closed curves

Let v be an oriented nonseparating simple closed curve on 3,. This chapter is
devoted to the stabilizer (Z,) of v in Z,. Most of the hard work here is devoted
to understanding the symplectic representation of the stabilizer (Modg), of v in
the mapping class group. This lands in the stabilizer in SpQQ(Z) of the homology
class [y] € Hi(X4;Z), and §5.1 is devoted to understanding this stabilizer subgroup.
Next, in §5.2 we discuss the mapping class group, and finally in §5.3 we discuss the
Torelli group. The results in this chapter are due to van den Berg [vdBO03] and
Putman [Put07].

5.1. Stabilizers in the symplectic group

Pick a symplectic basis {a1,b1,...,aq,b,} for Hi(X4;Z). Using this basis, we
will identify Hj(¥,;Z) with Z29. The goal of this section is to understand the
stabilizer subgroup (Spy,(Z))s, of by.

Special linear group. As motivation, we begin by discussing an analogous
stabilizer subgroup in SL,(Z). Let {€},...,€,} be the standard basis for Z". We
then have

0
(SLo(Z))e. = { A | | A€ SLy_1(Z), c1,...,cn1 € 7).
0
C1 - Cp1 ‘ 1
This decomposes as
(9) (SLn(Z))e, = 2"~ % SLy—1(Z),
where SL,_1(Z) is embedded in SL,(Z) in the usual way and
0
Zn_lz{ I |Cl7...,Cn_1EZ}.
0
€1 -+ Cp1 ‘ 1

The action of SL,,_1(Z) on the abelian group Z"~! is the obvious one. The associ-
ated projection p : (SL,(Z))z, — SL,—1(Z) can be described as follows. Consider
some ¢ € (SL,(Z))z,. For v e Z""1, we have ¢(v) = v’ + pé, for some v’ € Z"~1
and p € Z. We then have that p(¢)(v) = v’. From this point of view, we see that
the kernel Z"~! of p is exactly the subgroup of all ¢ € (SL,,(Z))z, such that for all
ve Z™" 1 we have ¢(v) = v + pé, for some p € Z.

57
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Symplectic group. We now return to the symplectic group. We begin with
the following lemma. Identify Z2(9—1) with the subgroup {ai,b1, ... ,@g—1,bg_1) of
729,

LeMMA 5.1. Consider ¢ € (Spayy(Z))p,- Then for all v € 7291 we have
¢(v) = v’ + pby for some v’ € 7261 gnd pe Z.

PROOF. Write ¢(v) = v’ + p'a, + pb,, where v/ € Z*9~1) and p,p’ € Z. We
then have

0 =i(v,by) = i(d(v), d(bg)) = (v + p'ag + pby, by) = p',
as desired. 0

We now define a homomorphism 7 : (Spy,(Z))s, — Spay—1)(Z) as follows. Consider
¢ € (Spyy(Z))s, and v € 729~ . Using Lemma 5.1, write ¢(v) = v’ + pb, with
v’ € Z*9~Y and p € Z. We then define 7(¢)(v) = v'. It is easy to see that 7 is
a homomorphism whose image lies in Spy(,_1)(Z). Define K, = ker(w). Thus K,
is the subgroup of (Spy,(Z))s, consisting of all ¢ € (Spy,(Z))s, such that for all
v e Z26=1  we have o¢(v) = v+pby for some p € Z. We have a short exact sequence

g

l— K, — (szg(Z))bg — Sp?(gfl)(Z) —1

which splits via the standard inclusion Spy,_1)(Z) <> (Spoy(Z))s,. We thus have
proved the following proposition.

PROPOSITION 5.2. If {ay,b1,...,a4,by} is a symplectic basis for Hy(34;7Z),
then we have (Spy,(Z))s, = Kg % Spy(y_1)(Z).

The kernel. Unlike in SL,(Z), the kernel group K| is not abelian. Rather,
we will soon see that it is 2-step nilpotent. The key to this is the following lemma.

LEMMA 5.3. Consider ¢ € K,. We then have ¢(ay) = w + a4 + gby for some

w e 229~ and q € Z. Moreover, for ve Z*9~Y we have ¢(v) = v + i(v, w)b,.

PROOF. We can write ¢(ay) = w+q'ag+ by for some w € 729=1 and ¢, ¢ € Z.
Then

1= g(aga bg) = %(d)(ag)a ¢(bg)> = i(w + qlag + qbg»bg) = q/7
as desired. For the second part of the lemma, we know by the definition of K, that
for v e Z*9~1) we have ¢(v) = v + pb, for some p € Z. We then have

0=1(v,a,) = i(dp(v), d(ag)) = i(v + pby, w + a, + gby) = i(v,w) — p,
so p = i(v,w). O
For w € Z*9~Y and ¢ € Z, define ¢, , : Z?9 — 7?9 via the formulas

Gw,glag) =w+ag+gby and ¢y q(by) = by
and
Guq(v) = v+i(v,w)by  (veZ29),
It is clear that ¢, 4 € K4, and by Lemma 5.3 every element of K| is of the form ¢, 4
for some unique w € Z2(9~Y and g € Z. We now make the following calculation.
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LEMMA 5.4. For wy,ws € Z29~Y and q1, g2 € Z, we have

¢)w17q1 ¢w2aQ2 = (bwl +wa,q1 +q2+%(w2,w1) :

Proor. Using the definition of the ¢, q,, we calculate as follows.

¢w1,Q1 (¢w27QQ (ag)) = (bwhth (w2 +ag+ qug)
= (ws + %(wg,wl)bg) + (w1 + ag + q1bg) + goby
= (w1 +w2) +ag + (¢1 + g2 + %(wz,wl))bg.

The lemma follows. O
We can now prove the following.

PROPOSITION 5.5. There is a nonsplit central extension
1—2— K, — 297D 1,
where the central Z consists of {¢o,q | q € Z}.

Proor. Using Lemma 5.4, we can define a homomorphism 7 : K, — 72(9—1)
via the formula 7(¢y, 4) = w. The kernel of 7 is exactly {¢o, | ¢ € Z}, which is
in the center of K, by Lemma 5.4. To see that the resulting central extension is
not split, it is enough to observe that K, is not abelian, which is immediate from
Lemma 5.4. O

REMARK 5.6. One might thing that a splitting Z2(9—1 — K, can be defined
by the formula w — ¢, 0. However, the formulas in Lemma 5.4 show that this is
not actually a homomorphism. For instance,

(bblyo(baho = ¢U«1+bl71'
5.2. The symplectic representation of Mod, ,

We now turn to the mapping class group. Fix g > 2, and let v be an oriented
nonseparating simple closed curve on ¥.

Cut open surface. We begin by recalling the notation and results from §1.4.
Recall that ¥, ., is the surface obtained by cutting 3, along v and Mod, - is the
mapping class group of ¥, . Letting {1, 02} be the boundary components of ¥ -,
Lemma 1.20 says that there is a short exact sequence

(10) 1— Z — Mod, , — (Modg), — 1,
where Z is generated by Tp,Tj, ! Recall that a ~v-splitting surface in Yg~ 15 a

subsurface S of ¥, such that X, ,\S is a 3-holed sphere two of whose boundary
components are {01, 02}. Fix a ~-splitting surface S. Letting 3, , be the result of
gluing a disc to ¥, 4 along 01, Lemma 1.21 says that there is a decomposition
(11) Mod, , = m1 (US,,) x Mod(S).

One should view (11) as being analogous to Proposition 5.2 above.

Symplectic representation. The map H; (%, ;Z) — Hi(X4; Z) induced by
the map X, , — X, that glues ¢; and 02 back together is injective, and we will iden-
tify Hq (24 4; Z) with its image in H; (£4;Z). Also, the map H;(S;Z) — Hq(X,4;2Z)
induced by the inclusion S «— 3, , is injective, and we will identify H;(S;Z) with
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FIGURE 5.1. The various surfaces involved in the proof of Lemma 5.7

its image in Hy(X, 4;Z) < Hq(X4;Z). Choose a symplectic basis {a1,b1,...,a4,b4}
for Hy(X4;Z) such that by = [v] and such that {a1,b1,...,a4-1,bg—1} is a symplec-
tic basis for Hy(S;Z) < Hi(X4;Z). Composing the surjection Mody , — (Mody)-
with the symplectic representation Mod, — Sp,,(Z), we obtain a homomorphism

4+ Mody , —> (Sp, (Z))s,.

Semidirect product decompositions and the symplectic representa-
tion. Proposition 5.2 says that there is a decomposition

(12) (szg(Z))bg =Ky % sz(gq)(Z)

Our first result says that ¢ “respects” the semidirect product decompositions (11)
and (12).

LEMMA 5.7. We have w(m(UEA]gﬁ)) < Ky and (Mod(S)) = Spy(y_1(Z).

PROOF. The fact that ¥(Mod(S)) < sz(gq)(z) is an immediate consequence
of the fact that the set {a1,b1,...,a4-1,045—1} is a symplectic basis for H;(S;Z) <
Hy (X4 Z).

We now prove that w(m(Uigﬁ)) c K,. To keep the various surfaces con-
structed in this part of the proof straight, we recommend that the reader consult
Figure 5.1. We showed in Lemma 5.1 that (Spy,(Z))s, preserves the subspace
Hi(X4,;2Z) = {a1,b1,...,ag9-1,bg—1,by). By definition, K, is the group consist-
ing of elements of (Spy,(Z))s, that act trivially on the quotient of Hi (3, ;Z) by
(bgy = [02]. Letting T be the surface obtained by gluing a disc to X, along 0s,
the map Hy(2,.+;Z) — H1(T; Z) induced by the inclusion T' — X, . is a surjection
whose kernel is spanned by [d2]. There is a map Mod, , — Mod(T") that extends
mapping classes over the glued-in disc by the identity, and by what we have said it
is enough to show that the image of ﬂl(Uigﬁ) < Mody,, in Mod(T') acts trivially
on Hy(T;Z) (i.e. lies in Z(T)).

Letting T be the result of gluing a disc to 1" along 01, there is a Birman exact
sequence

1 — m (UT) — Mod(T) —> Mod(T) —> 1;
see Theorem 1.17. Clearly the image of the disc-pushing subgroup 71 (U igﬁ) in
Mod(T') lies in the disc-pushing subgroup 71 (U JA“), so it is enough to show that
wl(Uf) < I(T). We showed this in Theorem 3.31; recall that the key point is
that the inclusion map T — T induces an isomorphism H;(T;Z) =~ Hl(f; Z), so
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the symplectic representation of Mod(T) factors through Mod(7). The lemma
follows. O

Disc-pushing and the symplectic representation. We now investigate
the restriction of the symplectic representation ¢ : Mody , — (Spy,(Z))s, to the
disc-pushing subgroup 1 (U3, - ), which Lemma 5.7 says lands in K,. The group
wl(Uigﬁ) fits into an exact sequence

(13) 1—Z—m(US,,) — m(Z,) — 1,

where the kernel Z is generated by the loop around the fiber. Recall from §1.4 that
the loop around the fiber corresponds to the mapping class 15, € Mod, ..

The following lemma says that the exact sequence (13) is compatible with the
one given by Proposition 5.5. In its statement, we are identifying Hl(igﬁ) with
H,(S;7Z) = Z*(9=1) using the fact that ig,v deformation retracts to S.

LEMMA 5.8. We have a commutative diagram

(14) 1l ——Z——m(US,,) — m(Ey,) — 1
Ll F
1 Z K, 727 — 1

where 1) is the abelianization map.

Proor. We will use the notation ¢, 4 introduced in §5.1. The surjection
Mody 4 — (Mody), from (10) takes T, € Modg . to T, € Mod,. Since [y] = by,
Lemma 3.4 says that T, acts on H;(X4;Z) as

h h+i(by, h)bg.
This is exactly the element ¢o ;1 of Ky, which generates the kernel of the exact

sequence

1—7Z—K, — 72970 1.

It follows immediately that we have a commutative diagram like (14); all that re-
mains to check is that the induced map v : Wl(igﬁ) — 72971 is the abelianization
map.

Since ﬂl(igﬁ) is generated by simple closed curves, it is enough to verify that
ifde Fl(igﬁ) is a simple closed curve, then ¥(§) = [§]. To do this, it is enough to
find some lift 0 € Wl(Uigﬁ) of § and check that ¢(5) = ¢[5],0, i-€. that

$(6)(ag) = [8] + ay-

This is immediate from Figure 5.2. (]

COROLLARY 5.9. The homomorphism 1 : Mody o — (Spa,(Z))s, is surjective.

PRrROOF. Immediate from Lemmas 5.7 and 5.8. O
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F1GURE 5.2. The bottom figures illustrate the effect of dragging
the boundary component around the simple closed curve . The arc
1 is chosen such that when the two boundary components are glued
together, the two endpoints of u match up to form an oriented
simple closed curve homologous to ag4. As shown, dragging the
boundary component around § replaces @ with an arc homologous

o [u] + [9].

5.3. Stabilizers in the Torelli group
We finally discuss the Torelli group. Like in §5.2, fix some g > 2 and some

oriented simple closed nonseparating curve 7y on 3.

Torelli on the cut-open surface. Let Z, . be the kernel of the symplectic
representation 1) : Mod, , — (Spa,(Z))[,] discussed in §5.2. We then have the
following. Let {01, 02} be the boundary components of 3 .

LEMMA 5.10. There is a short exact sequence
1 —7Z—15, — (Iy)y — L

PROOF. An immediate consequence of Lemma 1.20. O

Semidirect product decomposition. We now come to the following theo-
rem, which is the main result of this chapter. Versions of it were originally proved
by van den Berg [vdB03, Proposition 2.4.1] and Putman [Put07, Theorem 4.1].

THEOREM b5.11. Fiz g = 2, let v be an oriented simple closed nonseparating
curve on Xg4, and let S be a ~y-splitting surface in X4 . Letting igﬁ be the result
of gluing a disc to one of the boundary components of ¥4, and m = Wl(igﬁ), we
then have a decomposition

Ly~ = [m, 7] xI(S).

PrROOF. Lemma 1.21 says that there is a decomposition
Mod,, = 11 (US,~) x Mod(S).
Lemma 5.7 then implies that
Ty = ker(d] . s, ) X ker(¥]noacs))-



5.3. STABILIZERS IN THE TORELLI GROUP 63

FIGURE 5.3. On the left is a curve ¢ € [7, 7] that can be realized
by a simple closed separating curve. The next figure shows a par-
ticular lift 0 = Tng(;;l of 4 to wl(igﬁ); in fact, this is the element
Pushy discussed in §1.4. We claim that Tng(;;lTal € Z,. This

is equivalent to saying that T, T, 1T,;1 maps to an element of Z,
when ¢ and 0 are glued back together. As is shown in the right
most figure, the image of 75, T;.'T5, in Mody is T5,T; *T,, which
lies in Z; since T, is a separating twist and T, T, = T,Tj, Lis
a bounding pair map. The Tj, is necessary here since T, is not
a separating twist in Z, even though d, does separate 3, . The
problem is that d5 is not nullhomologous in X ..

By definition we have ker(¢|yioq(sy) = Z(5). Also, Lemma 5.8 implies that the pro-
jection map wl(Uflgw) — 7 takes ker(1/1|m(U§q 7)) isomorphically onto the kernel

of the abelianization map © — Z2(9~1 i.e. onto [, 7]. The theorem follows.  [J

Examples of elements. Let the notation be as in Theorem 5.11. The group
[7, 7] is embedded in (X, ) in a somewhat complicated way. Consider some
curve ¢ € [m,w]. The proof of Theorem 5.11 shows that the associated element of

1, can be obtained as follows. Let

e ﬂl(UEA]gW) < Mody

be any lift of
dem = 7T1(297,Y).
Then there exists a unique k € Z such that 5T§1 € I, ~; this is the element of Z, ,

corresponding to 4. This takes a particularly simple form when § can be realized
by a simple closed separating curve; see Figure 5.3.

Separating twists and bounding pair maps. We will say that an element
of Z, - is a separating twist (resp. a bounding pair map) if it maps to a separating
twist (resp. a bounding pair map) in Z, € Mod, when the boundary components
01 and 02 of X, are glued back together. We will also say that T61T0_21 € Ly
is a bounding pair map even though it maps to the identity in Z,,. In the ex-
ample discussed in Figure 5.3, the element of Z, ., corresponding to the element
0 € [m, 7] that can be realized by a separating simple closed curve is the product of
a separating twist and a bounding pair map in Zj .






CHAPTER 6

The genus 2 Torelli group

In this chapter, we use the complex of cycles from Chapter 4 to prove Theorem
3.14, which says that Z, is an infinite-rank free group. This theorem is due to
Mess [Mes92], but the proof we give is due to Bestvina-Bux-Margalit [BBM10].
We begin in §6.1 by discussing the topology of the complex of cycles on a genus 2
surface. Next, in §6.2 we prove a special case of the main theorem of Bass—Serre
theory. We finally Theorem 3.14 in §6.3. This proof depends on a lemma whose
proof is postponed until §6.4.

6.1. The complex of cycles in genus 2

This section is devoted to the structure of the complex of reduced cycles on a
genus 2 surface.

Global topology. We begin with the following lemma.

LEMMA 6.1. Let © € Hy1(X2;Z) be a primitive element. Then the complex
C(X2) is a tree.

PrOOF. Theorem 4.14 says that C,(X3) is contractible, so it is enough to prove
that C,(X2) is 1-dimensional. Let 7 be an oriented multicurve on ¥ such that
Xz () is nondegenerate and let the components of ¥y cut along v be Ry,..., Ry.
Corollary 4.2 says that X, () is (¢ — 1)-dimensional, so it is enough to show that
¢ < 2. Clearly none of the R; are closed surfaces. Also, none of the components of
are nullhomotopic, so none of the R; are homeomorphic to a 1-holed sphere. Finally,
no two components of  are homotopic to each other (ignoring orientations), so none
of the R; are homeomorphic to 2-holed spheres. The upshot is that x(R;) < —1 for
1 <4</ Forl<i<j</theintersection R; N R; is a collection of circles. Since
x(S1) = 0, we conclude that

=2 =x(Z2) = x(B1) + - + x(Re) < =4
i.e. that £ < 2, as desired. O

Realizing homology classes by multicurves. Our next goal is to study
the action of the genus 2 Torelli group on the complex of reduced cycles. Our main
result (Lemma 6.7 below) says that the quotient of the complex of reduced cycles
on a genus 2 surface by the Torelli group is also a tree. We begin by describing
which collections of homology classes can be realized by nonseparating multicurves.
Here we work on an arbitrary genus g surface. A collection {v1,..., v} of elements
of Hy(X4; Z) is unimodular if it is a basis for a direct summand of Hy(34;Z) = Z29
and isotropic if i(v;, vj) = 0 for all 1 <4,j < k. See Figure 6.1 for a picture of the
curves in the lemma below.

65
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FIGURE 6.1. On the left is a collection {y1, 72} of disjoint oriented
simple closed curves whose union does not separate the surface.
On the right is how to complete this to a geometric symplectic
basis.

LEMMA 6.2. For some g > 1, let {vy,..., v} be a collection of distinct elements
of Hi(X4;Z). Then there exist disjoint oriented simple closed curves {vi,...,Vk}
on X, such that v1 U --- Uy does not separate X, and such that [v;] = v; for
1 <@ <k if and only if the v; are unimodular and isotropic.

PROOF. Assume first that such curves {vi,...,7x} exist. Since the ~; are
disjoint and 1 U - - - U 74 does not separate ¥4, we can find oriented simple closed
CUIVES Yit1,---57g,01,--.,0g on Xy such that {y1,01,...,74,04} is a geometric
symplectic basis (see Figure 6.1). This implies that {[v1],[01],--.,[Vq], [dg]} is
a symplectic basis for Hy(X4;Z). It follows immediately that {[v1],...,[]} =
{v1,..., vk} is a set of elements which is unimodular and isotropic.

Now assume that {vi,..., v} is a set of elements of Hy(X4;Z) which is uni-
modular and isotropic. Since any symplectic basis can be realized by a geomet-
ric symplectic basis (Proposition 2.10), it is enough to prove that there exist
UVkt1s .-, Vg, Wi, ..., Wy € Hi(X4;Z) such that {vy,w1,...,vg,wy} is a symplectic
basis. Let X < H;(X,;Z) be the span of the v;. Since the v; are unimodular, we
can find X’ < Hy(X4;Z) such that H1(X4;Z) = X @ X'. For 1 < i < k, define a
linear map ¢; : H1(X4;Z) — Z via the formulas

¢ilx» =0 and ¢;(v;) =1 and ¢;(v;) =0 for j # 1.

Since i(-,-) is a symplectic form (Lemma 2.1), we can find elements wy, ..., w; €
H;(2,;Z) such that for 1 < i <k, we have ¢;(u) = i(u, w;) for all u e Hy(X,;Z).
Let Y be the span of {vq, w1, ..., vk, wg}. Define a homomorphism ¢ : Hy (X4;Z) —
72* via the formula

Y(u) = (i(v,u),i(wy,u), ..., i(vk,w), i (wy, ).
Clearly v takes Y isomorphically onto Z2*. Defining Z = ker(¢)), we obtain that
Hi(24;Z) @ Y @ Z. It is easy to see that i(-,-) restricts to a symplectic form
on Z, so we can find a symplectic basis {vpi1,Wkt1,...,04,wy} for Z. The set
{vi,w1,...,vg,wy} is then the desired symplectic basis for Hy (X4; Z). |

Vertices of quotient. We continue to work on an arbitrary genus g surface.
If x € Hi(X,;Z) is a primitive element, then Lemma 4.3 says that the vertices of
Cx(X,) are exactly the points ¢+ - -+ CpYk, Where v = 1 U- - - U7y is an oriented
multicurve that does not separate X, and cy,...,c, are positive integers such that

r=ci[n]+- -+ cx[]

Proposition 3.24 implies that two vertices c1y1 +- - - +cxy, and ¢iy) + - - - + ¢y Of
Cx(X,) are in the same Z,-orbit if and only if k = k&’ and [v;] = [v;] and ¢; = ¢} for
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FIGURE 6.2. On the left are three nonseparating simple closed
curves {v1,72,73} on Xy that are pairwise disjoint and nonhomo-
topic. Their union separates Yo into two subsurfaces S; and Ss.
On the right are the two curves § and ¢’ constructed in the proof
of Lemma 6.5.

1 < < k. Setting v; = [;] for 1 < i < k, we denote this orbit by the formal symbol
c1fvr]+- - -+ cgor]. We will say that & is the size of the vertex ci[v1] +- - - +cg[vg]-
Combining these observations with Lemma 6.2, we deduce the following.

LEMMA 6.3. For g = 1, fir some primitive element v € Hi(X4;Z). Then the
vertices of Cy(X4)/Zo are the formal symbols c1[v1] + - - - + cx[vg], where ci, ..., ck
are positive integers, the set {v1,...,vr} is a unimodular and isotropic set of ele-
ments of Hi(X4;Z), and x = civ1 + - - + c V.

Edges in genus 2. We now describe the edges of the quotient of the complex
of reduced cycles by the Torelli group in genus 2.

LEMMA 6.4. Let x € Hi(32;Z) be a primitive element and let c1[v1] + caf[vz]
be a vertex of C;(X2)/Zo of size 2. Order the v; such that ¢ = co. Then there
are exactly three edges containing ci[vi] + co[va]. Their other endpoints are (c1 —
co)[vr] + e2vr + v2] and (c1 + c2)[va2] + c1[vr — v2] and (c1 + c2)[vr] + e2]va — v1].

Before we prove Lemma 6.4, we need two auxiliary lemmas.

LEMMA 6.5. Let v1 U 2 U 73 be an oriented multicurve on Yo. Assume that
none of the ~y; separate ¥o. Then the symplectic representation 1 : Mody — Sp,(Z)
restricts to an isomorphism from the stabilizer subgroup

I'={feModz | f(vi) =7 for 1 <i<3}
to the stabilizer subgroup
G ={feSps(Z) | f([i]) =7 for 1 <i<3}.

PrOOF. An Euler characteristic argument similar to the one that appeared in
the proof of Lemma 6.1 shows that v; U y2 U 3 separates g into two subsurfaces
S; and Ss, each of which is homeomorphic to a 3-holed sphere (see Figure 6.2).
For j = 1,2 we have Mod(S;) = Z3 with generators {T},,T,,,T,,} (this is an easy
exercise; see [FM12, §3.6.4] for details). It follows that I' =~ Z3 with generators
{T’Yl ) T’Yz’ T73 }

As in Figure 6.2, pick disjoint oriented simple closed curves d and ¢’ on ¥s such
that ¢ (resp. ¢’) intersects y; and 72 (resp. 2 and 73) each once. Orienting ¢ and
0" appropriately, we can arrange for {[y1], [8], [13], [0’]} to be a symplectic basis for
H;(X2;Z). To keep our notation from getting out of hand, define

a; =[y] and by =[6] and az=[y3] and by =[d].
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Consider f € G. By definition, we have f(a1) = a; and f(az) = az. Since
i(f(a1), f(b1)) = 1 and i(f(az), f(b1)) = 0, we must have

f(b1) = b1 + c1a1 + a9
for some c1, co € Z. Similarly, we must have

f(b2) = b2 + dra;s + daas
for some dy,ds € Z. We then have

0 =i(f(b1), f(b2)) = —di + c2,

ie. di = cy. Define ¢ : G — Z? by ¢(f) = (c1,co,ds). It is easy to see that
1 is a homomorphism, and by construction the kernel of ¢ is trivial, i.e. ¢ is an
isomorphism.

It is enough now to prove that

{¢ © w(T'y1)v¢ o w(Tv2)7¢O w(ng)}

is a basis for Z3. First, we have
T’Yl (bl) = b1 + ay and T71 (bg) = b27

so pop(Ty,) = (1,0,0). Similarly, we have po)(T,) = (0,0, 1). Finally, as is clear
from Figure 6.2 we have [y3] = eja; + eqas for some eq, ez € {—1,1}. It follows that

T,,(b1) = b1 + a1 + eresas and T, (bs) = by + e1e2a1 + as,
so ¢po)(Ty,) = (1,e1e2,1). The lemma follows. O

LEMMA 6.6. Let y1 U y2 U 7y3 and ¥; U ¥4 U ~4 be two oriented multicurves on
Yo. Assume that none of the ~y; or ~yi separate o and that [v;] = [vi] for 1 <i < 3.
Then there exists a unique f € Iy such that f(v;) = ~; for 1 <i < 3.

ProOF. Just like in the proof of Lemma 6.5, the multicurve v1 U 72 U 73
separates Yo into two subsurfaces S7 and Ss, each of which is homeomorphic to a
3-holed sphere (see Figure 6.2). Order the S; such that S; lies to the right of ~;.
Similarly, v] U ¥4 U 4 separates Yo into two subsurfaces S7 and S5, each of which
is homeomorphic to a 3-holed sphere, and we order the S! such that S] lies to the
right of v]. The subsurface S; and S} give homologies showing that

[v1] + ea[va] +e3[v3] =0 and [v] + e5[va] + es[v3] = 0

for some ey, e3,¢e5,es € {—1,1}. Since [y2] = [¥4] and [y3] = [+4], we see that
es = e and e3 = ef. In other words, for 1 < ¢ < 3 the orientations of v; and
the boundary of Sy agree/disagree exactly when the the orientations of 7, and the
boundary of S} agree/disagree. The classification of surfaces trick thus say that
there exists some mapping class f’ € Mody such that f/(v;) =~} for 1 <1i < 3.
Any f € Mod; satisfying f(v;) = ~} for 1 < i < 3 can be written f = f'h,
where h € Mod, is a mapping class that fixes 7; for 1 < i < 3. By construction,
the image f of f/ in Sp4(Z) fixes [y;] for 1 <4 < 3. Lemma 6.5 therefore says that
there exists a unique h € Mods; that fixes «; for 1 < ¢ < 3 such that the image of
h in Sp,(Z) is (7/)_1. This implies that there exists a unique f € Mod, satisfying
f(v:) =~} for 1 < i < 3 such that the image of f in Sp,(Z) is trivial, i.e. such that
f e O
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FIGURE 6.3. Realizing the four possible homology classes for the
third curve -3 in the proof of Lemma 6.4. As in that proof, we
have & = ¢1[11] + c2[12]. Below each configuration of curves is the
associated cell of CAw(Zg). The upper left hand configuration gives
a non-reduced cell.

Proor oF LEMMA 6.4. Let 1 U 72 be an oriented multicurve such that v; =
[v1] and va = [v2]. Using Corollary 4.2, the edges of C,(¥2)/Z> that contain
c1vr] + eofJua] are exactly the Zs-orbits of nondegenerate cells X, (v) such that
v is a multicurve that separates ¥y into two components and contains v; U 7s.
Such multicurves have three components 71 U 72 U 73, and Lemma 6.6 says that
their Zy-orbits are determined by [v3] € Hi(32;Z). Moreover, since y; U 72 U 73
separates Yy into two components, we must have [y3] = e1[y1] + e2[72] for some
signs ey, ey € {—1,1} (just like in Figure 6.2). As is shown in Figure 6.3, all four
possibilities are actually realized. The cell with [y3] = —[y1] — [y2] is not reduced,
and the other three edges are exactly the edges described in the statement of the
lemma. (]

The quotient is a tree. We finally come to the following lemma.

LEMMA 6.7. Let © € Hy(X2;Z) be a primitive element. Then C.(X2)/Zs is a
tree.

PrOOF. By Lemma 6.3, the vertices of C;(32)/Z are exactly [z] and ¢1[v1] +
cofJva], where vy,v9 € Hy(X2;7Z) are unimodular and isotropic and ¢, co € Z are
positive and satisfy

T = C1V1 + C2V2.

Say that the height of [z] is 1 and that the height of ciffvi] + caffve] is ¢1 + ca.
There is thus a unique vertex [z] of height 1. Also, examining the edges given in
Lemma 6.4 we see that for a size 2 vertex c;[u1] + cofJva] of C(22)/Za, there is a
unique edge coming out of ¢;Jv1] + co[ua] which ends at a vertex of smaller height.
The other two edges coming out of ¢1Jv1] + c2]vz] end at vertices of larger height.
This immediately implies that C,(X2)/Zs is a tree. Indeed, assume that p1,...,pk
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are vertices of C,(X2)/Zs such that

Po—PpP2— " —Dk
is an embedded loop. Thus py = pj and p; # p; for 0 < 4,5 < k with {7, 7} # {0, k}.
Choose 1 < ¢ < k such that the height of p, is maximal among the heights of the p;.
Then the heights of pyy+; and ps—; (indices taken modulo k) are strictly less than
the height of py, which is impossible. ([l

6.2. A little Bass—Serre theory

Bass—Serre theory is the study of group actions on trees. We will need a very
special case of it. Two classic sources for the general case are the book [Ser80]
by Serre and the long survey [SWT79] by Scott—Wall. Our approach is close to the
combinatorial techniques of [Ser80]; the paper [SW79] is more topological. All
group actions on simplicial complexes in this section are assumed to be simplicial.

Strict fundamental domains. Consider a group G acting on a simplicial
complex X. A strict fundamental domain for the action of G on X is a subcomplex
D of X such that for all simplices o of X, there is a unique simplex ¢’ of D in the
G-orbit of . If D is a strict fundamental domain for the action of G on X, then
the following two things hold.

e The group G acts without rotation on X, that is, for all simplices o of
X, the stabilizer subgroup G, of o stabilizes o pointwise. This implies
in particular that X/G is a cell-complex whose cells are exactly the G-
orbits of simplices in X. We remark that the quotient spaces of groups
acting without rotations on simplicial complexes need not be simplicial
complexes in general; see the remark after the second example below.
e The projection map X — X /G restricts to an isomorphism D =~ X /G of
cell complexes.
Here is an example and a non-example. In both of these examples, R is triangulated
by placing a vertex at each integer.

EXAMPLE 6.8. The infinite dihedral group
Dy ={(s,t|s*=1,stst =t71)
acts on R via the formulas
s(x) = —x and tz)=x+2

for x € R. The edge [0,1] is a strict fundamental domain for this action. Observe
that the stabilizers of the vertices 0 and 1 are both isomorphic to Z/2, with the
former generated by s and the latter generated by ts. Also, the stabilizer of the
entire edge [0, 1] is trivial.

EXAMPLE 6.9. The group Z = {s |) acts on R via the formula
s(z)=x+1

for £ € R. There is no strict fundamental domain for this action. Indeed, the
quotient R/Z is a circle S, and no subcomplex of R is homeomorphic to S?.

REMARK 6.10. The above action of Z on R is without rotations. While the
quotient R/Z is a cell complex with a single vertex and a single edge, it is not a
simplical complex.
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FIGURE 6.4. Illustration of Step 1 in the proof of Theorem 6.12,
which asserts that p is surjective. On the top is the edge-path in
the tree T', and on the bottom is the projection of this path to the
strict fundamental domain D.

Existence of strict fundamental domains. The following lemma charac-
terizes which group actions on trees have strict fundamental domains.

LEMMA 6.11. Let G be a group acting without rotations on a tree T. There
exists a strict fundamental domain for the action of G on T if and only if T/G is
a tree.

PROOF. If a strict fundamental domain D exists, then as noted above we have
D =~ T/G. Since D =~ T/G is connected and connected subgraphs of trees are
themselves trees, we deduce that T/G is a tree.

Conversely, assume that T/G is a tree. Let D be the set of all connected
subgraphs of T that map isomorphically into T'/G, partially ordered by inclusion.
Clearly D satisfies the conditions of Zorn’s lemma, so it contains a maximal element
D. If D is not a strict fundamental domain, then there must exist an edge € of
T/G such that one vertex of € lies in the image of D and the other vertex does
not (this is where we use the fact that T/G is a tree). We can lift € to an edge e
of T such that one vertex of e lies in D and the other does not. Then D ue € D,
contradicting the maximality of D. O

Decompositions from strict fundamental domains. The following the-
orem is a special case of the “fundamental theorem of Bass—Serre theory”. Applied
to Example 6.9 above, it says that Dy, = Z/2 = Z/2.

THEOREM 6.12. Let G be a group acting on a tree T. Assume that D < T 1is
a strict fundamental domain for the action of G and that for all edges e of T, the
stabilizer subgroup G, is trivial. Then

G= * @,
veD(0)

REMARK 6.13. If G, # 1 for some edge e with endpoints v and v’, then one
has to identify the images of G, in G, and G,. See [Ser80] and [SWT9] for more
details.

PROOF OF THEOREM 6.12. Define

r= % @,
veD(0)

There is a natural projection map p: ' — G.

STEP 1. The map p is surjective.
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FIGURE 6.5. Illustration of Step 2 in the proof of Theorem 6.12,
which asserts that p is injective. On the top is the loop that we
construct in the strict fundamental domain D, and on the bottom
is the resulting loop in T. The loop in D on the top is not locally
injective, but we prove that the loop in 7" on the bottom is.

This step in the proof is illustrated in Figure 6.4. Consider g € G\{1}. Fixing
an edge eg of D, there exists a path in T starting with the edge ey and ending with
the edge g(eg). Since G, = 1, this path has at least 2 edges in it. Let its edges be

(15) ep—er — - —ex = g(eo).

For each 1 < i < k, there exists a unique edge e} of D and some h; € G such that
e; = h;(e}). Choose the h; such that hg = 1 and hy, = g. The edges

(16) hh—

form a path in D; indeed, identifying D with T'/G, this is the projection of (15)
to T/G. For 0 < i < k, let v] be the vertex of D that is shared by €} and €;_; in
(16). Letting v; be the vertex of T that is shared by e; and e;_; in (15), we have
hi(v)) = hi—1(v) = v;. Tt follows that h; ' h;(v]) = v!, so hy ' h; € ¢(T). Using the
fact that hg = 1, we have that

9 =hi = (hg ha)(hy ha) - (bt hy) € (),

as desired.
STEP 2. The map p is injective.

This step in the proof is illustrated in Figure 6.5. Assume that p is not injective,
so there exists some nontrivial w € ker(p). As notation, for v € D and g € G,,
we will denote by g, the associated element of I". Write

w = (91>v1 T (gk)vkﬂ
where the g; and v; satisfy the following conditions.
o For 1 <i <k, we have v; € D and g; € G,,\{1}.
e For 1 < < k, we have v; # v;41.
Choose w such that k is as small as possible. Clearly k > 1. Also, if v; = vy, then
w is conjugate to
(9% " 91)0r (92)vs -+ (Gh—1) vy -
Since ker(p) is normal, this contradicts the minimality of k. We deduce that vy # v.
Set vy = vg.
For 0 < i < k, let n; be a simple (i.e. embedded) edge-path path in D from v;
to viy1. For 1 < i < k, the fact that g; € G,, implies that the terminal point of
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n;—1 and the starting point of g;(7;) are both v;. This implies that the terminal
point of g1 -+ g;—1(n;—1) and the initial point of g1 - - - g;—1g:(7;) are the same. We
thus have a path

(17) no — g1(m) — g192(n2) — -+~ — 9192 -~ Gr—1(Mk—1)
in T. The final point of g1g2 - - - gr—1(K—1) is

9192~ gk—1(Vk) = 9192+ * - Gk—19k(Vk) = v = Vo;

here we are using the fact that gx(vg) = vg and g1 ---gr = 1. The path (17) is
thus a closed path. The space T is a tree, so the closed path (17) must not be
locally injective. Since each 7; is simple and nontrivial, this implies that for some
0 < i <k —1 the final edge of g1 - - - g;(n;) must be the same as the initial edge of
g1+ gi+1(ni+1). Equivalently, the final edge of 7; must be the same as the initial
edge of git1(nit1)-

Let e be the final edge of 7; and let ¢’ be the initial edge of 1;11. We thus have
¢’ € DM and g;,1(¢') = ee DW. Since D is a strict fundamental domain, we must
have e = ¢’ and g;+1(e) = e. But Ge =1, s0 g;+1 = 1, a contradiction. O

6.3. Mess’s theorem

This section is devoted to the proof of Theorem 3.14, which asserts that Z, is
an infinite-rank free group.

Separating splittings. In fact, we will prove a more precise result. Recall
from §3.4 that if § is a simple closed separating curve on ¥4, then the separating
splitting induced by 0 is defined as follows. Let S; and S» be the subsurfaces of X,
obtained by cutting ¥, along §. The separating splitting induced by § is then the
unordered pair (Uy, Uz), where U; is the image of Hy(S;;Z) in Hq(X4;Z). Each U;
is a symplectic subspace of Hy (X4; Z), and the U; are orthogonal with respect to the
algebraic intersection form in the sense that %(uh ug) = 0 for uy € Uy and ug € Us.
Corollary 3.28 says that two separating twists 75 and T in Z, are conjugate in Z,
if and only if § and §’ induce the same separating splitting.

Improved result. The above implies that if B < Z, is a free basis, then B
can contain at most one separating twist Ts inducing a given separating splitting.
Define S to be the set of all possible separating splittings of H;(33;7Z). More
precisely, S consists of all unordered pairs (Uy, Us), where the U; are orthogonal
2-dimensional symplectic subspaces of Hj(X9;Z) such that Hy(X9;Z) = Uy @ Us.
We then have the following strengthening of Theorem 3.14. It was originally proved
by Mess in his thesis [Mes92].

THEOREM 6.14. There exists a set C' of simple closed separating curves on o
with the following two properties.
o T, is a free group on the free basis {Ts | § € C'}.
o There exists a bijection ¢ : C — S such that for 6 € C, the curve § induces
the separating splitting ¢(0).

We will prove Theorem 6.14 at the end of this section. The proof we will give is
due to Bestvina-Bux-Margalit [BBM10)].

Dividing up the splittings. Fix a primitive element x € H;(39;Z). In
preparation for the proof of Theorem 6.14, we partition S into subsets labeled by
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the vertices of C,.(32)/Z>. Lemma 6.3 says that these vertices fall into the following
two classes.

e The vertex [z]. Define
Sia] = {(U1,U2) € S | w € Up}.
e Size 2 vertices ¢1[v1] + c2]vz]. Define
Sei[n]+esve] = 1U1,U2) €S | vy € Uy, v3 € Us}.
We then have the following.

LEMMA 6.15. Fiz a primitive element x € Hy(X9;Z). Then S is the disjoint
union of the sets S, as v ranges over the vertices of C,(X2)/Zs.

ProoF. Consider (U, Us) € S. We must show that there exists a unique vertex
v of C;(X2)/Zs such that (Uy,Us) € S,. Since Hy(X2;Z) = Uy @Us, there is a unique
expression = c1v1 + covo with the v; and ¢; as follows for i = 1, 2.

e v; € U; is a primitive element or 0.
e ¢; € Z satisfies ¢; = 0. Also, ¢; = 0 if and only if v; = 0.

We then have (Uy, Uz) € S, [v,]+es[ws]> a0d c1[v1 ]+ c2[va] is the unique vertex with
this property. We remark that c;i[v1] + cafve] = [z] exactly when one of the ¢;
vanishes. 0

Vertex stabilizers Continue to let x € Hy (X2;Z) be a fixed primitive element.
Our next goal is to understand the stabilizers in Z5 of the vertices of C,(X2). These
are given by the following lemma.

LEMMA 6.16. Let x € Hy(X9;Z) be a primitive element and let ¢ be a vertex
of C(32). Then there exists a set C.. of simple closed separating curve on Yo with
the following three properties.

e Fach § € C. is disjoint from the oriented multicurve on which ¢ is sup-
ported.

o The stabilizer subgroup (I3). is a free group on the free basis {Ts | § € C.}.

o Let T be the image of ¢ in Cp(32)/Za. Then there exists a bijection ¢ :
C. — Sz such that for § € C., the curve 6 induces the separating splitting

$(9).

Lemma 6.16 is proved below in §6.4. Its proof makes use of the results from Chapter
5 on stabilizers in Torelli of nonseparating simple closed curves.

The proof. We now prove Theorem 6.14.

PROOF OF THEOREM 6.14. Fix some primitive element x € H;(X3;Z). The
group Z, acts without rotations on the complex C,(X2) of reduced cycles, which
by Lemma 6.1 is a tree. Lemma 6.7 says that the quotient C,(¥2)/Zs is also a
tree, so by Lemma 6.11 there exists a strict fundamental domain D for the action
of Zy on C,(33). Using Corollary 4.2, the edges of C,(X3) are the nondegenerate
cells X, (7), where 7 is a multicurve that separates 35 into two subsurfaces. Such
multicurves have three components, so by Lemma 6.6 the stabilizers in Z5 of the
edges in C,(X2) are trivial (here we are using the uniqueness claimed in Lemma 6.6
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— the only element that fixes our edge is the identity). Theorem 6.12 therefore says
that

1 o= * (Ty)..
(18) 2 CED(O)( 2)e

Define
c=|J c.
ceD()

where C. is the set of separating curves given by Lemma 6.16. Lemma 6.16 com-
bined with (18) implies that Z is a free group with free basis {Ts | 6 € C'}. Moreover,
combining Lemma 6.16 with Lemma 6.15 we obtain a bijection ¢ : C' — S such
that for all 0 € C, the separating twist Ty induces the separating splitting ¢(9), as
desired. (]

6.4. Curve stabilizers

This section is devoted to the proof of Lemma 6.16. We divide it into two cases
which we treat separately.

LEMMA 6.17. Let x € Hy(X9;Z) be a primitive element and let vy be an oriented
simple closed curve on 3o such that [y] = x. Then there exists a set C., of simple
closed separating curves on Yo with the following three properties.

e Each 6 € C, is disjoint from .

o The stabilizer subgroup (I3). is a free group on the free basis {Ts | 0 € C,}.

o There exists a bijection ¢ : C, — Sy such that for 6 € C, the curve §
induces the separating splitting ¢(9).

PrROOF. We will use the notation and results from Chapter 5 concerning the
stabilizers in Torelli of oriented nonseparating simple closed curves. Recall that
Yo ~ is the surface that results from cutting Yo open along 7. Let {01, 02} be the
boundary components of ¥, , (see Figure 6.6) and let ¢ : Z, , — (Z3), be the
homomorphism obtained by gluing ¢; and ds back together. Lemma 5.10 says that
there is a short exact sequence

l—2Z-—1, — (Z2)y — 1,

where the kernel Z is generated by 15, T}, ! Next, let S be the v-splitting surface
depicted in Figure 6.6, let igﬁ be the result of gluing a disc to 33 along di, and
let m = m1 (X2 ). Theorem 5.11 says that there is a decomposition

Ty = [m, 7] X Z(S).

Since S is a genus 1 surface with 1 boundary component, Lemma 3.3 says that
Z(S) =~ Z with generator the Dehn twist about boundary component of S. Below
in Claim 1 we will prove that 9 : Ty , — (Z2), restricts to an isomorphism between
[7,7] and (Z2)~, so most of this proof will concern [, 7].

Let «, B € w be the curves depicted in Figure 6.7. Thus 7 is a rank 2 free group
on « and 8. The curve [a, 8] € [, 7] is as shown in Figure 6.7. Using the recipe
discussed at the end of §5.3, we see that the element of Z, ., associated to [«, ]
is ThT, 75, where 7 is the boundary component of S (again, see Figure 6.7). It
follows that ¥ ([, 5]) = T,,, where 7 is the simple closed separating curve depicted
in Figure 6.7. We now prove the following.
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FIGURE 6.6. On the left is an oriented simple closed nonseparating
curve v on Xo. In the middle is the cut-open surface X5 ,. The
boundary components are {01,072} and S is a y-splitting surface.
On the right is the surface 2277 that results from gluing a disc to
01. The basepoint for 7'('1(%2’7) in this glued-on disc is as indicated.

FIGURE 6.7. In the upper-left, generators o and 8 for 7 = m (ig,’y)
are drawn. Their commutator [o, 5] = aBa~ 1871 is the curve
in the upper-right. The element of 7, associated to [a, 3] is
T5T5, lTal, where 7 is the curve shown in the lower-left. The key
point here is that 7 and 0dy are the boundary components of a
regular neighborhood of [a, 8] (see the recipe for this at the end
of §5.3). Since ¢ is induced by the map that glues d; and 0y back
together, we have 1/1(T5_21T51) =1, and thus ¥([e, §]) = T),, where
7 is the curve shown in the lower-right.

CLAIM 1. The restriction of the surjection ¥ : Ly — (Zg)~ to [m, 7] <Ly is
an isomorphism.

PrOOF OF cLAIM. As was discussed above, the kernel of v is Z with generator
Ts, Tazl. It is clear that no nontrivial power of Tj, Ta_z1 lies in [m,7] < Zy ; indeed,
this follows immediately from the fact that [7, 7] consists of all mapping classes in
1, that become trivial when a disc is glued to X,  along d;. We deduce that ¢
restricts to an injection [m, 7] < (Zy),. To see that this injection is a surjection,
since Z, , = [m, 7] x Z(S) it is enough to show that its image contains ¢(Z(S)). As
we discussed above, Z(S) =~ Z with generator the Dehn twist about the boundary
component of S. The map v takes this Dehn twist to T;,, which is also ¢ ([«, ]).
The claim follows. O

We now focus on [m,7]. If G is a group and x,y € G, then let ¥ denote yxy .

CLAM 1. The group 7, 7] is a free group with free basis {[c, B]akﬂz | k,0eZ}.
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FIGURE 6.8. On the left is the cover X of the wedge of two circles
corresponding to [m,7w]. The horizontal edges map to the circle
corresponding to a (going from left to right) and the vertical edges
map to the circle corresponding to 8 (going from bottom to top).
On the right is a maximal tree 7" in X; the omitted edges are
dashed. Identifying X with a subset of R?, the tree T consists of
the horizontal line y = 0 and the vertical lines x = n for all n € Z.

PROOF OF cLAIM. The group 7 is a rank two free group with free basis {«, 8}.
This is the fundamental group of a wedge of two circles. The cover of this wedge of
two circles corresponding to [, 7] is the “grid” X shown in Figure 6.8. In words,
X is a graph with vertex set Z? and with edges connecting (n,m) to (n+1,m) and
(n,m + 1) for all (n,m) € Z%. Let T = X be the maximal tree depicted in Figure
6.8. For (i,j) € Z?%, let a;; be the edge in X connecting (i,j) and (i + 1,5) and
let s; j € [m, 7] be the element corresponding to the loop in X that starts at (0,0),
goes along the unique path in T to (4, j), then goes along a;; to (i + 1, 7), and then
goes along the unique path in T' connecting (i + 1, 7) to (0,0). The edges of X that
do not lie in T are

{aig | (i,5) € 2%, j # 0},
so [m, 7] is a free group with free basis

{sij | (i,4) € Z?, j # 0O}
With respect to this basis, for (k,£) € Z? we have

-1 .
[, 1" = ok BlaBatp g~ taF = { °F fsk e ?f £20
Skb+1 if £ =0.
It follows immediately that the desired set is also a free basis for [, 7]. O

We now determine the image under 1) of the generators for [, 7] given by Claim 2.

CLAIM 2. Fork,{ € Z, we have ([, B]akﬁz) = T,..,, where ny ¢ is a separating
curve inducing the separating splitting

(<a1, b1 + kas + £b2>, <a2 + lay, by — ka1>).

PROOF OF CLAIM. Recall that [7, 7] is embedded in Z, ., as follows. The group
Mods ¢ contains the “disc-pushing” subgroup7 which is isomorphic to m (U ig )
Here U 22 ~ is the unit tangent bundle of Eg ~- There is a natural pI‘OJeCtIOH map
7r1(U22 ~) — 7r1(22 ~) = m. For every curve ( € [m, 7], there is a unique C in the

disc-pushing subgroup ﬁl(UZg,,y) of Mods ~ that projects to ¢ such that (e Lo s
this is the element of Z, ., corresponding to ¢.
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As we said above, the element of 7, corresponding to [a, 8] is T3T5, Ty,
Now let 0 ¢ be an arbitrary element of the disc-pushing subgroup Wl(Uigﬁ) that
projects to o 3¢ € . Since T5 ~ is a normal subgroup of Mod, ., we have that

ek’z(TﬁTaleal)QI;% €Iy .
Thus Hkvg(TﬁTa_QlTal)F);é is the element of 7, ., corresponding to [a,ﬂ]akﬁe. It fol-
lows that
ok gt _
Ul B177) = (k) Ty (Or,0) ™ = Tyor.0)m)-

We thus can take ng ¢ = ¥(0r)(n). Since 1 is a separating curve inducing the
separating splitting ({a1,b1),{az,bs)), we deduce that nx ¢ is a separating curve
inducing the separating splitting

({(Ok.0)x(a1), (Ok,0)5 (b1)), (Ok.0) (az), (Ok,0)x(b2)))-
Using Lemma 5.8, we see that this is
(a1, b1 + kag + by y,{as + Lay, by — kay)),
as desired. 0O

Define C,, = {ni¢ | k,¢ € Z}. Combining the three claims above, we see that (Z5),
is the free group on the set {Ts | § € Cy}. Next, define ¢ : C;, — S, via the formula

d(Mr,e) = (a1, b1 + kaa + £ba),{as + La1, by — kaq)).
Thus for § € C, the separating splitting induced by ¢ is ¢(d). We then have the
following.

CLAIM 3. The map ¢ is a bijection.

PROOF OF cLAIM. It is enough to show that ¢ is surjective. Consider (Uy,Us) €
Sz, s0 a1 = x € U;. We must have U; = {aj,w), where w € Hy(X2;Z) satisfies
i(al, w) = 1. Expanding w out in terms of our symplectic basis {a1,b1, as, b} for
H,(X2;Z), the fact that 7(a;,w) = 1 implies that w = by + kay + £by for some

k,l € Z. Also, using the fact that

Uz = {v e Hi(82;,2) | i(a1,v) = i(w,v) = 0},
we see that Uy = {as + laq,ba — ka1). Thus (U1, Us) = ¢(ng,¢), as desired. O
This completes the proof of Lemma 6.17. O

LEMMA 6.18. Let z € Hy(X2;Z) be a primitive element and let c1y1 + caye be
a vertex of C,(X2) such that c1,ca # 0. Then there exists a set Ce,~,1covy, Of Stmple
closed separating curves on Yo with the following three properties.
o Each 6 € Ceyvyy 4y, 18 disjoint from y1 U ya.
o The stabilizer subgroup (Z2)eyvy+cpve 15 @ free group on the free basis

{T5 | de 05171+62’Y2}'

o Let cqvi]+eafva] be the image of ciy1+caya in Cy(X2)/Za. Then there ex-
ists a bijection ¢ : Ceinyyveaya = Seyior]+ealvs] SUCh that for 6 € Ceyny teypny s
the curve § induces the separating splitting ¢(0).
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FIGURE 6.9. On the left is the surface 2277 with the curve +/
on it together with the elements a,3 € m. On the right is the
surface X obtained by cutting f]gﬁ open along +'. The curves
v, € m1(X) form a free basis for the rank 2 free group 7 (X), and
the natural map 7 (X) — 7 that glues the boundary components
back together takes v to a and vu~! to [a, 3].

Proor. Clearly we have

(I2)C1"/1+C2'Yz = (IQ)’YlU“rz = ((12)71)72'

To identify this with a subgroup of the group described in Lemma 6.17, we define
v = 71. Let the notation be as in the proof of Lemma 6.17, so (Z3), = [, 7], where
m = m1(X2,). Let 7' be the curve in 35, < X, , that maps to 72 under the map
Y9,y — Yo that glues the boundary components 0; and d» back together. We then
have
((Z2)~)~, = {C € [m, @] | ¢ is disjoint from ~'}.
To simplify our notation, let
I' = {¢ e [m 7] | ¢ is disjoint from ~'}.

Assume that the curves « and 8 from the proof of Lemma 6.17 are chosen as in
Figure 6.9. Also, choose the expression ({a1, b1 ), {as, b)) for the separating splitting
induced by 7 such that as = [v2] = vo (recall that a; = [y] = v1). It is then enough
to prove two things. The first is as follows.

CLAM 1. The group T is a free group with free basis {[a,ﬁ]“k | ke Z}.

PROOF OF CLAIM. Let X be the result of cutting igﬁ open along 7/ and let
v, i € w1(X) be the curves shown in Figure 6.9. The natural map 71 (X) — 7 takes
vto aand vu~? to [a, B]. The group 7 (X) is a rank 2 free group with basis {v, u}.
Also, letting T be the kernel of the map m(X) — Z that takes v and u both to
1, it is clear that the map 71(X) — = takes I' isomorphically onto I'. Regarding
7m1(X) as the fundamental group of a wedge of two circles, the cover corresponding
to I'V is as shown in Figure 6.10. From this cover, it is clear that I is a free group
with free basis

(=) | ke ) = WP ) | ke z).
This free basis maps to the free basis
—1\a¥
{([e, 171 | k ez}
for . The claim follows. O
For the second claim that must be proved, recall that S, [,]4c,[v] 18 the set of all

separating splittings (U1, Us) € S such that a; = v € Uy and ay = v’ € Uy. We then
have the following.
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FIGURE 6.10. The cover of the wedge of two circles whose funda-
mental group is IV. The edges of this graph map to the circles
corresponding to v and p as indicated.

CLAIM 2. The set S, [v]+co[v] Of separating splittings equals
{(<a1, bl + ka2>,<a2, b2 — ka1>) | ke Z}
PROOF OF CLAIM. An arbitrary element of S. [u]4c,[v] is of the form

(a1, w1),{az, w2))

for some wy, wy € Hy(X2;Z) such that

t(ag,wr) = %(GQ,'IUQ) =1 and i(aj,wy) = %(ag,wl) = %(wl,wg) =0.

Since %(al,wl) = 1 and %(ag,wl) = 0, we have w; = by + fa; + kas for some
l,k € Z. Since all we care about is the span of a; and w;, we can assume that ¢ = 0.
Similarly, we have we = by + k’a; for some k' € Z. Finally, since i(wy,ws) = 0 we

must have k' = —k, as desired.

Lemma 6.18 follows immediately.
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CHAPTER 9

A commutator quotient

In this chapter, we prove the following theorem, which will play an important
role in the construction of the Johnson homomorphism. Recall that F;, is the free
group on n letters. For x € F),, denote by [z] the associated element of F*> = 7",

THEOREM 9.1. There exists a homomorphism p : [F,, F,,] — A2Z"™ such that
p(lz,y]) = [zl Ayl (z,y € Fu).

We will give three proofs of Theorem 9.1. The first is in §9.1 and uses Magnus
expansions, which are certain homomorphisms from a free group to a truncation of
a tensor algebra. The second in in §9.2 and uses the Fox free differential calculus,
which will also be used later when we study cup products. The third proof is in
§9.3 and uses some tools from group cohomology.

Thoughout this section, we will give a more complete exposition of the tools we
use than is strictly necessary for the proof of Theorem 9.1. These tools are impor-
tant in many contexts, and a geodesic path to Theorem 9.1 would not necessarily
be the most enlightening one.

Since we will need them later, we pause now to record some naturality prop-
erties of the homomorphism p from Theorem 9.1. Observe that Aut(F,) acts on
A2Z™ via its action on F2P = 7",

LEMMA 9.2. For w € [F,, F,] and f € Aut(F,,), we have p(f(w)) = f(p(w)).

PRrROOF. Clearly it is enough to prove this for w = [z,y] with =,y € F,,. But
then

p(f(w)) = p(lf (), fF()D) = [f@)] A [F(W)] = f(z] A [y]) = Flp(w)). O

This has the following corollary.
COROLLARY 9.3. Assume that f € Aut(F,) acts trivially on Z™. Then
p(f(w)) = p(w)  (w e [Fr, Fu]).
This holds in particular for inner automorphisms, so for all x € F,, we have

plewe™) = pw)  (we [F Fyl).

9.1. Via Magnus expansions

In this section, we introduce Magnus expansions and use them to prove The-
orem 9.1. Magnus introduced these homomorphisms in [Mag35] and used them
to prove that the intersection of the lower central series of a free group is trivial
(see Theorem 9.12 below). See [MKST76, Chapter 5] for more details concerning
Magnus expansions.

87
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The truncated tensor algebra Let T(Z") be the tensor algebra of Z", so
[ee]
T(Z") = PTHZ") with T'(Z") = (2")®".
i=0

The algebra structure on T(Z™) comes from the tensor product. For all k > 0, the
algebra T'(Z™) contains an ideal

I(Z") = éTi(Z").

The degree k truncated tensor algebra of Z™, denoted Ay (Z™), is T(Z™)/Ix+1(Z").
We will regard Ay (Z") as composed of expressions

f=fotfit -+ fu  (fieT'(2Z")
and will call f; the degree i component of f. Observe that

(fot frt -+ f)go+g+-g)= Y, figs-
i+j<k

Invertible elements. The following lemma gives many invertible elements
in .Ak (Z”)

LEMMA 9.4. If the degree O component of f € Ay is 1, then f is invertible.
Moreover, the degree 0 component of f~1 is also 1.

PrOOF. Write f =1+ f1 +--- 4+ fr. Our goal is to find some g = g9 + g1 +
-+ + g € A such that

(19) A+fi+-+fe)go+a+-+ag) =1

We can solve for the g; inductively as follows. First, go = 1. Second, if we have
already found go,. .., g;—1, then (19) implies that

9; + f19j-1 + fagj—2 + -+ fi90 =0,
S0
9; = —fi90 — fi—191 — - — f195-1. O

The Magnus expansion. Define A} (Z") to be the set of all elements of
A (Z"™) whose degree 0 components are 1. Lemma 9.4 says that A} (Z") forms a
group under multiplication. Letting {z1,...,z,} be a fixed free basis for F,,, there
thus exists a homomorphism

Yy 2 Fy — AL (Z™)
taking z; € F,, to 1 + [z;] € Ax(Z™) for 1 < i < n. We will call ¢, the degree k
Magnus expansion of F,.

REMARK 9.5. The Magnus expansion depends on the free basis {x1,...,2z,}.

REMARK 9.6. For all k& > 1, the homomorphism ¢y, : F,, — A} (Z") is the
composition of Y1 @ F, — Aj(Z") with the natural projection Aj_ ,(Z") —
Al (Z"). Letting A’ (Z") be the inverse limit of the A} (Z"), the i, thus piece
together to yield a homomorphism %y : F, — A (Z™). Most authors only call
1o a Magnus expansion, but we find it more straightforward to work with the
individual .
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Abelian quotients on kernels. The following lemma shows that the degree
1 Magnus expansion 1 : F,, — A} (Z") can be identified with the abelianization
map F,, — Z".

LEMMA 9.7. For all x € F,, we have ¥1(z) = 1 + [z] € AL (Z™). Consequently,
we have ker(y1) = [F,, Fy,].

ProoF. Using the recipe in the proof of Lemma 9.4 for computing inverses in
Ay, we see that in A;(Z"™) we have

Therefore, given a word w = ;! -+~ 25’ in F,, with 1 <i; <n and ¢; € {1, -1} for
1 <j < /¢, we have

vi(w) = A+ ez, ]) - (14 €lw,]) = 1+ (exfws ] + - + e, ]) = 1+ [w],
as desired. Observe that in the above calculation we discarded all components of
degree 2 and higher. O
The following lemma generalizes the main insight of Lemma 9.7.

LEMMA 9.8. Fix k = 2. Then there exists a homomorphism ¢y, : ker(vgp_1) —
T*(Z™) such that

Ye(w) =1+ ¢e(w)  (w € ker(yhr—1)).
PrOOF. Let 7 : A} (Z") — Aj._,(Z") be the natural projection homomorphism,
SO Yp_1 = mo Y. Since
ker(m) = {1+ fi | fr € T*(Z")},
there exists a set map ¢y, : ker(t_1) — T*(Z") such that
Y (w) =1+ ¢p(w) (w € ker(Yr—1)).

The fact that ¢ is a homomorphism follows from the easy calculation

U+ ) +gr) =1+ (fr+ar)  (froon € THZM))
in A} (Z™); here we discard all components of degree k + 1 and higher. O

Deeper in the lower central series. We will not need the results in this
paragraph later in the book, but it would be strange to not include them in a
discussion of Magnus expansions. We start with the following lemma.

LEMMA 9.9. Fix k = 2. Then for all v € F,, and w € ker(¢y_1) we have
Ui (zwz™t) = Yp(w).

PrOOF. Using Lemma 9.8, we have ¢, (w) = 1 + f; for some fy € T*(Z").
Write

Pp(e) =1+gi+---+gx  (9:€THZ")).
We then have
V(@) fe = fe + g1 fi + -+ gife = fi

Similarly, we have fyr(z=1) = fr. Therefore,

Ye(zwr ™) = Yp(@) (1 + fro)ve(a™) = (We(@) + fr)te(@™) = 1+ fi = ¥p(w),
as desired. O
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This has the following corollary. The lower central series of a group G is the
sequence of subgroups defined inductively by

71(G) =G and v11(G) = [G,%(G)].
COROLLARY 9.10. For all k = 1, we have Y41 (Fp) < ker(¢y).

PrOOF. The proof will be by induction on k. The base case k = 1 is Lemma
9.7. Assume now that v (F),) < ker(¢x—1). Consider z € F,, and w € v(F,). We
must show that [z, w] € ker(1;). By Lemma 9.9 we have

([, w]) = p(zwe™ ) (w™) = Yy (w)p(w™) = 1,
as desired. [l

REMARK 9.11. Witt [Wit37] proved that for all k& > 1, the group ker(vyy)
is actually equal to vx11(Fy,). In addition to the original source, see [MKS76,
Chapter 5] and [Ser92, Chapter IV.6] and [CFL58] for the details of this.

We finally deduce the following theorem of Magnus [Mag35]. For an alternate
topological proof, see [MP10].

THEOREM 9.12. The group F,, is residually nilpotent, that is, N, vk (F,) = 1.

Proor. Consider w € F, such that w # 1. Write w = 2" - 2]"* for some
1 <i; < n and m; € Z\{0} satisfying i; # i1 for 1 < j < k. For 1 < j <k,
observe that

(@) = (14 [, )™

is 1 plus a Z-linear combination of terms of the form [z;,]” with 1 < p < k. Also,
the coefficient of [z;,] is m;. Consider the T*(Z") term of

Yr(w) = (@) -+ g (2)").
Expressing this in terms of the basis
{lzp Mlzp,] - 2] [ 1 < pj <mfor 1 <j <k},
the only term that does not involve a basis element with p; = p;41 for some
1<j<kis
mamg - myf@, J[2i,] - [0, ]

This implies in particular that ¥g(w) # 1, so by Corollary 9.10 we have w ¢
Y41 (w). U

The quotient of the commutator subgroup. We finally prove Theorem
9.1.

PrOOF OF THEOREM 9.1. Combining Lemmas 9.7 and 9.8, we obtain a homo-
morphism
p:[Fn, F,] — T%(Z")
such that ¥(w) = 1 + p(w) for all w € [F,, F,,]. We will prove that the image of
p lies in A2Z" < T?(Z"™). To do this, it is enough to prove the formula claimed in
the theorem, namely p([z,y]) = [z] A [y] € A2Z" for all x,y € F,,. Write
Po(z) =1+ [z]+ fo and a(y) =1+ [y] + g2

for some fo, go € T?(Z™). Using the recipe from the proof of Lemma 9.4, we have
(Lt [e]+fo) " = 1=[a]+([a][z]~f2) and (1+[y]+g2)"" = 1-[y]+([y]ly]—g2)-
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‘We then have that
1

Ya([z,]) = (L+ [2] + f2) (1 + [y] + g2) (L + [2] + f2) 1 (1 + [y] + g2)~
=1+ [z]+ f2)(1 + [y] + g2)
(1 =[] + ([x][x] = f2)) (X = [y] + (W]ly] — 92))
=1+ [z]ly] - [y]lz]
=1+ [z] A [y],
as desired. Here we discard all components of degree 3 and higher. ([l

9.2. Via the Fox free differential calculus

We next show how to prove Theorem 9.1 via the Fox free differential calculus,
which was introduced by Fox in [Fox53]. This proof will appear quite different
from the proof in §9.1, but in reality it is very similar. We will comment on the
connection between the two approaches at the end of this section.

Derivations. Let G be a group and M be a G-module. A derivation from
G to M is a function ¢ : G — M such that

¢(gh) = ¢(g9) +g-0(h)  (9.h€G).
Derivations are also sometimes called crossed homomorphisms.

ExAMPLE 9.13. If the action of G on M is trivial, then derivations from G to
M are the same as homomorphisms.

ExaMPLE 9.14. For m € M, define a function ¢, : G — M via the formula
dm(g) = g-m —m. Then ¢, is a derivation; indeed,

Om(gh) = gh-m—m = (g-m—m)+ (gh-m—g-m) = dm(g) + g dm(h).
The derivation ¢,, is often called a principal derivation.
The following lemma gives a useful alternate definition of a derivation.

LEMMA 9.15. Let G be a group and M be a G-module. Then a set map ¢ : G —
M is a derivation if and only if the map (¢,id) : G — M x G is a homomorphism.

PROOF. The map (¢,id) is a homomorphism if and only if for all g,h € G we
have

(¢(gh), gh) = (¢(9), 9)(¢(h), h) = (¢(9) + g - ¢(h), gh).

The second equality follows from the definition of a semidirect product. O

This lemma has the following corollary. Let F, be the free group on the set
{.Tl, “ee 7$n}~

COROLLARY 9.16. If M is an F,,-module and my,...,my, € M, then there
exists a unique derivation ¢ : F,, — M such that ¢(x;) = m; for 1 <i < n.

PROOF. The universal property of a free group says that there exists a unique
homomorphism ¢ : F,, — M x F, such that ¢(z;) = (m;,x;) for 1 <i < n. The
corollary now follows from Lemma 9.15. (]
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Free derivatives. A free derivative on F, is a derivation ¢ : F,, — Z[F,].
Denote the set of all free derivatives on F,, by Der,,. Clearly Der, is closed under
addition. Moreover, if ¢ € Der, and 7 € Z[F,], then the map ¢\ : F,, — Z[F,]
defined by the formula

o(g) =o(g) T

is a free derivative. Thus Der,, is a right Z[F},]-module. Its most important elements

are the free derivatives % for 1 < i < n defined via the formula

0 1 ifi=y,
f(xj) = .
ox; 0 otherwise
for 1 < j < n. Corollary 9.16 says that these exist and are uniquely defined by the
above formula. We then have the following.

LEMMA 9.17. The module Der, is a free right Z[F,]-module on the basis
{2 |1<i<n}.

Proor. Consider ¢ € Der,,. For 1 <i < n, set 7; = ¢(x;). Define

0 0

& = ()™ e

Then ¢'(z;) = ¢(x;) for 1 < i < n. Corollary 9.16 therefore says that ¢’ = ¢.
Morover, it is clear that ¢’ is the only Z[F),]-linear combination of the 6%1' with this
property. U

)(7'1) + )(T'n).

Basic properties of free derivatives. The following lemma summarizes
some basic facts about free derivatives.

LEMMA 9.18. Consider ¢ € Der,,.
(1) We have ¢(1) = 0.

(2) For x € F,,, we have ¢(x~1) = —x~1¢(x). In particular, for 1 <i,j <n
we have
0 (z71) = —z; ' ifj = 2
ox; 7 0 otherwise.

PROOF. For the first claim, observe that
P(1) = ¢(1-1) = ¢(1) + 1- ¢(1) = 2¢(1),
so ¢(1) = 0. For the second claim, observe that
0=¢(z"'2) = d(a™") + 27 p(x),
so p(z7 1) = —z Lo (x). O

Augmentations and extending to the group ring. Let a:Z[F,] > Z
be the augmentation map, that is, the unique Z-linear map that takes each g € F),
to 1. We then have the following. If ¢ € Der,,, then observe that ¢ can be linearly
extended to a map ¢ : Z[F,] — Z[F,].

LEMMA 9.19. If ¢ € Der,, and 6,0 € Z[F,], then ¢(05) = ¢(0)a(d) + 0¢(5).
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ProoF. This holds by definition if 6, € F},. To extend this to general elements
of the group ring, simply observe that both sides of the purported equality ¢(69) =

d(0)a(9) + 04(6) are bilinear functions of 6 and 4. O
From derivatives to homomorphisms. We now prove the following
lemma.

LEMMA 9.20. If ¢ € Der,, then the map avo ¢ : F,, — Z is a homomorphism.

PROOF. For x,y € F,, we have

a(p(zy)) = a(d(x) + 2¢(y)) = al¢(2)) + a(z)a(¢(y)) = a(d(x)) + a(¢(y)). O

The following lemma shows that a o % is the homomorphism that counts the

signed number of occurances of x, in a word.

LEMMA 9.21. For 1 < a < n, the homomorphism o o % : F, — 7Z 1is the

homomorphism taking x, to 1 and x; to 0 for 1 <1< n with 1 # a.
PrOOF. Immediate. (]

COROLLARY 9.22. Consider some w € F,,. Then a(éd(w)) = 0 for all ¢ € Der,
if and only if w e [F,, F,].

PrOOF. Lemma 9.17 implies that a(¢(w)) = 0 for all ¢ € Der, if and only if
a(%(w)) =0 for all 1 <a <n. Lemma 9.21 implies that this holds if and only if
w € [Fy, F]. O

Higher derivatives. An order k free derivative is a function ¢ : F,, — Z[F,]
of the form ¢ = ¢1 0 g 0 --- 0 ¢, where ¢; € Der,,. Here we are extending the ¢;
to functions ¢; : Z[F,] — Z[F,] by linearity as above. Let Der’ be the set of all
order k free derivatives. Define

Ik —{weF, | a(¢p(w)) =0 for all ¢ € Der’, with 1 < ¢ < k}.
We then have the following.

LEMMA 9.23. Consider x € F,, and w € T* and ¢ € Der’, for some k,0 > 1
satisfying £ < k+ 1. Then

p(zw) = d(x) + zd(w).

PROOF. The proof is by induction on ¢. The base case £ = 1 is the definition
of a derivation. Now assume that 1 < £ < k + 1. We can write ¢ = ¢’ o ¢” with
¢’ € Der,, and ¢" € Derffl. Using our inductive hypothesis and Lemma 9.19, we
have

Here the fourth equality uses the fact that «(¢”(w)) = 0, which follows from the
fact that w e I'~. (]
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Corollary 9.22 says that I'} = [F,,, F,,]. This is in particular a normal subgroup of
F,,. The following lemma generalizes this.

LEMMA 9.24. The set TX is a normal subgroup of F,, for all k > 1.

PROOF. We first prove that it is a subgroup. Consider wy,ws € TX. Our goal
is to show that wjwy € T, In other words, we want to show that a(¢(wiws)) =0
for all ¢ € DerfL with 1 < ¢ < k. This follows immediately from Lemma 9.23, which
implies that

a(¢p(wiws)) = a(d(w)) + a(wr)a(d(wz)) = 0 + 0.

We now prove that I'* is a normal subgroup. Consider w € I'* and x € F,.
Our goal is to show that zwz~! € I'*. In other words, we want to show that
a(¢(zwz=")) = 0 for all ¢ € Der’, with 1 < ¢ < k. Define ¢’ : F,, — Z[F,] via the
formula

¢ (2) = 7 p(aza ).
We claim that ¢’ € Derf;. Indeed, write ¢ = ¢p10---0¢, with ¢; € Der,, for 1 < i < /£.
Define ¢} : Z[F,] — Z[F,] via the formula

¢i(2) = a7 ¢ (wza ).
For z1, zo € F}, we have
P(z122) = 27 pi(xz1 202 )
=2 Yoi(zz1z™Y) + 2127 Ps (2202
= ¢i(z1) + 216(22),

so ¢; € Der,. Since ¢' = ¢} o--- 0 ¢}, we deduce that ¢ € DerfL7 as claimed. We
now deduce that

a(@zwz™)) = a(z™ plawz™")z) = o(¢' (w)) = 0,
as desired. 0

REMARK 9.25. In fact, using the same paper of Witt [Wit37] that we cited
when discussing the analogous fact for the Magnus expansions, Fox [Fox53| proved
that T% = 4411 (F,). See Lemma 9.28 below for the easy half of this.

From derivatives to homomorphisms II. We now prove the following.
LEMMA 9.26. If ¢ € Der’fbﬂ, then the map ao ¢ : T¥ — 7 is a homomorphism.
Proor. Consider wy,ws € Ffi. Lemma 9.23 implies that
ao d(wiwz) = a(p(wr) + wid(wz)) = o p(w1) + a0 G(ws). 0
The homomorphism constructed in Lemma 9.26 has the following property.

LEMMA 9.27. If ¢ € Der™ and w € ¥ and x € F,, then a o ¢p(zwz™?) =
a o ¢(w).

PRrROOF. For 1 < ¢ < k + 1, let Sy be the subset of Z[F,] consisting of all
Z-linear combinations of elements of the set

{n(u) | ne Derg for some 1 < ¢’ < ¢ and u e T'F}.
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By definition, we have a(s) = 0 for all s € Sy. We will prove that forall 1 < ¢ < k+1
and all n e DelrfL7 we have

(20) n(zwz™) = n(z) + zn(w) — 2wz n(z) + s

for some s € Sy. Applying this to n = ¢ and composing the result with «, it will
follow that

a(g(zwz™)) = a(d(2)) + a(zd(w)) — alzwz™ ¢(z)) + a(s)
= a(o(x)) + a(d(w)) — a(é(z)) + 0
= a(o(w)),

as desired.
It remains to prove (20). The proof will be by induction on ¢. The base case is
¢ = 1. In this case, we can apply Lemma 9.18 and get that
n(zwa™") = (@) + zn(w) + zwn(z™") = n(z) + en(w) — zwe™'n(z),

as claimed. Now assume that 1 < ¢ < k+1 and that the result is true for all smaller
(. Write n = n/ o with 7’ € Der,, and " € Der’~!. Our inductive hypothesis says
that

0 (zwz™t) = 0" (x) + 20" (w) — zwz™ " (x) + s
for some s € Sy_1. Using the fact that a(n”(w)) = 0, we now apply Lemma 9.19 to
see that
n(zwz™") = n(z) +n'(@)a(y" (w) + ()
=11/ (zwa™a(y" (z)) — 2w n(x) + 1/ (s)
=n(z) + zn(z) — zwz " n(z) + &
with
s' = =0/ (zwa™Na(n"(z)) +1/(s) € S,

as claimed. 0

Lower central series. As we said above, Fox [Fox53] proved that I'* =
Vk+1(Frn). One direction of this is easy.

LEMMA 9.28. For all k > 1, we have 41 (Fy,) < T,

PrOOF. The proof is by induction on k. The base case k = 1 is Corollary 9.22.
Now assume that k£ > 1 and that the lemma is true for all smaller k. Consider
w € Y (F,) and = € F,. We must show that [z,w] € ¥, i.e. that for all ¢ € Der’,

with 1 < ¢ < k we have a(é([z,w])) = 0. Since [z, w] € vx(F,,) < T*¥~1, this holds
if £ < k. If ¢ =k, then we can apply Lemmas 9.26 and 9.27 to see that

a(¢([z,w])) = alp(zwr™)) + alp(w™)) = alp(w)) — a(p(w)) = 0,
as desired. [l

A calculation. We now record the following calculation. Recall our conven-

: S P
tion that [z;, ;] = zzj2; ;.



96 9. A COMMUTATOR QUOTIENT

LEMMA 9.29. Forl1<a<b<mnandl <1i<j<n, we have

o 0 {1 ifa=iandb=j,

a(axa ° Txb([x“xj])) )0 otherwise.
PROOF. There are several cases; we will do the case where a = 7 and b = j and

leave the others to the reader. Observe that

aimb([xa,xb]) =24 — [T, T3],
and hence
0,0 ;)
oz, (T%([z“’xb])) =1—(1—2zqmpz, ).
Applying a, we get that
A e (o)) =1 - (1= 1) = 1. .

The quotient of the commutator subgroup. We finally prove Theorem
9.1.

PROOF OF THEOREM 9.1. Define a set map p : [F,, F,] — AZ%Z" via the
formula

0 0
p(w) = a(z— o =—(w))[za] A [25].
1sa§;<n 0r, Oxyp
Lemma 9.26 says that the maps [F),, F},] — Z given by
0
w = a(é’xa © Tm(w))

are homomorphisms, so p is a homomorphism. We must prove that p([z,y]) =
[z] A [y] for z,y € F,.
Define a set map 7 : F, x F,, — A%Z" via the formula n(z,y) = p([x,y]).

Our goal is to prove that n(x,y) = [z] A [y]. We begin by proving a sequence of

properties of 1. As notation, for v,w € F,, we write v* for wvw™!.

e For all z,y € F,, we have n(z,y) = —n(y,x). This follows from the fact
that [z,y] = [y,x]~!. This relation is reflected in A%Z" as [z] A [y] =

—[y] A [2].

e For all z,y,z € F,, we have n(zz,y) = n(z,y) + n(z,y). Using the easily-
verified commutator identity

[z2,y] = [z, y]" [z, y]
and Lemma 9.27, we have
n(@z,y) = p(lz,9]%) + p([z, y]) = oz, 9]) + o[z, y]) = n(z,y) + n(z,y),
as desired. This relation is reflected in A2Z" as
[zz] A [y] = (=] + [2]) A [y] = [2] A [y] + [2] A [yl

e For all 2,y € F,, we have n(z~!,y) = —n(x,y). This follows from the

previous bullet point and the easy identity

n(1,y) = p([1,y]) = p(1) = 0.
This relation is reflected in A2Z" as (—[z]) A [y] = —([z] A [y]).
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Using the above three facts repeatedly, we reduce the desired fact to showing that
n(x;, ;) = [x;] A [z;] for 1 <4 < j < n. This follows immediately from Lemma
9.29. 0

Relationship between Fox calculus and Magnus expansions.  The
results in this section are related to the results in §9.1 via the following lemma. Let
Y : Fr, — Ak (Z™) be the degree k Magnus expansion.

LEMMA 9.30. For all k = 1, we have
- 0 0
e(w) =1+ D (als— - m—)[wa]lzs] - [2:,])-
. . (7Izl axl(
=1 1<i1,...,i¢<n

See [Fox53, §3] for the details of the proof of this.

9.3. Via group cohomology

We now sketch a final proof of Theorem 9.1. The main tool is the following
theorem concerning group homology. Recall that if G is a group, then Hy(G;Z) is
defined to be the k" homology group of a K(G,1). Also, if M is an abelian group
on which G acts, then the coinvariants of M, denoted M, is the quotient of M by
the submodule (m — g(m) | me M, g€ G).

THEOREM 9.31. If

1 —-K—G—Q—1
is a short exact sequence of groups, then there exists a 5-term exact sequence
Hy (G5 Z) — Ha(Q3 Z) — (Hi(K;Z))g — Hi(GZ) — Ha(Q; Z) — 0.

In the statement of Theorem 9.31, the action of G on H;(K;Z) is induced by the
conjugation action of G on K. Theorem 9.31 (or, rather, a dual statement in coho-
mology) was first proven by Hochschild—Serre [HS53, Theorem 2] as an application
of the Hochschild—Serre spectral sequence in group homology; see [Bro94, Chap-
ter VIL.6] for a textbook exposition of this proof and [Bro94, Exercise 11.5.6] and
[Coc85] for alternate proofs.
PROOF OF THEOREM 9.1 (SKETCH). Consider the short exact sequence
1 —[Fh, F] — F, —Z" — 1.

The associated 5-term exact sequence given by Theorem 9.31 is of the form
Ho(F,;Z) — Ho(Z";Z) — (Hy([Fn, Fu]))r, — H1(Fn;Z) — H(Z™;Z) — 0.

Since F,, is a free group, we have Ho(F,,;Z) = 0. Also, the map H;(F,,;Z) —
H:(Z™;Z) is an isomorphism. Finally, using the fact that the n-torus T" is a
K(Z"™,1) we have that Hy(Z";Z) >~ A?Z™. We conclude that

N7 = (Hy([Fo, Fol))F, -
The map p : [F,, F,] — A%Z" is then the composition
[F, F] = [Fn, Fu]™ = Hi([Fy, Ful; Z) — (Hi([Fp, Ful; 2))E, = A%Z".

The claimed description of p follows from a careful examination of the maps involved
in the proof of Theorem 9.31. O
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