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Part 1

Foundational Material





Introduction to Part 1

Part 1 is devoted to fundamental topics that are used throughout the remainder
of the book. Chapter 1 is an introduction to the mapping class group, Chapter 2
discusses the symplectic representation of the mapping class group obtained from
its action on the first homology group of the surface, and Chapter 3 defines the
Torelli group and discusses its basic properties.

3





CHAPTER 1

The mapping class group

This chapter introduces the mapping class group of a surface. Though we
will discuss all the results needed elsewhere in this book, we will omit some of the
lengthier proofs. There are many fine sources that discuss this material. We learned
much of it from Ivanov’s survey [Iva02] and Farb–Margalit’s book [FM12], and we
refer the interested reader to these sources for the missing proofs (and much more).
Many readers will probably skip this chapter, though we recommend skimming it
to learn our notational conventions.

1.1. Definitions and basic examples

We start by defining the mapping class group.

Surfaces and the mapping class group. In this book, a surface will always
mean a compact oriented surface with boundary. If Σ is a surface, then the mapping
class group of Σ, denoted ModpΣq, is the group of isotopy classes of orientation-
preserving diffeomorphisms of Σ that restrict to the identity on the boundary. We
emphasize that the isotopies must themselves fix the boundary pointwise. We will
often denote a compact oriented genus g surface with b boundary components by
Σbg and its mapping class group by Modbg; the b will sometimes be omitted when it
vanishes.

Homotopies vs isotopies. A fundamental result of Baer [Bae27, Bae28]
says that two diffeomorphisms of a closed orientable surface which are homotopic
are also isotopic. This was later extended by Epstein [Eps66] to diffeomorphisms of
orientable surfaces with boundary that fix the boundary pointwise (Epstein worked
in the PL category, but it is easy to modify his proof to work in the smooth category).
We therefore do not need to worry about the distinction between homotopies and
isotopies. In fact, for much of this book it would be reasonable to simply define
the mapping class group as the group of homotopy classes of orientation-preserving
diffeomorphisms. However, this would cause some small technical difficulties later
when we use mapping classes to glue 3-manifolds together along their boundaries;
the result would not be obviously well-defined.

Discs and spheres. We now turn to the mapping class groups of low-
complexity surfaces. We start with the disc D2 “ Σ1

0.

Proposition 1.1. ModpD2q “ 1.

Proof. Consider an orientation-preserving diffeomorphism F : D2 Ñ D2 such
that F |BD2 “ id. Regarding D2 as a subset of C, we can homotope F to the identity
via the straight-line homotopy

Ft : D2 Ñ D2

5



6 1. THE MAPPING CLASS GROUP

Ftpxq “ p1 ´ tqF pxq ` tx □

Remark 1.2. Observe that in the proof of Proposition 1.1, the homotopy we
wrote down is not necessarily an isotopy, so we are silently appealing to the afore-
mentioned theorem of Epstein. With a bit more care one can directly produce
an isotopy; see the discussion in [FM12]. We will ignore the distinction between
homotopies and isotopies in many proofs in this section.

A similar result holds for the sphere S2 “ Σ0.

Proposition 1.3. ModpS2q “ 1.

Proof. Consider an orientation-preserving diffeomorphism F : S2 Ñ S2. Fix-
ing a basepoint p0 P S2, we homotope F such that F pp0q “ p0 by postcomposing F
with rotations of S2. Let U Ă S2 be the open hemisphere centered at p0. Both U
and F pUq are tubular neighborhoods of p0, so by the usual uniqueness up to isotopy
of tubular neighborhoods (see, e.g., [Hir94, Theorem 4.5.3]; this is where we use
the fact that F is orientation-preserving) we can isotope F such that F |U “ id. Set
D “ S2zU , so D – D2. The map F restricts to a diffeomorphism F |D : D Ñ D
that fixes BD pointwise. Using Proposition 1.1, we can therefore homotope F to
the identity. □

The annulus. We now turn to the annulus A “ Σ2
0, which provides us with

our first example of a nontrivial mapping class.

Proposition 1.4. ModpAq “ Z.

Proof. We first define a homomorphism ψ : ModpAq Ñ Z. Let π : rA Ñ A
be the universal cover. We will identify rA with tz P C | 0 ď Impzq ď 1u; the deck
group Z acts by horizontal translations z ÞÑ z ` n. Define

B “ tx | x P Ru Ă rA and T “ tx` i | x P Ru Ă rA.

Consider f P ModpAq which is represented by an orientation-preserving diffeomor-
phism F : A Ñ A with F |BA “ id. We can uniquely lift F to a diffeomorphism
rF : rA Ñ rA satisfying F p0q “ 0. This latter condition implies that rF |B “ id.

However, we do not necessarily have rF |T “ id; instead, rF px ` iq “ px ` nF q ` i
for some nF P Z. The homotopy lifting property implies that nF is unchanged by
homotopies of F that fix BA pointwise. We can therefore define ψpfq “ nF . It is
clear that ψ is a homomorphism.

To see that ψ is injective, consider h P ModpAq such that ψphq “ 0. Letting
H : A Ñ A be a representative diffeomorphism, we can lift H to a diffeomorphism
rH : rA Ñ rA satisfying rH|

BrA “ id. The straight-line homotopy

rHt : rA Ñ rA
rHtpzq “ p1 ´ tq rHpzq ` tz

from rH to id commutes with the deck group, and therefore projects to a homotopy
from H to id. This projected homotopy fixes BA pointwise (this is where we use
the fact that ψphq “ 0), so we conclude that h “ 1.

To see that ψ is surjective, consider some n P Z. Defining

rFn : rA Ñ rA
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Figure 1.1. ModpAq is generated by the mapping class that holds
the outer boundary of A fixed while rotating the inner boundary by
2π; as shown here, this causes an arc connecting the two boundary
components to acquire a segment going around the annulus.

rFnpzq “ z ` n Impzq,

the diffeomorphism rFn commutes with the deck group and therefore projects to a
diffeomorphism Fn : A Ñ A. By construction we have Fn|BA “ id, so Fn defines a
mapping class fn P ModpAq which satisfies ψpfnq “ n. □

Remark 1.5. The generator for ModpAq – Z constructed in the above proof
is illustrated in Figure 1.1.

The algebraic intersection pairing. Below we will study the mapping class
group of the 2-torus T “ Σ1. To do this, we will need the algebraic intersection
pairing. For a surface Σ, this is a Z-valued bilinear form îp¨, ¨q on H1pΣ;Zq which
satisfies the following two properties (see [Bre97, §VI.11] for more details).

‚ It is alternating in the sense that îph1, h2q “ ˆ́iph2, h1q for all h1, h2 P

H1pΣ;Zq. This implies in particular that îph, hq “ 0 for all h P H1pΣ;Zq.

‚ For h1, h2 P H1pΣ;Zq, the number îph1, h2q P Z can be calculated as
follows. Choose cycles c1 and c2 representing h1 and h2, respectively,
such that the ci intersect transversely. We then have

îph1, h2q “
ÿ

pPc1Xc2

˘1,

where the sign ˘1 is the sign of the intersection at p.

We will have much more to say about îp¨, ¨q in Chapter 2.

The torus. The group ModpTq is richer than any of the other mapping
class groups considered so far, and its study will lead us to the main topic of this
book. Observe that the group ModpTq acts on H1pT;Zq – Z2. This action induces a
homomorphism ModpTq Ñ AutpZ2q – GL2pZq. However, this map is not surjective.
The issue is that the image of this map preserves the algebraic intersection pairing
îp¨, ¨q on H1pT;Zq. Let α and β be the two oriented curves on T depicted in Figure

1.2 and let a and b be their homology classes, so îpa, bq “ 1. The homology classes
a and b form a basis for H1pT;Zq. For f P ModpTq, write fpaq “ c1a ` c2b and
fpbq “ d1a` d2b with c1, c2, d1, d2 P Z. We then have

1 “ îpa, bq “ îpfpaq, fpbqq “ îpc1a` c2b, d1a` d2bq “ c1d2 ´ c2d1;

the minus sign appears because the algebraic intersection pairing is alternating. The
expression c1d2´c2d1 is the determinant of the action of ψ on H1pT;Zq. The upshot
is that the action of ModpT2q on H1pT2;Zq yields a homomorphism ModpT2q Ñ

SL2pZq. The following proposition says that this is an isomorphism.



8 1. THE MAPPING CLASS GROUP

Figure 1.2. The curves α and β on the torus T2 whose homology
classes a and b generate H1pT2;Zq and satisfy îpa, bq “ 1.

Proposition 1.6. The map ModpT2q Ñ SL2pZq obtained from the action of
ModpT2q on H2pT2;Zq is an isomorphism.

Proof. Let ρ : ModpT2q Ñ SL2pZq be the map in question. Regard T2 as the
quotient of R2 by Z2, and let π : R2 Ñ T2 be the projection.

To see that ρ is surjective, consider M P SL2pZq. The action of M on R2 gives

a diffeomorphism rFM : R2 Ñ R2 that projects to a diffeomorphism FM : T2 Ñ T2.
The resulting mapping class fM P ModpT2q clearly satisfies ρpfM q “ M .

To see that ρ is injective, consider f P kerpρq. Choose a diffeomorphism F :
T2 Ñ T2 representing f . Letting p0 “ πp0q, we can homotope F such that F pp0q “

p0. Lift F to a diffeomorphism rF : R2 Ñ R2 satisfying rF p0q “ 0. Since f P kerpρq,

it follows that rF px`n, y`mq “ rF px, yq ` pn,mq for all px, yq P R2 and pn,mq P Z2.
This implies that the straight-line homotopy

rFt : R2 Ñ R2

rFtpx, yq “ p1 ´ tq rF px, yq ` tpx, yq

projects to a homotopy from F to id, so f “ 1. □

Higher genus. For genus at least 2, there is no simple description of the
mapping class group analogous to Proposition 1.6. Indeed, while there is still a
representation ModpΣq Ñ AutpH1pΣ;Zqq, this representation is far from injective.
Its kernel is known as the Torelli group and is the main subject of this book.

An abuse of notation. In the above proofs, we maintained the distinction
between an element of the mapping class group and a diffeomorphism representing
it. Continuing to do this would seriously complicate our notation, so as is traditional
in the mapping class group literature we will cease to make this distinction (except
in a few cases where this might lead to confusion).

1.2. Dehn twists

We can parlay the fact that ModpAq – Z from Proposition 1.4 above into a
construction of an important class of elements of ModpΣq for an arbitrary surface
Σ.

Dehn twists. Consider a simple closed curve γ on Σ. Let Aγ be a closed
tubular neighborhood of γ, so Aγ – A. There is a natural map ModpAγq Ñ ModpΣq

that extends a mapping class on Aγ to Σ by the identity (this works because we
required that mapping classes act as the identity on the boundary). The image of
a generator of ModpAγq – Z is a Dehn twist. Of course, there are two generators
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Figure 1.3. The effect of a Dehn twist Tγ .

of Z; we will denote by Tγ P ModpΣq the image of the generator of ModpAγq that
has the effect depicted in Figure 1.3 (the other generator goes to T´1

γ ; the mapping
class Tγ is sometimes called a “right-handed Dehn twist” and the mapping class
T´1
γ is sometimes called a “left-handed Dehn twist”).

Properties of Dehn twists. Here are several important properties of Tγ .

(1) The mapping class Tγ does not depend on the choice of N . This follows
from the uniqueness up to isotopy of tubular neighborhoods; see, e.g.,
[Hir94, Theorem 4.5.3].

(2) If γ and γ1 are isotopic simple closed curves, then Tγ “ Tγ1 . This is
immediate once the previous property is established.

(3) If γ is not nullhomotopic, then Tγ is an infinite-order element of ModpΣq;
see [FM12, Chapter 3]. If γ is instead nullhomotopic, then Tγ “ 1.

In light of the second property above, it makes sense to talk about the Dehn twist
about an isotopy class of simple closed curves. In fact, for the most part in this
book we will not distinguish between a simple closed curve and its isotopy class
(this is similar to the fact that we will usually not distinguish between a mapping
class and a diffeomorphism representing that mapping class).

The torus. Let α and β be the simple closed curves on the torus T2 depicted
in Figure 1.2 and let a and b be their homology classes. Recalling from Proposition
1.6 that ModpT2q – SL2pZq, it is easy to see that with respect to the basis ta, bu
for H1pT2;Zq, the Dehn twists Tα and Tβ correspond to the matrices

ˆ

1 1
0 1

˙

and

ˆ

1 0
´1 1

˙

,

respectively.

Generating the mapping class group. Dehn twists were discovered by
Dehn [Deh38] in 1938, but were forgotten until they were rediscovered by Licko-
rish [Lic64] in 1964 (for a while, they were known as “Lickorish twists”). Their
importance is underlined by the following theorem, which was also proven by both
Dehn and Lickorish (at least for closed surfaces).

Theorem 1.7. If Σ is a surface, then ModpΣq is generated by the set of all
Dehn twists.

The proof of Theorem 1.7 is lengthy, so we will omit it (see [FM12] or [Iva02] for
the details).

Finite generation. In fact, even more is true : the mapping class group is
generated by finitely many Dehn twists. For closed surfaces Σg, this was proved



10 1. THE MAPPING CLASS GROUP

Figure 1.4. The Dehn twists about the curves α1, . . . , αg and

γ1, . . . , γg´1 and µ1, µ2 generate Modbg. The figure depicts Σ1
g; to

get the curves on Σg, glue a disc to the boundary component.

by Dehn [Deh38], who found a set of 2gpg ´ 1q Dehn twists that generated Modg.
Lickorish [Lic64] later proved that 3g´1 Dehn twists suffice to generate Modg. The
definitive result in this direction is due to Humphries [Hum79], who found a set of
2g`1 Dehn twists that generate Modg and proved that no smaller set sufficed. One
can show that the same result also holds for surfaces with one boundary component;
in fact, we have the following.

Theorem 1.8. For g ě 2 and 0 ď b ď 1, the group Modbg is generated by the
2g ` 1 Dehn twists Tα1 , . . . , Tαg , Tγ1 , . . . , Tγg´1 , Tµ1 , Tµ2 depicted in Figure 1.4.

Again, the proof is lengthy and thus omitted; see [FM12] or [Iva02] for the details.

Also see [FM12, §4.4.4] for an explicit set of Dehn twists that generate Modbg for
b ě 2.

1.3. The classification of surfaces trick

In this book, the word curve will always mean the homotopy class of a curve.
One of the most important techniques for studying the mapping class group is to
utilize its action on the set of curves on the surface. This section is devoted to an
important trick that we will call the classification of surfaces trick which elucidates
this action.

Single curve. The proof of the following lemma is an easy example of the
classification of surfaces trick.

Lemma 1.9. Let Σ be a surface and let α and α1 be oriented simple closed
curves on Σ. Assume that neither α nor α1 separate the surface. Then there exists
some f P ModpΣq such that fpαq “ α1.

Proof. Let b ě 0 be the number of boundary components of Σ. Let Σα and
Σα1 be the surfaces that result from cutting Σ along α and α1, respectively. Since
neither α nor α1 separate Σ, both Σα and Σα1 are connected surfaces. It is also clear
that χpΣαq “ χpΣα1 q and that both Σα and Σα1 have b` 2 boundary components.
The classification of surfaces therefore says that they are diffeomorphic. Let B1 and
B2 (resp. B1

1 and B1
2) be the boundary components of Σα (resp. Σα1) coming from

α (resp. α1). The orientations of α and α1 induce orientations on the Bi and the
B1
i; order them so that Σ lies to the left of B1 and B1

1 and to the right of B2 and
B1
2. We can then choose an orientation-preserving diffeomorphism ϕ : Σα Ñ Σα1

such that ϕpBiq “ B1
i (as oriented curves) for i “ 1, 2 and such that ϕ matches up

the boundary components of Σα and Σα1 that come from Σ. Gluing the Bi and B1
i
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Figure 1.5. Cutting Σ first along α and then along β causes the
genus to drop by 1 and the number of boundary components to
increase by 1.

back together, we obtain a diffeomorphism ψ : Σ Ñ Σ with ψ|BΣ “ id satisfying
ψpαq “ α1, as desired. □

This has the following corollary.

Corollary 1.10. Let Σ be a surface and let α and α1 be nonseparating simple
closed curves on Σ. Then Tα and Tα1 are conjugate in ModpΣq.

Proof. Orienting the α arbitrarily, Lemma 1.9 says that there exists some
f P ModpΣq such that fpαq “ α1. We then have the following calculation; the first
equality is an easy exercise.

fTαf
´1 “ Tfpαq “ Tα1 □

Handles. Here is another example of the classification of surfaces trick.

Lemma 1.11. Let Σ be a surface and let tα, βu and tα1, β1u be collections of
oriented simple closed curves on Σ. Assume that α and β intersect once with a
positive sign. Similarly, assume that α1 and β1 intersect once with a positive sign.
Then there exists some f P ModpΣq such that fpαq “ α1 and fpβq “ β1.

Proof. Assume that Σ – Σbg. Define Σα,β and Σα1,β1 be the surfaces that
result from cutting Σ along α Y β and α1 Y β1, respectively. As is shown in Figure
1.5, we have Σα,β – Σb`1

g´1. This figure also shows that the boundary component
B of Σα,β coming from α Y β can be divided into four oriented arcs, two of which
glue up to form α and two of which glue up to form β. A similar thing is true for
Σα1,β1 and its new boundary component B1. Using the classification of surfaces, we
can find an orientation-preserving homeomorphism ϕ : Σα,β Ñ Σα1,β1 that matches
up the boundary components coming from Σ and that takes B to B1. Moreover, we
can choose ϕ such that it respects the division of B and B1 into oriented arcs and
takes the arcs corresponding to α and β to the arcs corresponding to α1 and β1,
respectively (this is where we use the fact that the intersections have positive sign;
otherwise, we might not be able to match up the orientations on these arcs). Gluing
B and B1 back together, we obtain a diffeomorphism ψ : Σ Ñ Σ with ψ|BΣ “ id
satisfying ψpαq “ α1 and ψpβq “ β1, as desired. □

Other examples of trick. The trick in the proofs of Lemmas 1.9–1.11 can
be used in a wide variety of situations to show that the mapping class group acts
transitively on collections of submanifolds of a surface that “cut the surface up in
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Figure 1.6. Examples of configurations in Lemmas 1.12–1.14

the same way”. Here are some other examples of it in action. We leave their proofs
as exercises. Figure 1.6 gives examples of the configurations in these lemmas.

Lemma 1.12. Let Σ be a surface and let tα1, . . . , αku and tα1
1, . . . , α

1
ku be col-

lections of oriented simple closed curves on Σ. Assume that the αi are pairwise
disjoint and that α1 Y ¨ ¨ ¨ Y αk does not disconnect Σ. Similarly, assume that the
α1
i are pairwise disjoint and that α1

1 Y ¨ ¨ ¨ Y α1
k does not disconnect Σ. Then there

exists some f P ModpΣq such that fpαiq “ α1
i for 1 ď i ď k.

Lemma 1.13. Let Σ be a closed surface and let γ and γ1 be simple closed curves
on Σ. Assume that γ separates Σ into two subsurfaces S1 and S2 and that γ1

separates Σ into two subsurfaces S1
1 and S1

2. Furthermore, assume that Si – S1
i for

i “ 1, 2. Then there exists some f P ModpΣq such that fpγq “ γ1.

Lemma 1.14. Let Σ be a closed surface and let tγ1, γ2u and tγ1
1, γ

1
2u be collec-

tions of simple closed curves on Σ. Assume that neither γ1 nor γ2 separate Σ but
that γ1 Y γ2 separates Σ into two subsurfaces S1 and S2. Similarly, assume that
neither γ1

1 nor γ1
2 separate Σ but that γ1

1 Y γ1
2 separates Σ into two subsurfaces S1

1

and S1
2. Furthermore, assume that Si – S1

i for i “ 1, 2. Then there exists some
f P ModpΣq such that fpγiq “ γ1

i for i “ 1, 2.

Remark 1.15. In Lemma 1.14, the pairs tγ1, γ2u and tγ1
1, γ

1
2u form what we

will call bounding pairs in Chapter 3.

Remark 1.16. There are also versions of Lemmas 1.13–1.14 for surfaces with
boundary and for oriented curves, but they require small tweaks in their statements;
we invite the reader to figure out the appropriate generalizations.

For the reader who has not seen this idea before, we recommend perusing [FM12,
§1.1.3], which contains many examples of it (we remark that [FM12] calls it the
“change of coordinates principle”).

1.4. The Birman exact sequence and curve stabilizers

The Birman exact sequence is a basic tool that relates the mapping class groups
of surfaces with differing numbers of boundary components. We will use it to
understand the stabilizers in the mapping class group of nonseparating simple closed
curves.

Statement. The form of the Birman exact sequence we will use was first
proved by Johnson [Joh83]. It is a variant on a theorem of Birman [Bir69] which
dealt with punctured surfaces instead of surfaces with boundary.

Theorem 1.17. Let Σ be a surface such that Σ fl Σ1
1 and let β be a boundary

component of Σ. Define pΣ to be the result of gluing a disc to β. Then there is a
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Figure 1.7. The effect of pushing a boundary component β of Σ

about a simple closed curve γ P π1ppΣq is Tγ̃1T
´1
γ̃2

.

short exact sequence

1 ÝÑ π1pU pΣq ÝÑ ModpΣq ÝÑ ModppΣq ÝÑ 1,

where U pΣ is the unit tangent bundle of pΣ.

The map ModpΣq Ñ ModppΣq in Theorem 1.17 is the map which extends mapping
classes over the glued-in disc by the identity. The mapping classes in the kernel

π1pU pΣq Ă ModpΣq “drag” the boundary component β around the surface while

allowing it to rotate; the loop around the fiber in U pΣ corresponds to Tβ . See
[FM12, §4.2.5] for a proof of Theorem 1.17, which we omit.

One-holed torus. The condition Σ fl Σ1
1 in Theorem 1.17 is necessary.

The issue is that the map π1pU pΣq Ñ ModpΣq constructed in Theorem 1.17 is not
injective in this case (for instance, this follows from the explicit formulas below).
The correct statement is as follows.

Theorem 1.18. There is a short exact sequence

1 ÝÑ Z ÝÑ Mod11 ÝÑ Mod1 ÝÑ 1,

where the kernel Z is generated by the Dehn twist about the boundary component of
Σ1

1.

For the proof, see [FM12, p. 57 & Theorem 3.1.9].

Pushing along simple closed curves. Let Σ and β and pΣ be as in

Theorem 1.17. The kernel π1pU pΣq Ă ModpΣq of the exact sequence in Theorem
1.17 is known as the disc-pushing subgroup. We will occasionally need explicit
formulas for elements of it. First, the loop around the fiber of the unit tangent

bundle U pΣ corresponds to the Dehn twist Tβ . As far as other elements go, it is

easiest to deal with their projections to π1ppΣq. Let γ P π1ppΣq be an element that
can be represented by a simple closed curve. Taking the derivative of a smooth

representative of γ, we get a lift γ̃ P π1pU pΣq. Two smooth representatives of γ
which are homotopic are smoothly isotopic, so γ̃ does not depend on the choice of
a smooth representative. We will denote the mapping class in ModpΣq associated

to γ̃ P π1pU pΣq Ă ModpΣq by Pushγ . As is shown in Figure 1.7, we can write

Pushγ “ Tγ̃1T
´1
γ̃2

for two simple closed curves γ̃1 and γ̃2 in Σ that map to the boundary components

of a tubular neighborhood of γ in pΣ. The curve γ̃1 lies to the right of γ and the
curve γ̃2 lies to the left of γ.
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Figure 1.8. On the right is a surface Σg and an oriented nonsep-
arating simple closed curve γ. On the left is the cut-open surface
Σg,γ and a γ-splitting surface S

Stabilizer of nonseparating curve. For some g ě 2, let γ be an oriented
nonseparating simple closed curve on Σg. We will use the Birman exact sequence
to understand the stabilizer pModgqγ in Modg of γ. Define Σg,γ to be the result of
cutting Σg along γ, let Modg,γ be the mapping class group of Σg,γ , and let tB1, B2u be
the boundary components of Σg,γ . There is a surjective map π : Modg,γ Ñ pModgqγ
obtained by gluing B1 and B2 back together (see Figure 1.8)

Remark 1.19. The map π is surjective because γ is oriented; if it were unori-
ented, then the image of π would be an index 2 subgroup of pModgqγ .

The map π is not injective; indeed,

πpTB1q “ πpTB2q “ Tγ ,

so TB1T
´1
B1

P kerpπq. The following lemma says that this is the only thing that goes
wrong.

Lemma 1.20. For g ě 2, let γ be an oriented nonseparating simple closed curve
on Σg. Let tB1, B2u be the boundary components of Σg,γ . Then there is a short exact
sequence

1 ÝÑ Z ÝÑ Modg,γ ÝÑ pModgqγ ÝÑ 1,

where Z is generated by TB1T
´1
B2

.

While the proof of Lemma 1.20 is not hard, it would require a small digression, so
we omit it. See [FM12, Theorem 3.18] for a proof.

Letting pΣg,γ be the surface obtained by gluing a disc to Σg,γ along B1, Theorem
1.17 says that there is a short exact sequence

(1) 1 ÝÑ π1pU pΣg,γq ÝÑ Modg,γ ÝÑ ModppΣg,γq ÝÑ 1.

In this case, it turns out that the Birman exact sequence splits. A γ-splitting
surface is a subsurface S of Σg,γ such that Σg,γz IntpSq is a 3-holed sphere two
of whose boundary components are B1 and B2 (see Figure 1.8). Letting S be a

γ-splitting surface, observe that S – pΣg,γ ; indeed, regarding S as a subsurface

of pΣg,γ via the inclusion Σg,γ ãÑ pΣg,γ , the surface pΣg,γ deformation retracts onto

S. Identifying ModppΣg,γq with ModpSq via this deformation retraction, the map
ModpSq Ñ Modg,γ that extends mapping classes on S by the identity provides a
splitting of (1). We summarize this discussion in the following lemma.

Lemma 1.21. For g ě 2, let γ be an oriented nonseparating simple closed curve

on Σg. Let tB1, B2u be the boundary components of Σg,γ and let pΣg,γ be the surface
obtained by gluing a disc to Σg,γ along B1. Finally, let S be a γ-splitting surface in
Σg,γ . Then we have a decomposition

Modg,γ “ π1ppΣg,γq ¸ ModpSq.
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Figure 1.9. The left hand figure depicts the curves in involved
in the lantern relation Tγ1Tγ2Tγ3Tγ4 “ Tδ1Tδ2Tδ3 . The right hand
figure depicts the relation xyz “ 1 in π1pΣ3

0q which “lifts” to the
lantern relation.

1.5. Some relations between Dehn twists

McCool [McC75] proved that the mapping class group is finitely presentable
(there is also an influential later proof by Hatcher–Thurston [HT80]). See [FM12,
§5.5.3] for a detailed proof of this. While we will not need to know a complete
presentation for the mapping class group, we will need to know three important
families of relations.

Disjointness relation. The first says that Dehn twists about disjoint simple
closed curves commute.

Lemma 1.22 (Disjointness relation). Let Σ be a surface and let γ and γ1 be
disjoint simple closed curves on Σ. Then Tγ commutes with Tγ1 .

Proof. Recall that the support of a diffeomorphism F : Σ Ñ Σ is the clo-
sure of the set tp P Σ | F ppq ‰ idu. Our assumptions imply that we can choose
diffeomorphisms representing Tγ and Tγ1 whose supports are disjoint. This clearly
implies that these diffeomorphisms commute. □

Conjugation. The second reflects the fact that conjugation in ModpΣq

behaves similarly to conjugation in groups of matrices : it “changes coordinates”.
We have already used it in the proof of Corollary 1.10.

Lemma 1.23 (Conjugation relation). Let Σ be a surface and γ be a simple
closed curve on Σ. Then for all f P ModpΣq we have fTγf

´1 “ Tfpγq.

Proof. Obvious. □

Lantern relation. Our final relation is called the lantern relation. It was first
discovered by Dehn [Deh38] in 1938, but was forgotten until it was rediscovered
by Johnson [Joh79] in 1979. It is the most important relation for the study of the
Torelli group, and we will use it many times. The proof we will give was discovered
independently by Margalit–McCammond [MM09] and Putman [Put09].

Lemma 1.24 (Lantern relation). Let Σ be a surface and let γ1, γ2, γ3, γ4, δ1,
δ2, and δ3 be simple closed curves on Σ which are arranged like the curves in Figure
1.9. Then

Tγ1Tγ2Tγ3Tγ4 “ Tδ1Tδ2Tδ3 .
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Proof. The purported relation is supported on a 4-holed sphere, so we can
assume without loss of generality that Σ “ Σ4

0 and that γ1, . . . , γ4 are the boundary

components of Σ. Let pΣ be the result of gluing a disc to γ4 and let x, y, z P π1ppΣq

be the curves depicted in Figure 1.9, so xyz “ 1. The relation xyz “ 1 in π1ppΣq

lifts to a relation

(2) PushzPushyPushx “ T kβ

in π1pU pΣq Ă ModpΣq for some k P Z; the T kβ appears because the loop around the

fiber generates the kernel of the projection π1pU pΣq Ñ π1ppΣq, and the order is re-
versed because functions are composed right-to-left while curves in the fundamental
group are composed left-to-right. Observe that

Pushx “ Tδ3T
´1
γ3 and Pushy “ Tδ2T

´1
γ2 and Pushz “ Tδ1T

´1
γ1 .

Lemma 1.22 implies that the Tγi commute with each other and with the Tδj . We
can thus rearrange the terms in (2) to get

Tγ1Tγ2Tγ3T
k
γ4 “ Tδ1Tδ2Tδ3 .

It is an easy exercise to see that k “ 1. □



CHAPTER 2

The symplectic representation

The Torelli group is the kernel of the action of Modg on H1pΣg;Zq. This
chapter is devoted to a preliminary study of this action. As we will see, it induces
a surjective representation from Modg to Sp2gpZq. As notation, if γ is an oriented
simple closed curve on a surface Σ, then rγs will denote the associated element of
H1pΣ;Zq.

2.1. The algebraic intersection form

We already met the algebraic intersection form îp¨, ¨q when we proved that
ModpT2q – SL2pZq (Proposition 1.6).

Nondegeneracy. For a closed surface Σg, Poincaré duality implies that îp¨, ¨q
is nondegenerate in the sense that the map

H1pΣg;Zq ÝÑ pH1pΣg;Zqq˚

h ÞÑ px ÞÑ îph, xqq

is an isomorphism. Here pH1pΣg;Zqq˚ is the dual Z-module HompH1pΣg;Zq,Zq;

of course, pH1pΣg;Zqq˚ – H1pΣg;Zq. Since the map H1pΣ1
g;Zq Ñ H1pΣg;Zq is

an isomorphism, it follows that îp¨, ¨q is also nondegenerate for a surface with one
boundary component.

Summary. This is summarized in the following lemma. A symplectic form
on a free finite-rank Z-module M is a nondegenerate alternating bilinear form on
M .

Lemma 2.1. For g ě 0 and 0 ď b ď 1, the algebraic intersection form îp¨, ¨q on
H1pΣbg;Zq is a symplectic form.

Remark 2.2. Lemma 2.1 is false for b ě 2; indeed, if b ě 2 and β is an oriented
boundary component of Σbg, then rβs ‰ 0 but îprβs, hq “ 0 for all h P H1pΣbg;Zq.

In other words, rβs is a nonzero element of the kernel of the map H1pΣbg;Zq Ñ

pH1pΣbg;Zqq˚ discussed above, so îp¨, ¨q is degenerate.

Symplectic basis. If M is a free finite-rank Z-module equipped with a sym-
plectic form ωp¨, ¨q, then a symplectic basis for M is a free basis ta1, b1, . . . , ag, bgu

for M such that

ωpai, ajq “ ωpbi, bjq “ 0 and ωpai, bjq “ δij

for all 1 ď i, j ď g. For example, if α1, β1, . . . , αg, βg are the oriented simple closed
curves on Σ1

g depicted in Figure 2.1, then trα1s, rβ1s, . . . , rαgs, rβgsu is a symplectic

17
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basis for H1pΣ1
g;Zq. The following lemma says that these always exist; it implies in

particular that the rank of M is always even.

Lemma 2.3. Let M be a free finite-rank Z-module equipped with a symplectic
form ωp¨, ¨q. Then M has a symplectic basis.

Proof. The proof will be by induction on the rank n of M . The base case is
n “ 0, where the lemma is trivial. Now assume that n ą 0 and that the lemma is
true for all smaller n. Let tx1, . . . , xnu be a free basis for M . The nondegeneracy
of ωp¨, ¨q implies that there exists some b1 P M such that

ωpxi, b1q “ δ1i p1 ď i ď nq.

Set a1 “ x1, so ωpa1, b1q “ 1. Define a surjective homomorphism π :M Ñ xa1, b1y

via the formula

πpxq “ ωpx, b1q ¨ a1 ´ ωpx, a1q ¨ b1.

Clearly π is a split surjection whose kernel is the orthogonal complement of xa1, b1y,
that is, the set

xa1, b1yK :“ tx P M | ωpa1, xq “ ωpb1, xq “ 0u.

It follows that M “ xa1, b1y ‘ xa1, b1yK. It is easy to see that the restriction of
ω to xa1, b1yK is still nondegenerate, so by induction xa1, b1yK has a symplectic
basis ta2, b2, . . . , ag, bgu for some g ě 0. The desired symplectic basis for M is then
ta1, b1, . . . , ag, bgu. □

Corollary 2.4 (Uniqueness of symplectic forms). Let M and M 1 be a rank 2g
free Z-modules equipped with symplectic forms ωp¨, ¨q and ω1p¨, ¨q, respectively. Then
there exists a Z-linear isomorphism ψ :M Ñ M 1 such that

ωpx, yq “ ω1pψpxq, ψpyqq px, y P Mq.

Proof. Let ta1, b1, . . . , ag, bgu (resp. ta1
1, b

1
1, . . . , a

1
g, b

1
gu) be a symplectic basis

for M (resp. M 1) with respect to ωp¨, ¨q (resp. ω1p¨, ¨q). The isomorphism ψ is then
defined via the formulas

ψpaiq “ a1
i and ψpbiq “ b1

i

for 1 ď i ď g. □

2.2. The symplectic representation : statement of surjectivity

We now introduce the symplectic representation of the mapping class group.

The symplectic group. The genus g symplectic group, denoted Sp2gpZq, is
defined as follows. Let M be a rank 2g free Z-module equipped with a symplectic
form ωp¨, ¨q; for instance, M might be H1pΣg;Zq and ωp¨, ¨q might be the algebraic
intersection pairing. Define

SppM,ωq “ tϕ P GLpMq | ωpx, yq “ ωpϕpxq, ϕpyqq for all x, y P Mu Ă GLpMq

Then Sp2gpZq is the subgroup of GL2gpZq obtained by considering SppM,ωq with
respect to a symplectic basis for M . Corollary 2.4 implies that Sp2gpZq is well-
defined.
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Figure 2.1. A geometric symplectic basis on Σ1
3

Remark 2.5. It is also common to order the symplectic basis as

ta1, a2, . . . , ag, b1, b2, . . . , bgu

when defining Sp2gpZq.

Remark 2.6. The calculation we performed right before Proposition 1.6 can
be interpreted as saying that Sp2pZq “ SL2pZq.

The mapping class group. If Σ is a surface, then the action of ModpΣq

on H1pΣ;Zq preserves the algebraic intersection form. For g ě 0 and 0 ď b ď 1,
Lemma 2.1 implies that this yields a representation

Modbg ÝÑ Sp2gpZq.

The following theorem says that this is surjective; it is the main result of this
chapter. It was originally proved by Burkhardt in 1890 [Bur90, pp. 209–212],
who wrote down mapping classes that map to generators of Sp2gpZq that were
previously found by Clebsch–Gordan [CG66]. The first modern proof is due to
Meeks-Patrusky [MP78, Theorem 2], and our proof is a variant of theirs.

Theorem 2.7. For g ě 0 and 0 ď b ď 1, the map Modbg Ñ Sp2gpZq coming

from the action of Modbg on H1pΣbg;Zq is surjective.

The proof of Theorem 2.7 is in §2.5. This is prefaced with two sections of prelimi-
naries.

2.3. Realizing primitive homology classes

The first step towards proving Theorem 2.7 is to determine which elements of
H1pΣbg;Zq can be realized by simple closed curves. An element a of a free abelian
group A is primitive if we cannot write a “ n ¨ a1 for some a1 P A and n P Z
satisfying n ě 2. The earliest proofs of the following theorem that we are aware
of are due to Schafer [Sch76] (who actually deduced it from Theorem 2.7!) and
Meyerson [Mey76]. Our proof is inspired by Meeks–Patrusky [MP78].

Theorem 2.8. For g ě 0 and 0 ď b ď 1, consider some nonzero h P H1pΣbg;Zq.

Then there exists an oriented simple closed curve γ on Σbg with rγs “ h if and only
if h is primitive.

Remark 2.9. If b ě 2, then not all primitive elements of H1pΣbg;Zq can be
realized by oriented simple closed curves. See [MP78] for how to correct the
statement in this case.
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Figure 2.2. The left hand figure shows how to resolve the inter-
sections and self-intersection of the γ1

i; the result is a collection of
disjoint oriented simple closed curves. In the right hand figure, the
surface S lies on the same size of bj1 and bj2 . The simple closed
curves δ on S satisfies rδs “ rbj1s ` rbj2s.

Proof of Theorem 2.8. First assume that such a γ exists and that h “ n¨h1

for some h1 P H1pΣbg;Zq. We will prove that n “ ˘1. Separating curves are

nullhomologous, so γ does not separate Σbg (this uses the fact that 0 ď b ď 1). This

implies that there exists an oriented simple closed curve δ on Σbg that intersects γ

once. Observe that îprγs, rδsq “ ˘1. We conclude that

˘1 “ îprγs, rδsq “ îpn ¨ h1, rδsq “ n ¨ îph1, rδsq,

so n “ ˘1. We remark that this argument first appeared in [Mey76], which
attributes it to Samelson.

Now assume that h is primitive. We will construct γ in two steps.

Step 1. There exist disjoint oriented simple closed curves γ1, . . . , γk in the
interior of Σbg such that h “ rγ1s ` ¨ ¨ ¨ ` rγks.

Clearly we can write h “ rγ1
1s ` ¨ ¨ ¨ ` rγ1

ℓs for some oriented curves γ1
1, . . . , γ

1
ℓ

in the interior of Σbg (not necessarily simple or disjoint). As is shown in Figure 2.2,
we can then “resolve” the intersections and self-intersections of the γ1

i to obtain the
desired set of disjoint oriented simple closed curves.

Step 2. There exists an oriented simple closed curve γ such that rγs “ h.

Using Step 1, we can write

(3) h “ rγ1s ` ¨ ¨ ¨ ` rγks

for some disjoint oriented simple closed curves γ1, . . . , γk in the interior of Σbg.
Choose (3) such that k is as small as possible. We will prove that k “ 1.

Consider any component S of the result of cutting Σbg along the γi. Let

b1, . . . , bm be the boundary components of S that lie in the interior of Σbg, so each
bi equals γji for some 1 ď ji ď k (the ji are not necessarily distinct); orient bi using
the orientation of γji . If m “ 1, then b1 is nullhomologous (this uses the fact that
0 ď b ď 1), so we can discard γi1 from (3), contradicting the minimality of k. Thus
m ą 1. If 1 ď j1 ă j2 ď m are such that the interior of S lies on the same side
of bj1 and bj2 , then γij1 ‰ γij2 and as shown in Figure 2.2 we can replace γij1 and

γij2 in (3) with a single oriented curve δ, again contradicting the minimality of k.
We conclude that the interior of S must lie on different sides of bj1 and bj2 for all
1 ď j1 ă j2 ď m.

The upshot of the above considerations is thatm “ 2 and that S lies on different
sides of b1 and b2. This implies that rγi1s “ rγi2s (here we are again using the fact
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that 0 ď b ď 1). Since this holds for all components S of the result of cutting Σbg
along the γi, we deduce that rγis “ rγjs for all 1 ď i, j ď k, so h “ k ¨ rγ1s. Since h
is primitive, we conclude that k “ 1. □

2.4. Realizing symplectic bases

We now extend Theorem 2.8 to certain systems of curves.

Geometric symplectic bases. Fix g ě 0 and 0 ď b ď 1. A geometric
symplectic basis on Σbg is a set tα1, β1, . . . , αg, βgu of oriented simple closed curves

on Σbg with the following two properties.

‚ For 1 ď i ď g, the curves αi and βi intersect once with a positive sign.
‚ All other pairs of distinct curves in the set are disjoint.

See Figure 2.1. Observe that if tα1, β1, . . . , αg, βgu is a geometric symplectic basis
on Σbg, then trα1s, rβ1s, . . . , rαgs, rβgsu is a symplectic basis for H1pΣbg;Zq.

Realizing symplectic bases. The following proposition says that any sym-
plectic basis can be realized by a geometric symplectic basis.

Proposition 2.10. For g ě 0 and 0 ď b ď 1, consider a symplectic ba-
sis ta1, b1, . . . , ag, bgu for H1pΣbg;Zq. There is then a geometric symplectic basis

tα1, β1, . . . , αg, βgu on Σbg satisfying rαis “ ai and rβis “ bi for 1 ď i ď g.

For the proof of Proposition 2.10, we will need the following lemma.

Lemma 2.11. Let Σ be a surface and let α be an oriented nonseparating simple
closed curve on Σ. Set a “ rαs and let b P H1pΣ;Zq satisfy îpa, bq “ 1. Then we
can find an oriented simple closed curve β on Σ that intersects α once and satisfies
rβs “ b.

Proof. We divide the proof into two steps.

Step 1. We can find an oriented closed curve β1 on Σ (not necessarily simple)
that intersects α once and satisfies rβ1s “ b.

Since α is nonseparating, we can find an oriented simple closed curve ν1 on Σ
that intersects α once with îpa, rν1sq “ 1. Let T Ă Σ be a closed regular neighbor-
hood of α Y ν1, so T is homeomorphic to a 1-holed torus. Also, let S “ Σz IntpT q.
We then have H1pΣ;Zq “ U ‘ V , where U and V are the images of H1pT ;Zq and
H1pS;Zq in H1pΣ;Zq, respectively. Write b “ u` v with u P U and v P V . We thus

have îpa, uq “ 1 and îpa, vq “ 0.
The set ta, rν1su is a basis for U ; write u “ p ¨ a` q ¨ rν1s. Since

1 “ îpa, uq “ îpa, p ¨ a` q ¨ rν1sq “ q,

we have q “ 1. Setting ν “ T pαpν1q, the oriented simple closed curve ν lies in T ,
intersects α once, and satisfies rνs “ u.

Let η be an oriented closed curve on S such that rηs “ v. The homology class
v need not be primitive, so we might not be able to choose η to be simple.

We have b “ rνs ` rηs. The desired closed curve β1 can be obtained by “band-
summing” the curves ν and η as shown in Figure 2.3.

Step 2. We can find an oriented simple closed curve β on Σ that intersects α
once and satisfies rβs “ b.
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Figure 2.3. The left hand figure shows the entire simple closed
curve ν and a segment of the (not necessarily simple) closed curve
η. Let θ be an arc which starts on the left side of ν and ends on
the right side of η and is disjoint from α (see the figure; as shown
here, it might not be possible for θ to be disjoint from η). We can
then “band-sum” ν and η by removing small segments of ν and η
around the endpoints of θ and gluing in two parallel copies of θ;
the result is a (not necessarily simple) closed curve β1 satisfying
rβ1s “ rνs`rηs. The right hand figure shows the segment of β1 that
intersects α plus some segments of β1 that intersect β1. As is shown
there, we can “comb” those intersections towards the intersection
point of α and β1 and then “pass them through α”; the result is a
simple closed curve β2 that intersects α once.

As shown in Figure 2.3.b, we can “comb” all of the self-intersections of β1 to
the point β1 X α and then “pass them through α”. The result is a simple closed
curve β2 on Σ that intersects α once. However, we no longer have rβ2s “ b; instead,
we have rβ2s “ b` n ¨ a for some n P Z. The desired simple closed curve β is then
T´n
α pβ2q. □

Proof of Proposition 2.10. The proof will be by induction on g. The base
case is g “ 0, where the theorem is vacuous. Assume now that g ą 0. Using
Theorem 2.8 and Lemma 2.11, we can find oriented simple closed curves α1 and β1
on Σbg that intersect once and satisfy rα1s “ a1 and rβ1s “ b1. Let T be a closed

regular neighborhood of α1 Y β1, so T is a one-holed torus. Define S “ Σbgz IntpT q.

We then have a decomposition H1pΣbg;Zq “ U‘V , where U is the image of H1pT ;Zq

in H1pΣbg;Zq and V is the image of H1pS;Zq. This decomposition is orthogonal with

respect to îp¨, ¨q. Also, a1, b1 P U . It follows that a2, b2, . . . , ag, bg P V .
The kernel of the map H1pS;Zq Ñ H1pΣbg;Zq (possibly 0) is generated by the

homology class of BT Ă S. Let pS be the result of gluing a disc to S along BT .

There is then a natural isomorphism V – H1p pS;Zq. Using this identification, we

can identify a2, b2, . . . , ag, bg with elements of H1p pS;Zq. The surface pS has the
same number of boundary components as Σbg (i.e. at most 1), so by induction we

can find a geometric symplectic basis tpα2, pβ2, . . . , pαg, pβgu on pS satisfying rpαis “ ai
and rpβis “ bi for 2 ď i ď g. Homotoping the pαi and pβi, we can assume that

they are disjoint from the disc that was glued to S to form pS. They thus are the

images of curves α2, β2, . . . , αg, βg in S Ă Σbg under the inclusion S ãÑ pS. Clearly
tα1, β1, . . . , αg, βgu is the desired geometric symplectic basis. □

2.5. Proof of surjectivity

We are finally ready to prove Theorem 2.7.
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Figure 2.4. All the boundary components of the subsurface S of
Σbg are separating curves; the image of H1pS;Zq in H1pΣbg;Zq is

isomorphic to H1p pS;Zq, where pS is the result of gluing discs to S
along all of its boundary components.

Proof of Theorem 2.7. Let tα1, β1, . . . , αg, βgu be a geometric symplectic
basis on Σbg. Set ai “ rαis and bi “ rβis for 1 ď i ď g, so ta1, b1, . . . , ag, bgu is a

symplectic basis for H1pΣbg;Zq. Consider M P Sp2gpZq. Observe that

Mpa1q,Mpb1q, . . . ,Mpagq,Mpbgq

is a symplectic basis for H1pΣbg;Zq, so Proposition 2.10 says that there exists a

geometric symplectic basis tα1
1, β

1
1, . . . , α

1
g, β

1
gu on Σbg such that rα1

is “ Mpaiq and
rβ1
is “ Mpbiq for 1 ď i ď g. Using the classification of surface trick (see §1.3), we

can find some f P Modbg such that fpαiq “ α1
i and fpβiq “ β1

i for 1 ď i ď g. Clearly
ψpfq “ M . □

2.6. Variants on realizing symplectic bases

This section is a bit of detour : it contains some variants on the results in §2.4
that will be needed in subsequent chapters. The reader is advised to skip reading
it the first time they read this chapter.

Realizing a symplectic basis on a subsurface. If M is a free Z-module
equipped with a symplectic form and V Ă M is a Z-submodule, then we will say
that V is a symplectic subspace ofM if the restriction of the symplectic form onM to
V is symplectic. Fix g ě 0 and 0 ď b ď 1, and let S Ă Σbg be a subsurface. If S has
multiple boundary components, then its algebraic intersection form is degenerate
and the image of H1pS;Zq in H1pΣbg;Zq need not be symplectic. However, if all of

the boundary components of S are separating (i.e. nullhomologous) curves in Σbg,

then the image of H1pS;Zq in H1pΣbg;Zq is symplectic. Indeed, letting pS be the
closed surface obtained by gluing discs to all of the boundary components of S,

the image of H1pS;Zq in H1pΣbg;Zq is easily seen to be isomorphic to H1p pS;Zq; see
Figure 2.4. This leads us to the following result.

Proposition 2.12. For g ě 0 and 0 ď b ď 1, let S Ă Σbg be a subsur-
face. Assume that all of the boundary components of S are separating curves in
Σbg and let U Ă H1pΣbg;Zq be the image of H1pS;Zq in H1pΣbg;Zq. Finally, let
ta1, b1, . . . , ah, bhu be a symplectic basis for U . Then there exist oriented simple
closed curves tα1, β1, . . . , αh, βhu in S Ă Σbg with the following properties.

‚ rαis “ ai and rβis “ bi for all 1 ď i ď h, where these homology classes
are in H1pΣbg;Zq.
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‚ For 1 ď i ď h, the curves αi and βi intersect once.
‚ All other pairs of distinct curves in the set are disjoint.

Proof. Let pS be the closed genus h surface obtained by gluing discs to all of

the boundary components of S, so U – H1p pS;Zq. Proposition 2.10 says that there

exists a geometric symplectic basis tα1, β1, . . . , αh, βhu on pS such that rαis “ ai
and rβis “ bi for 1 ď i ď h. Homotoping the αi and βi, we can assume that they
are disjoint from all the glued-on discs, and thus lie in S. □

Completing a partial geometric symplectic basis. For g ě 0 and
0 ď b ď 1, a partial geometric symplectic basis on Σbg is a set tα1, . . . , αh, β1, . . . , βh1 u

of oriented simple closed curves on Σbg with the following properties.

‚ For 1 ď i ď minph, h1q, the curves αi and βi intersect once with a positive
sign.

‚ All other pairs of distinct curves in the set are disjoint.

We then have the following generalization of Proposition 2.10.

Proposition 2.13. For g ě 0 and 0 ď b ď 1, consider a symplectic basis
ta1, b1, . . . , ag, bgu for H1pΣbg;Zq. Assume that tα1, . . . , αh, β1, . . . , βh1 u is a partial

geometric symplectic basis on Σbg with rαis “ ai for 1 ď i ď h and rβjs “ bj
for 1 ď j ď h1. We can then extend our partial geometric symplectic basis to
a geometric symplectic basis tα1, β1, . . . , αg, βgu on Σbg satisfying rαis “ ai and
rβis “ bi for 1 ď i ď g.

For the proof of Proposition 2.13, we will need the following generalization of
Lemma 2.11.

Lemma 2.14. Let Σ be a surface and let tα1, . . . , αhu be disjoint oriented simple
closed curves on Σ such that α1 Y ¨ ¨ ¨ Y αh does not separate Σ. For 1 ď i ď h, set
ai “ rαis. Let b1 P H1pΣ;Zq satisfy îpa1, b1q “ 1 and îpai, b1q “ 0 for 2 ď i ď h.
Then we can find an oriented simple closed curve β1 on Σ that intersects α1 once,
is disjoint from αi for 2 ď i ď h, and satisfies rβ1s “ b1.

Proof. Let Σ1 Ă Σ be the complement of an open regular neighborhood of
α2 Y ¨ ¨ ¨ Y αh; if Σ – Σbg, then Σ1 – Σb`2h

g´h . Letting α1
1 be α1 regarded as a curve

on Σ1, the curve α1
1 does not separate Σ1. Moreover, it is an easy exercise to see

that the image of H1pΣ1;Zq in H1pΣ;Zq is

xa2, . . . , ahyK “ th P H1pΣ;Zq | îpai, hq “ 0 for 2 ď i ď hu.

In particular, we can find some b1
1 P H1pΣ1;Zq that maps to b1 P H1pΣ;Zq. We

have îprα1
1s, b1

1q “ 1, so Lemma 2.11 implies that we can find an oriented simple
closed curve β1

1 in Σ1 that intersects α1
1 once and satisfies rβ1

1s “ b1. Letting β1 be
the image of β1

1 in Σ under the inclusion Σ1 ãÑ Σ, the curve β1 satisfies the desired
properties. □

Proof of Proposition 2.13. The proof is a straightforward generalization
of the proof of Proposition 2.10, with Lemma 2.14 used in place of 2.11. □

A variant on finding β. The final result we need is the following variant
of Lemma 2.11. In it, the pair of curves tα, α1u form what we will call a bounding
pair in Chapter 3.
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Figure 2.5. A bounding pair tα, α1u contained in a 2-holed torus T .

Lemma 2.15. Let Σ be a surface and let α and α1 be disjoint oriented simple
closed nonseparating curves such that rαs “ rα1s. Set a “ rαs “ rα1s, and let

b P H1pΣ;Zq satisfy îpa, bq “ 1. Then we can find an oriented simple closed curve
β on Σ that intersects both α and α1 once and satisfies rβs “ b.

Proof. The proof is very similar to the proof of Lemma 2.11. There are two
steps.

Step 1. We can find an oriented closed curve β1 on Σ (not necessarily simple)
that intersects both α and α1 once and satisfies rβ1s “ b.

Since rαs “ rα1s, the union α Y α1 must separate the surface. As is shown in
Figure 2.5, we can then find a 2-holed torus T Ă Σ containing α Y α1. Let S be
the component of Σz IntpT q lying to the left of α and S1 be the component lying
to the right. We then have H1pΣ;Zq “ U ‘ V ‘ V 1, where U and V and V 1 are
the images of H1pT ;Zq and H1pS;Zq and H1pS1;Zq in H1pΣ;Zq, respectively. Write

b “ u ` v ` v1 with u P U and v P V and v1 P V 1. We thus have îpa, uq “ 1 and

îpa, vq “ îpa, v1q “ 0.
Let ν1 be an oriented simple closed curve on T that intersects both α and α1

once with a positive sign. The set ta, rν1su is a basis for U ; write u “ p ¨ a` q ¨ rν1s.
Since

1 “ îpa, uq “ îpa, p ¨ a` q ¨ rν1sq “ q,

we have q “ 1. Setting ν “ T pαpν1q, the oriented simple closed curve ν lies in T ,
intersects both α and α1 once, and satisfies rνs “ u.

Let η be an oriented closed curve on S such that rηs “ v. The homology class v
need not be primitive, so we might not be able to choose η to be simple. Similarly,
let η1 be an oriented closed curve on S1 such that rη1s “ v1.

We have b “ rνs ` rηs ` rη1s. Just like in the proof of Lemma 2.11, the desired
closed curve β1 can be obtained by “band-summing” the curves ν and η and η1.

Step 2. We can find an oriented simple closed curve β on Σ that intersects
both α and α1 once and satisfies rβs “ b.

Like like we did in the proof of Lemma 2.11, we can “comb” the self-intersections
of β1 to α and them “pass them through α” (some intersections will be on the left
of α and some on the right; we avoid combing intersections through α1). The result
is an oriented simple closed curve β2 on Σ that intersects both α and α1 once and
satisfies rβ2s “ b ` n ¨ a for some n P Z. The desired oriented simple closed curve
β is then T´n

α pβ2q. □





CHAPTER 3

Basic properties of the Torelli group

We finally come to the Torelli group. This chapter defines the Torelli group
and discusses a number of its basic properties.

3.1. Definition and low-complexity examples

We start by defining the Torelli group.

Definition. For g ě 0 and 0 ď b ď 1, the Torelli group, denoted Ibg , is the

kernel of the action of Modbg on H1pΣbg;Zq. Using Theorem 2.7, we have an exact
sequence

1 ÝÑ Ibg ÝÑ Modbg ÝÑ Sp2gpZq ÝÑ 1.

Just like for Modbg, we will often omit the b when it vanishes. We will also use the
notation IpΣq for the Torelli group of a surface Σ. We emphasize that Σ is allowed
to have at most 1 boundary component.

Remark 3.1. The reader probably wonders why we have not defined the Torelli
group on a surface with multiple boundary components. The issue is that it is not
clear what the correct definition should be. This is related to the fact (see Remark
2.2) that on these surfaces the algebraic intersection pairing is degenerate. One
obvious thing to do would be to simply define it to be the kernel of the action of
the mapping class group on homology, but this turns out not to be particularly well-
behaved. See [Put07] for a discussion of the issues here and for an enumeration
of different reasonable definitions. Our point of view in this book is that the most
important surfaces are the closed surfaces; however, it turns out that many of our
constructions work better on surfaces with one boundary component. We view
surfaces with multiple boundary components as technical tools for understanding
the closed case, and we will only study them when necessary.

Disc, sphere, and torus. The Torelli groups of sufficiently simple surfaces
are trivial.

Lemma 3.2. If Σ is either a sphere S2, a disc D, or a torus T2, then IpΣq “ 1.

Proof. Propositions 1.1 and 1.3 say that ModpDq “ 1 and ModpS1q “ 1, so
the lemma is trivial in those cases. As for the torus, Proposition 1.6 says that the
action of ModpT2q on H1pT2;Zq is faithful, which clearly implies that IpT2q “ 1. □

One-holed torus. The first example of a surface whose Torelli group is
nontrivial is a one-holed torus.

27
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Lemma 3.3. We have I1
1 – Z with generator the Dehn twist Tβ about the

boundary component β of Σ1
1.

Proof. Regarding Σ1
1 as a subsurface of Σ1 with Σ1zΣ1

1 an open disc, there is
a map ψ : Mod11 Ñ Mod1 that extends a mapping class by the identity. Keeping
in mind the equality Sp2pZq “ SL2pZq from Remark 2.6, the symplectic represen-
tations of Mod11 and Mod1 fit into a commutative diagram

Mod11

ψ

�� $$H
HH

HH
HH

HH

Mod1 // SL2pZq

Proposition 1.6 says that the map Mod1 Ñ SL2pZq is an isomorphism, so we con-
clude that I1

1 “ kerpψq. Theorem 1.18 implies that kerpψq – Z with generator
Tβ . □

Higher genus. There is no simple description of Ibg for g ě 2; as we will see,
it is a very large and complicated group. The only case for which we have anything
like a complete description is pg, bq “ p2, 0q. Here a theorem of Mess [Mes92] (see
Theorem 3.14 below) says that I2 is an infinitely generated free group, though this
theorem only gives an implicit description of the free generators. We will carefully
state and prove Mess’s theorem in Chapter 6.

3.2. Generators for Torelli

We now discuss several basic elements of the Torelli group.

Action of Dehn twist on homology. We begin by describing how a Dehn
twist acts on homology.

Lemma 3.4. Let Σ be a surface and let γ be a simple closed curve on Σ. Orient
γ in an arbitrary way. We then have

(4) Tγphq “ h` îprγs, hq ¨ rγs ph P H1pΣ;Zqq.

Remark 3.5. Equation (4) seems to depend on the orientation of γ. However,
changing the orientation of γ replaces rγs with ´rγs and the two minus signs in (4)
cancel, so in reality (4) does not depend on the orientation.

Remark 3.6. The map

h ÞÑ h` îprγs, hq ¨ rγs ph P H1pΣ;Zqq

is often called the symplectic transvection with respect to rγs.

Proof of Lemma 3.4. Using Theorem 2.8, it is enough to prove (4) for h “

rδs, where δ is an oriented simple closed curve on Σ. Homotoping δ, we can assume
that δ is immersed and transverse to γ. Equation (4) now follows from contemplat-
ing the effect of Tγ on δ. Namely, Tγpδq is obtained from δ by splicing in an arc
running parallel to γ for each p P γ X δ. This arc runs in the same direction as γ
if the sign of the intersection point p is positive, and this arc runs in the opposite
direction of γ if the sign of the intersection point p is negative. In homology, this arc
contributes ˘rγs with the sign the same as the sign of the intersection p. Equation
(4) follows. □
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Figure 3.1. Tγ is a separating twist and Tγ1T
´1
γ2 is a bounding

pair map.

Basic elements. From Lemma 3.4, we can obtain some simple elements of
the Torelli group. Let Σ be a surface with at most one boundary component.

‚ If γ is a simple closed curve on Σ such that rγs “ 0, then Lemma 3.4
implies that Tγ acts trivially on H1pΣ;Zq, i.e. that Tγ P IpΣq. A simple
closed curve γ satisfies rγs “ 0 if and only if γ separates Σ into two pieces
(see Figure 3.1); such elements Tγ P IpΣq are therefore called separating
twists.

‚ If γ1 and γ2 are two simple closed curves on Σ such that rγ1s “ rγ2s for
some choice of orientations on the γi, then Lemma 3.4 implies that Tγ1 and
Tγ2 act identically on H1pΣ;Zq, so Tγ1T

´1
γ2 P IpΣq. The simplest such γi

are bounding pairs, which are disjoint nonhomotopic nonseparating simple
closed curves γ1 and γ2 such that γ1 Y γ2 separates Σ into two pieces (see
Figure 3.1); the associated elements Tγ1T

´1
γ2 P IpΣq are called bounding

pair maps.

Remark 3.7. Though technically the boundary component β of Σ1
g does not

separate Σ1
g into two pieces, we nevertheless regard Tβ as a separating twist (of

course, β is homotopic to a curve that separates Σ1
g into two pieces).

Remark 3.8. It is easy to see that there are no bounding pairs on Σ2.

Generating Torelli. Building on work of Birman [Bir71], Powell [Pow78]
proved the following theorem.

Theorem 3.9. For g ě 0 and 0 ď b ď 1, the group Ibg is generated by the set
of all separating twists and all bounding pair maps.

Remark 3.10. Observe that the generating set in Theorem 3.9 is an infinite
generating set.

Remark 3.11. Powell actually only explicitly deals with closed surfaces of
genus at least 3, but his arguments can be easily extended to the general case.

Powell’s proof of Theorem 3.9 relies on difficult combinatorial group theoretic cal-
culations in the group Sp2gpZq. More topological proofs of Theorem 3.9 were later
given by Putman [Put07] and by Hatcher–Margalit [HM12]. We will give a vari-
ant of Hatcher–Margalit’s proof in Chapter 7. That chapter also contains a proof
of the following extension of Theorem 3.9, which is due to Johnson [Joh79]. The
genus of a bounding pair tγ1, γ2u on Σbg with g ě 0 and 0 ď b ď 1 is defined as

follows. Let S1 and S2 be the subsurfaces into which Σbg is divided by γ1 Y γ2. If

b “ 1, then order them so that S2 contains the boundary component of Σbg.

‚ If b “ 1, then the genus of tγ1, γ2u is the genus of S1.
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‚ If b “ 0, then the genus of tγ1, γ2u is the minimal genus of S1 and S2.

The genus of a bounding pair map Tγ1T
´1
γ2 is the genus of its underlying bounding

pair.

Theorem 3.12. For g ě 3 and 0 ď b ď 1, the group Ibg is generated by the set
of all genus 1 bounding pair maps.

Remark 3.13. Theorem 3.12 is false for g “ 2. Indeed, as was mentioned in
Remark 3.8, there are no bounding pair maps in I2. Also, as we will see in §3.5,
the surjection Mod1g Ñ Modg in the Birman exact sequence (see §1.4) restricts to a

surjection I1
g Ñ Ig. This map takes bounding pair maps to bounding pair maps, so

for g “ 2 all bounding pair maps must be in its kernel (and thus I1
2 is not generated

by bounding pair maps).

Finite generation. McCullough–Miller [MM86] proved that I2 is not
finitely generated. As we mentioned at the end of §3.1, Mess [Mes92] later proved
the following.

Theorem 3.14. The group I2 is an infinite rank free group.

We will prove Theorem 3.14 in Chapter 6. We will soon show that there is
a surjection I1

2 Ñ I2 (see Theorem 3.31 below), so the group I1
2 is not finitely

generated either. We summarize this discussion in the following theorem.

Theorem 3.15. Neither I2 nor I1
2 is finitely generated.

In contrast, Johnson [Joh83] proved the following remarkable theorem.

Theorem 3.16. For g ě 3 and 0 ď b ď 1, the group I1
g is finitely generated.

We will give a proof of Theorem 3.16 in Chapter 8 that combines Johnson’s ideas
with some later work of Putman [Put12].

3.3. Torsion

The main result of this section is as follows.

Theorem 3.17. For g ě 0 and 0 ď b ď 1, the group Ibg is torsion-free.

Remark 3.18. The mapping class group of a closed surface contains lots of
torsion; however, the mapping class group of a surface with boundary is itself
torsion-free. See Corollary 3.21 below.

The proof of Theorem 3.17 requires some preliminary results.

Realization by diffeomorphisms. The first preliminary result needed is
the following theorem of Nielsen [Nie43].

Theorem 3.19. For g, b ě 0, every finite-order element of Modbg can be repre-

sented by a finite-order diffeomorphism of Σbg.

For a simple proof of Theorem 3.19 due to Fenchel [Fen50], see [FM12, §13.2].
We remark that a deep generalization of Theorem 3.19 due to Kerckhoff [Ker83]

says that every finite subgroup of Modbg can be represented by a finite group of
diffeomorphisms (this is often called the Nielsen realization problem).

Isolated fixed points. The second result we need is the following lemma.
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Lemma 3.20. Let Σ be a surface and let F : Σ Ñ Σ be a finite-order orientation-
preserving diffeomorphism of Σ such that F ‰ id. Then all of the fixed points of f
are isolated.

Proof. Let n be the order of F and let µ1 be a Riemannian metric on Σ. Set

µ “

n´1
ÿ

k“0

F ˝k
˚ pµ1q.

Then µ is a Riemannian metric on Σ and F is an isometry of pΣ, µq. Let p be a
fixed point of F . With respect to an orthonormal basis of the tangent space to Σ
at p, the derivative of F lies in SO2pRq. If this derivative is the identity, then a
standard exercise in Riemannian geometry says that F “ id; the point here is that
the set of points that are fixed by F and where the derivative of F is the identity
is both open and closed. Since we are assuming that F ‰ id, this cannot happen,
so the derivative of F at p is not the identity. Using the fact that the derivative
lies in SO2pRq, we conclude that the derivative of F at p fixes no nonzero tangent
vectors, which implies that p is an isolated fixed point of F , as desired. □

Corollary 3.21. For g ě 0 and b ě 1, the group Modbg is torsion-free.

Proof. Let f P Modbg be a finite-order element. Theorem 3.19 says that we

can represent f by a finite-order diffeomorphism F : Σbg Ñ Σbg. Since F fixes the
boundary, the fixed points of F are not isolated. Lemma 3.20 then implies that
F “ id, as desired. □

Finite-order diffeomorphisms and homology. The final ingredient in
the proof of Theorem 3.17 is the following theorem, which was originally proved by
Hurwitz [Hur93] in 1893 (in the same paper where he proved the Riemann-Hurwitz
formula and the 84pg ´ 1q-theorem). The proof we will give should probably be
attributed to Lefschetz [Lef26] (though it only appears implicitly in [Lef26, §71]).

Theorem 3.22. For g ě 2, let F : Σg Ñ Σg be a finite-order orientation-
preserving diffeomorphism such that F ‰ id. Then the action of F on H1pΣg;Zq is
nontrivial.

Proof. Lemma 3.20 says that all of the fixed points of F are isolated, so we can
apply the Lefschetz fixed point theorem to it. Since F is an orientation-preserving
diffeomorphism of Σg, the indices of all of its fixed points are 1. Letting N be the
number of fixed points of F , the Lefschetz fixed point theorem implies that

N “ trpF˚ : H0pΣg;Qqq ´ trpF˚ : H1pΣg;Qqq ` trpF˚ : H2pΣg;Qqq.

By assumption, all of these maps are the identity. We thus conclude thatN “ 2´2g.
Since g ě 2, the quantify 2 ´ 2g is negative, a contradiction. □

Remark 3.23. The assumption g ě 2 in Theorem 3.22 is necessary. Indeed, for
some n ě 2 let Fn : T2 Ñ T2 be the diffeomorphism that rotates the first factor of
T2 “ S1 ˆ S2 by 2π{n. Then Fn has order n, but is homotopic to the identity and
thus induces the identity on H1pT2;Zq. Observe that as required by Proposition
1.6, the diffeomorphism Fn defines the trivial element in ModpT2q. Theorem 3.22
implies in particular that if g ě 2, then no element of Diff0pΣgq can have finite
order.
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Putting everything together. We close this section by proving Theorem
3.17.

Proof of Theorem 3.17. Corollary 3.21 says that Mod1g is torsion-free, so

certainly I1
g is torsion-free. It remains to show that Ig is torsion-free. Lemma

3.3 implies that it is enough to deal with the case g ě 2. Consider a nonidentity
torsion element f P Modg. Theorem 3.19 says that f can be represented by a
finite-order diffeomorphism F : Σg Ñ Σg. Theorem 3.22 then implies that F must
act nontrivially on H1pΣg;Zq, so f R Ig, as desired. □

3.4. Action of Torelli on curves and conjugacy classes in Torelli

As we said at the beginning of §1.3, one of our main tools for studying the
mapping class group is its action on the set of simple closed curves. This section is
devoted to the analogue for the Torelli group of the classification of surfaces trick
discussed in §1.3. This trick showed that the mapping class group acted transitively
on submanifolds of the surface that “cut the surface up the same way”. For the
Torelli group, we will have to add appropriate homology information. The proofs
here will be modeled on our proof in Chapter 2 that the symplectic representation
is surjective (Theorem 2.7).

Single curves. Our first result is the following proposition (compare with
Lemma 1.9). It is asserted without proof by Johnson in [Joh80, p. 253]; Johnson
only needed a special case of it, which he proved in [Joh80, Lemma 10]. Our
proof is modeled after [Put07, proof of Lemma 6.2], which proves a more precise
statement that also contains Proposition 3.25 below.

Proposition 3.24. For g ě 0 and 0 ď b ď 1, let α and α1 be oriented simple
closed curves on Σbg. Assume that neither α nor α1 separates Σbg and that rαs “ rα1s.

Then there exists some f P Ibg such that fpαq “ α1.

Proof. Set α1 “ α and α1
1 “ α1 and a1 “ rαs “ rα1s. Extend ta1u to a

symplectic basis ta1, b1, . . . , ag, bgu for H1pΣbg;Zq. Proposition 2.13 implies that
tα1u and tα1

1u can be extended to geometric symplectic bases tα1, β1, . . . , αg, βgu

and tα1
1, β

1
1, . . . , α

1
g, β

1
gu for H1pΣbg;Zq such that

ai “ rαis “ rα1
is and bi “ rβis “ rβ1

is

for 1 ď i ď g. The classification of surfaces trick then can be used to show that
there exists some f P Modbg such that fpαiq “ α1

i and fpβiq “ β1
i for 1 ď i ď g. By

construction, f fixes the basis ta1, b1, . . . , ag, bgu for H1pΣbg;Zq pointwise, so f acts

as the identity on H1pΣbg;Zq and therefore lies in Ibg . □

Variants. The proof of Proposition 3.24 can be used to show many other
similar results. For instance, it goes through without change to prove the following
two propositions (compare with Lemmas 1.12 and 1.11).

Proposition 3.25. For g ě 0 and 0 ď b ď 1, let tα1, . . . , αku and tα1
1, . . . , α

1
ku

be collections of oriented simple closed curves on Σbg. Assume that the αi are pair-
wise disjoint and that α1 Y ¨ ¨ ¨ Y αk does not disconnect Σ. Similarly, assume that
the α1

i are pairwise disjoint and that α1
1 Y ¨ ¨ ¨ Y α1

k does not disconnect Σ. Finally,
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assume that rαis “ rα1
is for 1 ď i ď k. Then there exists some f P Ibg such that

fpαiq “ α1
i for 1 ď i ď k.

Proposition 3.26. For g ě 0 and 0 ď b ď 1, let tα, βu and tα1, β1u be collec-
tions of oriented simple closed curves on Σbg. Assume that α and β intersect once
with a positive sign. Similarly, assume that α1 and β1 intersect once with a positive
sign. Finally, assume that rαs “ rα1s and rβs “ rβ1s. Then there exists some f P Ibg
such that fpαq “ α1 and fpβq “ β1.

Separating curves. For g ě 0 and 0 ď b ď 1, let γ be a separating simple
closed curve on Σbg. We have rγs “ 0; however, it is definitely not the case that Ibg
acts transitively on separating simple closed curves (even ones that cut the surface
up in the same say; see Lemma 1.13). More subtle homological information is
needed.

Let S1 and S2 be the subsurfaces of Σbg on either side of γ. If b “ 1, then order

the Si such that S2 contains the boundary component of Σbg. Let U1 and U2 be

the images of H1pS1;Zq and H1pS2;Zq in H1pΣbg;Zq, respectively. We then have

H1pΣbg;Zq “ U1 ‘ U2. Moreover, U1 and U2 are symplectic subspaces of H1pΣbg;Zq

(see §2.6) which are orthogonal in the sense that îpu1, u2q “ 0 for all u1 P U1 and
u2 P U2. The separating splitting of H1pΣbg;Zq induced by γ is then as follows.

‚ If b “ 1, then it is the ordered pair pU1, U2q; observe that this does not
depend on any choices.

‚ If b “ 0, then it is the unordered pair pU1, U2q. In other words, if b “ 0
then we will identify pU1, U2q and pU2, U1q. This is required since the Si
are not canonically ordered.

With these definitions, we have the following.

Proposition 3.27. For g ě 0 and 0 ď b ď 1, let γ and γ1 be simple closed
separating curves on Σbg. Then there exists some f P Ibg such that fpγq “ γ1 if and

only if γ and γ1 induce the same separating splitting of H1pΣbg;Zq.

Proof. It is clear that γ and γ1 induce the same separating splitting if such an
f exists. Conversely, assume that γ and γ1 induce the same separating splitting of
H1pΣbg;Zq. Let S1 and S2 (resp. S1

1 and S1
2) be the subsurfaces of Σbg on either side

of γ (resp. γ1). If b “ 1, then order the Si and S
1
i such that S2 and S1

2 contain the
boundary component of Σbg; by assumption, the images of H1pSi;Zq and H1pS1

i;Zq

in H1pΣbg;Zq are then the same for i “ 1, 2. If b “ 0, then simply order the Si and

S1
i such that the images of H1pSi;Zq and H1pS1

i;Zq in H1pΣbg;Zq are the same for
i “ 1, 2. Observe that these choices of orderings implies that Si – S1

i for i “ 1, 2.
For i “ 1, 2, let Ui be the common image of H1pSi;Zq and H1pS1

i;Zq in H1pΣbg;Zq,

so H1pΣbg;Zq “ U1 ‘ U2.
Let h be the genus of S1; by construction, h is also the genus of S1

1. Both S2

and S1
2 then have genus g ´ h. Let ta1, b1, . . . , ah, bhu be a symplectic basis for U1

and let tah`1, bh`1, . . . , ag, bgu be a symplectic basis for U2. Applying Proposition
2.12 twice, we can find a geometric symplectic basis tα1, β1, . . . , αg, βgu on Σbg such
that

α1, β1, . . . , αh, βh Ă S1 and αh`1, βh`1, . . . , αg, βg Ă S2
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and such that

rαis “ ai and rβis “ bi p1 ď i ď gq.

Similarly, we can find a geometric symplectic basis tα1
1, β

1
1, . . . , α

1
g, β

1
gu on Σbg such

that

α1
1, β

1
1, . . . , α

1
h, β

1
h Ă S1

1 and α1
h`1, β

1
h`1, . . . , α

1
g, β

1
g Ă S1

2

and such that

rαis “ ai and rβis “ bi p1 ď i ď gq.

Using the classification of surfaces trick (see §1.3), we can find f P Modbg such that
fpγq “ γ1 and such that

fpαiq “ α1
i and fpβiq “ β1

i p1 ď i ď gq.

By construction, f fixes ai and bi for 1 ď i ď g, so f P Ibg . □

This has the following corollary, which was originally proven by Johnson [Joh80].

Corollary 3.28. For g ě 0 and 0 ď b ď 1, let Tγ and Tγ1 be separating twists
on Σbg. Then Tγ and Tγ1 are conjugate in Ibg if and only if γ and γ1 induce the same

separating splitting of H1pΣbg;Zq.

Proof. The separating twists Tγ and Tγ1 are conjugate in Ibg if and only if

there exists some f P Ibg such that fTγf
´1 “ Tγ1 . Since fTγf

´1 “ Tfpγq (see

Lemma 1.23), this holds if and only if there exists some f P Ibg such that fpγq “

γ1. Proposition 3.27 says that this holds if and only if γ and γ1 induce the same
separating splitting of H1pΣbg;Zq. Here we are using the fact that two Dehn twists
are equal if and only if their associated curves are homotopic; see [FM12, Fact
3.6]. □

Bounding pairs. We now turn to the action of the Torelli group on bounding
pairs. Again, the necessary invariant will be the homology of the subsurfaces on
either side of the bounding pair. This will require the following two pieces of
notation. First, if M is a free finite-rank Z-module equipped with a symplectic
form ωp¨, ¨q and x P M , then define xK “ ty P M | ωpx, yq “ 0u. Second, if η is an
oriented simple closed curve on a surface, then η is η with the opposite orientation.

For g ě 0 and 0 ď b ď 1, let tγ1, γ2u be a bounding pair. If b “ 1, then orient
γ1 and γ2 such that the boundary component of Σbg is in the subsurface of Σbg to
the right of γ1 Y γ2; this will ensure that rγ1s “ rγ2s. If b “ 0, then orient γ1 and
γ2 arbitrarily such that rγ1s “ rγ2s. Let S1 be the subsurface of Σbg to the left

of γ1 Y γ2 and S2 be the subsurface of Σbg to their right. For i “ 1, 2 let Ui be

the image of H1pSi;Zq in H1pΣbg;Zq. Clearly U1 and U2 together span rγ1sK and
U1 X U2 “ xrγ1sy. The BP-splitting induced by tγ1, γ2u is as follows.

‚ If b “ 1, then it is the ordered triple prγ1s, U1, U2q. Observe that this does
not depend on any choices.

‚ If b “ 0, then it is the ordered triple prγ1s, U1, U2q. However, since this
depends on a choice of orientation for γ1, we will identify prγ1s, U1, U2q

and p´rγ1s, U2, U1q. With these identifications, this is well-defined.

With these definitions, we have the following.
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Figure 3.2. The bounding pair tγ1, γ2u and the curve δ that in-
tersects both γ1 and γ2 once. The surface S1 is the subsurface of
Σbg on the left of γ1Yγ2 and T1 is the complement in S1 of a regular
neighborhood of γ1 Y pδXS1q Y γ2. Similarly, S2 is the subsurface
of Σbg on the right of γ1 Y γ2 and T2 is the complement in S2 of a
regular neighborhood of γ1 Y pδ X S2q Y γ2.

Proposition 3.29. For g ě 0 and 0 ď b ď 1, let tγ1, γ2u and tγ1
1, γ

1
2u be

bounding pairs on Σbg. Then there exists some f P Ibg such that fpγiq “ γ1
i for

i “ 1, 2 if and only if tγ1, γ2u and tγ1
1, γ

1
2u induce the same BP-splitting.

Proof. It is clear that tγ1, γ2u and tγ1
1, γ

1
2u induce the same BP-splitting if

such an f exists. Conversely, assume that tγ1, γ2u and tγ1
1, γ

1
2u induce the same

BP-splitting. Orient the γi as in the definition of a BP-splitting, so rγ1s “ rγ2s and
if b “ 1 then the boundary component of Σbg lies in the subsurface of Σbg to the
right of γ1 Y γ2. Orient the γ1

i in a similar way; if b “ 0, then make the choice of
orientation that assures that rγ1s “ rγ1

1s (if b “ 1, then this is automatic).
Let the common BP-splitting of tγ1, γ2u and tγ1

1, γ
1
2u be prγ1s, U1, U2q. Let S1

and S2 (resp. S1
1 and S1

2) be the subsurfaces of Σbg to the left and to the right of

γ1 Y γ2 (resp. γ1
1 Y γ1

2), respectively. By definition, for i “ 1, 2 the subspace Ui of
H1pΣbg;Zq is the image of both H1pSi;Zq and H1pS1

i;Zq in H1pΣbg;Zq.

Let d P H1pΣbg;Zq be such that îpd, rγ1sq “ îpd, rγ1
1sq “ 1. Using Lemma 2.15,

we can find oriented simple closed curves δ and δ1 such that rδs “ rδ1s “ d and such
that δ (resp. δ1) intersects both γ1 and γ2 (resp. γ1

1 and γ1
2) once. For i “ 1, 2 define

Ti to be the complement in Si of an open regular neighborhood of γ1 YpδXSiqYγ2;
see Figure 3.2. Similarly, for i “ 1, 2 define T 1

i to be the complement in S1
i of an

open regular neighborhood of γ1
1 Y pδ1 XS1

iq Y γ2. Observe that all of the boundary
components of Ti and T

1
i are separating curves in Σbg. As we discussed in §2.6, this

implies that the image Vi (resp. V
1
i ) of H1pTi;Zq (resp. H1pT 1

i ;Zq) in H1pΣbg;Zq is a
symplectic subspace.

The key to our proof now is the observation that for i “ 1, 2 we have Vi “ V 1
i ;

indeed, these are both equal to tx P Ui | îpx, dq “ 0u. Moreover, as is clear from
Figure 3.2, if T1 and T 1

1 have genus h, then T2 and T 1
2 have genus g ´ h ´ 1. Let

ta1, b1, . . . , ah, bhu be a symplectic basis for V1 “ V 1
1 and let tah`2, bh`2, . . . , ag, bgu

be a symplectic basis for V2 “ V 1
2 ; the set

ta1, b1, . . . , ah, bh, d, rγ1s, ah`2, bh`2, . . . , ag, bgu

is then a symplectic basis for H1pΣbg;Zq. Using Proposition 2.12, we can find the
following.

‚ Simple closed curves tα1, β1, . . . , αh, βhu in T1 such that rαis “ ai and
rβis “ bi for 1 ď i ď h.
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‚ Simple closed curves tα1
1, β

1
1, . . . , α

1
h, β

1
hu in T 1

1 such that rα1
is “ ai and

rβ1
is “ bi for 1 ď i ď h.

‚ Simple closed curves tαh`2, βh`2, . . . , αg, βgu in T2 such that rαis “ ai
and rβis “ bi for h` 2 ď i ď g.

‚ Simple closed curves tα1
h`2, β

1
h`2, . . . , α

1
g, β

1
gu in T 1

2 such that rα1
is “ ai

and rβ1
is “ bi for h` 2 ď i ď g.

The intersection patterns of these curves will be such that the sets

tα1, β1, . . . , αh, βh, δ, γ1, αh`2, βh`2, . . . , αg, βgu

and

tα1
1, β

1
1, . . . , α

1
h, β

1
h, δ

1, γ1
1, α

1
h`2, β

1
h`2, . . . , α

1
g, β

1
gu

are both geometric symplectic bases for H1pΣbg;Zq. The classification of surfaces

trick then implies that there exists some f P Modbg such that fpαiq “ α1
i and

fpβiq “ β1
i for 1 ď i ď g with i ‰ h` 1 and such that

fpδq “ δ1 and fpγ1q “ γ1
1 and fpγ2q “ γ1

2.

Since by construction f pointwise fixes a symplectic basis for H1pΣbg;Zq, we have

that f P Ibg , and we are done. □

This has the following corollary, which was originally proven by Johnson [Joh80].

Corollary 3.30. For g ě 0 and 0 ď b ď 1, let Tγ1T
´1
γ2 and Tγ1T

´1
γ2 be

bounding pair maps on Σbg. Then Tγ1T
´1
γ2 and Tγ1

1
T´1
γ1
2

are conjugate in Ibg if and

only if tγ1, γ2u and tγ1
1, γ

1
2u induce the same BP-splitting.

Proof. The bounding pair maps Tγ1T
´1
γ2 and Tγ1

1
T´1
γ1
2

are conjugate in Ibg if

and only if there exists some f P Ibg such that

fTγ1T
´1
γ2 f

´1 “ Tγ1
1
T´1
γ1
2
.

Since

fTγ1T
´1
γ2 f

´1 “ Tfpγ1qT
´1
fpγ2q

,

this holds if and only if there exists some f P Ibg such that fpγ1q “ γ1
1 and fpγ2q “ γ1

2.
Proposition 3.27 says that this holds if and only if tγ1, γ2u and tγ1

1, γ
1
2u induce the

same BP-splitting. □

3.5. Closed surfaces vs surfaces with boundary

We close this chapter by discussing the relationship between the Torelli groups
on closed surfaces and on surfaces with boundary. Recall that for the mapping class
group, this is given by the Birman exact sequence (see Theorem 1.17). There is a
similar result for the Torelli group.

Theorem 3.31. For g ě 2, there is a short exact sequence

1 ÝÑ π1pUΣgq ÝÑ I1
g ÝÑ Ig ÝÑ 1.

Proof. Our proof builds on the proof of Lemma 3.3 above. Theorem 1.17 says
that there is a short exact sequence

(5) 1 ÝÑ π1pUΣgq ÝÑ Mod1g
ψ

ÝÑ Modg ÝÑ 1.
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Regarding Σ1
g as a subsurface of Σg with ΣgzΣ1

g an open disc, recall that the map

ψ : Mod1g Ñ Modg in (5) is the map that extends mapping classes by the identity.

The symplectic representations of Mod1g and Modg fit into a commutative diagram

Mod1g

ψ

�� $$H
HH

HH
HH

HH

Modg // Sp2gpZq

It follows this that kerpψq “ π1pUΣgq is contained in I1
g . Since ψ is surjective, it

also follows that the image of ψ|I1
g
is Ig. Summing up, (5) restricts to a short exact

sequence
1 ÝÑ π1pUΣgq ÝÑ I1

g ÝÑ Ig ÝÑ 1,

as desired. □
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Introduction to Part 2

In Chapter 3, we stated without proof the following four fundamental theorems
about the combinatorial group theory of the Torelli group.

‚ Birman and Powell’s theorem [Bir71, Pow78] asserting that the Torelli
group is generated by separating twists and bounding pair maps (Theorem
3.9).

‚ Johnson’s theorem [Joh79] asserting that in genus at least 3 the Torelli
group is generated by bounding pair maps (Theorem 3.12).

‚ Mess’s theorem [Mes92] asserting that the genus 2 Torelli group is an
infinite rank free group (Theorem 3.14).

‚ Johnson’s theorem [Joh83] asserting that the Torelli group is finitely gen-
erated when the genus is at least 3 (Theorem 3.16).

This part of the book is devoted to the proofs of these four results.

Results needed later. A reader encountering the Torelli group for the
first time might want to take the results of this part of the book on faith and
skip immediately to Parts 3 and 4, which cover the Johnson homomorphism and
connections to 3-manifolds. In fact, for the vast majority of Parts 3 and 4 the
only result needed from Part 2 is the fact that the Torelli group is generated by
separating twists and bounding pair maps. There are only two exceptions to this.

‚ Chapter 13 of Part 3 is devoted to proving a theorem of Johnson [Joh85a]
which says that the subgroup of the Torelli group generated by separating
twists is exactly the kernel of the Johnson homomorphism. This needs
two additional results from Part 2. The first is the decomposition theorem,
which is a technical result proved in Chapter 7 that describes how the
genus g Torelli group is “built” from lower-genus pieces. The second is a
theorem from Chapter 5 which describes the stabilizer in the Torelli group
of a nonseparating simple closed curve.

‚ Chapter 18 of Part 4 is devoted to proving a theorem of Johnson [Joh85b]
which gives the abelianization of the Torelli group. This chapter has the
same set of prerequisites as Chapter 13.

Outline. The outline of this part of the book is as follows. We begin with
two technical chapters. Chapter 4 discusses the complex of reduced cycles, which
is a space encoding all the ways that a fixed homology class can be written as a
cycle on the surface, and Chapter 5 describes the stabilizer in the Torelli group
of a nonseparating simple closed curve. We then prove Theorem 3.14 in Chapters
6, Theorems 3.9 and 3.12 in Chapter 7 (which also contains the decomposition
theorem), and Theorem 3.16 in Chapter 8.
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CHAPTER 4

The complex of cycles

This chapter is devoted to the complex of reduced cycles on a surface, which
is a space that encodes all the ways that a fixed homology class can be written as
a cycle. This complex was introduced by Bestvina–Bux–Margalit [BBM10], who
used it to calculate the cohomological dimension of the Torelli group and to give a
topological proof of a theorem of Mess [Mes92] that says that I2 is an infinitely
generated free group. We will give this proof of Mess’s theorem in Chapter 6. We
will also use the complex of reduced cycles to prove the decomposition theorem in
Chapter 7, which is basic structural result about the Torelli group that we will use
to prove many things.

The main result in this chapter is Theorem 4.14, which asserts that the complex
of reduced cycles is contractible. Our proof follows the “second proof” of this fact
from [BBM10]. See [HM12] for an alternate exposition of it.

Throughout this section, Σ is a closed surface and x P H1pΣ;Zq is a fixed
primitive element.

4.1. Basic definitions

We will first define the complex of cycles as a set and then discuss its topology.

Multicurves and weighted multicurves. An oriented multicurve γ on
Σ is an unordered collection γ1 Y ¨ ¨ ¨ Y γk of disjoint oriented nonnullhomotopic
simple closed curves which are pairwise non-homotopic (as unoriented curves, i.e.
we do not allow one of the γi to be homotopic to another γj but with a reversed
orientation). We will not distinguish between homotopic oriented multicurves. A
submulticurve of an oriented multicurve γ is an oriented multicurve each of whose
curves is also a curve in γ.

A weighted oriented multicurve is a formal expression c1γ1 ` ¨ ¨ ¨ ` ckγk with
γ :“ γ1 Y ¨ ¨ ¨ Y γk an oriented multicurve and c1, . . . , ck P R. The ordering of the
γi in this expression does not matter. The number ci is the weight of γi and the
support of c1γ1`¨ ¨ ¨`ckγk is the submulticurve of γ composed of all of the γi whose
weights are nonzero. We will identify two weighted oriented multicurves that differ
by inserting or deleting oriented curves of weight 0. The homology class represented
by c1γ1 ` ¨ ¨ ¨ ` ckγk is c1rγ1s ` ¨ ¨ ¨ ` ckrγks P H1pΣ;Zq. We will call c1γ1 ` ¨ ¨ ¨ ` ckγk
a positively weighted oriented multicurve if all the weights ci are nonnegative.

Complex of unreduced cycles as a set. The complex of unreduced cycles,

denoted pCxpΣq, is the set of positively weighted oriented multicurves representing

the fixed primitive homology class x. We will soon define a topology on pCxpΣq.
Intuitively, one moves around in this topology by continuously varying the weights
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Figure 4.1. Example of multicurves γ whose associated cells
Xxpγq are compact 1-dimensional polyhedra. Under each multi-
curve is how to write x as a linear combination of the multicurves.
The points in the interior of the left edge are tγ1 ` sγ2 ` sγ2 with
s, t ě 0 and t` s “ 1. The points in the interior of the right edge
are p3t` sqγ1 ` 2tγ2 ` p2t` 2sqγ3 with s, t ě 0 and s` t “ 1.

Figure 4.2. Examples of multicurves γ whose associated cells
Xxpγq are noncompact 1-dimensional polyhedra. Under each mul-
ticurve is how to write x as a linear combination of the multicurves.

in positively weighted oriented multicurves while keeping the represented homology
class constant. When one of the weights goes to 0, that curve disappears.

Cells. Let γ be some oriented multicurve on Σ. The cell associated to γ,

denoted Xxpγq, is the subset of pCxpΣq consisting of positively weighted oriented
multicurves representing x whose support is a submulticurve of γ. We will say
that Xxpγq is nondegenerate if it contains a positively weighted oriented multicurve
whose support is equal to γ. Writing γ “ γ1Y¨ ¨ ¨Yγk, there is an inclusion of Xxpγq

into Rkě0 that takes c1γ1`¨ ¨ ¨`ckγk to pc1, . . . , ckq. This inclusion defines a topology
on Xxpγq; in fact, it endows Xxpγq with the structure of a (not necessarily compact)
polyhedron, possibly empty. This structure does not depend the ordering of the γi.
If γ1 is a submulticurve of γ, then Xxpγ1q is in a natural way a subpolyhedron of
Xxpγq. See Figures 4.1–4.3 for some examples of cells.

Topology on complex of unreduced cycles. If γ is an oriented multicurve

on Σ, then Xxpγq can be regarded as a subset of pCxpΣq. We will give pCxpΣq the

weak topology with regards to the Xxpγq. In other words, a set U Ă pCxpΣq is open
if and only if U X Xxpγq is open for all oriented multicurves γ.

Complex of reduced cycles. We will say that a cell Xxpγq is reduced if
it is compact. Below in Lemma 4.4 we will give an easy-to-check characterization
of when a cell is reduced. We will call a positively weighted oriented multicurve

c P pCxpΣq with support γ reduced if Xxpγq is reduced. The complex of reduced cycles,



4.2. BASIC PROPERTIES OF CELLS 45

Figure 4.3. Examples of multicurves γ whose associated cells
Xxpγq are compact 2-dimensional polyhedra. Under each multi-
curve is how to write x as a linear combination of the multicurves.
The points in the interior of the triangle are t1γ1 ` t2γ2 ` t3γ3 with
t1, t2, t3 ě 0 and t1 ` t2 ` t3 “ 1. The points in the interior of the
square are tγ1 ` sγ2 ` sγ3 ` t1γ4 ` s1γ5 ` s1γ6 with t, t1, s, s1 ě 0
and t ` s “ 1 and t1 ` s1 “ 1. We remark that one can also find
cells that are pentagons, hexagons, etc.

denoted CxpΣq, is the subset of pCxpΣq consisting of reduced positively weighted ori-
ented multicurves representing x. The reduced cells endow CxpΣq with the structure
of a polyhedral complex.

4.2. Basic properties of cells

We now discuss some basic properties of cells. Throughout this section, γ “

γ1 Y ¨ ¨ ¨ Y γk is a fixed oriented multicurve on Σ such that Xxpγq is nondegenerate.

Zero sets. Define Zpγq to be the set of all weighted oriented multicurves
c1γ1 ` ¨ ¨ ¨ ` ckγk that represent 0 P H1pΣ;Zq. Just like for Xxpγq, we can identify
Zpγq with a subset (in fact, a linear subspace) of Rk. Since we are assuming that
Xxpγq is nondegenerate, under these identifications Xxpγq is the intersection of an
affine subset of Rk parallel to Zpγq with the positive orthant Rkě0.

Generators and relations for zero sets. Let R be a subsurface of Σ
whose boundary components (considered as unoriented curves) lie in γ. Letting
1 ď i1 ă i2 ă ¨ ¨ ¨ ă ip ď k be the indices such that the boundary components of R
are γi1 , . . . , γip , define

BR “ ˘γi1 ` ¨ ¨ ¨ ` ˘γip ,

where the signs reflect whether or not the orientation of γij agrees or not with the
orientation it acquires from R. Clearly BR P Zpγq. We then have the following.

Lemma 4.1. Let γ be an oriented multicurve on Σ. Let R1, . . . , Rℓ be the
connected subsurfaces of Σ obtained by cutting Σ along γ. Then Zpγq is generated by
tBR1, . . . , BRℓu, and the only relation between these generators is BR1 `¨ ¨ ¨`BRℓ “

0.

This lemma has the following corollary.
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Figure 4.4. The result Σ{γ of collapsing a multicurve to a point.
For i “ 1, 2, the surface Ri can both be obtained from a torus by
identifying two of its points together.

Corollary 4.2. Let γ be an oriented multicurve on Σ such that Xxpγq is
nondegenerate. Let ℓ ě 1 be the number of components of Σ cut along γ. Then
Xxpγq is an pℓ´ 1q-dimensional (not necessarily compact) polyhedron.

Proof of Lemma 4.1. We can identify Zpγq with the kernel of the map
H1pγ;Zq Ñ H1pΣ;Zq. The long exact sequence in homology associated to the
pair pΣ, γq therefore induces an exact sequence

H2pΣ;Zq ÝÑ H2pΣ{γ;Zq
π

ÝÑ Zpγq ÝÑ 0.

Letting Ri be the image of Ri in Σ{γ (see Figure 4.4), we have an element rRis P

H2pΣ{γ;Zq satisfying πprRisq “ BRi. The group H2pΣ{γ;Zq is the free abelian
group with basis trR1s, . . . , rRℓsu, and the generator rΣs of H2pΣ;Zq – Z maps to
rR1s ` ¨ ¨ ¨ ` rRℓs. The lemma follows. □

Vertices. We now give a concrete description of the vertices of pCxpΣq (which
of course coincide with the vertices of CxpΣq).

Lemma 4.3. The vertices of pCxpΣq consist of c1γ1`¨ ¨ ¨`ckγk, where γ1Y¨ ¨ ¨Yγk
is an oriented multicurve on Σ that does not separate Σ and the ci are positive
integers such that

c1rγ1s ` ¨ ¨ ¨ ` ¨ ¨ ¨ ckrγks “ x.

Proof. Consider a point c “ c1γ1 ` ¨ ¨ ¨ ` ckγk of pCxpΣq. Assume that none of
the ci vanish, so the support of c is γ “ γ1 Y ¨ ¨ ¨ Y γk. The cell Xxpγq is therefore

nondegenerate. The point c is a vertex of pCxpΣq exactly when Xxpγq is 0-dimensional
(and hence consists of the single point c). Corollary 4.2 says that this holds if and
only if γ1 Y ¨ ¨ ¨ Y γk does not separate Σ. It remains to prove that if c is a vertex,
then each ci is an integer.

Consider some 1 ď i ď k. Since γ1 Y ¨ ¨ ¨ Y γk does not separate Σ, we can find
an oriented simple closed curve δ on Σ that intersects γi once with a positive sign
and is disjoint from γj for 1 ď j ď k with j ‰ i. We then have

ci “ îprδs, c1rγ1s ` ¨ ¨ ¨ ` ckrγksq “ îprδs, xq P Z;

the final inequality follows from the fact that x P H1pΣ;Zq. □

Criterion for being reduced. We now prove the following simple descrip-
tion of when a cell is reduced (compare with the examples in Figure 4.2).
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Lemma 4.4. Let γ “ γ1 Y ¨ ¨ ¨ Y γk be a multicurve such that that Xxpγq is
nondegenerate. The cell Xxpγq is reduced if and only if there does not exist 1 ď

i1 ă ¨ ¨ ¨ ă ip ď k such that rγi1s ` ¨ ¨ ¨ ` rγips “ 0.

Proof. If there exist 1 ď i1 ă ¨ ¨ ¨ ă ip ď k such that rγi1s ` ¨ ¨ ¨ ` rγips “ 0,
then fixing some point c P Xxpγq we have an infinite ray

tc` tpγi1 ` ¨ ¨ ¨ ` γipq | t ě 0u Ă Xxpγq.

Thus Xxpγq is noncompact, and hence not reduced.
We will prove the contrapositive of the other implication of the lemma. Assume

that Xxpγq is nonreduced, i.e. not compact. We first prove that there exist real
numbers c1, . . . , ck ě 0 (not all 0) such that c1rγ1s`¨ ¨ ¨`ckrγks “ 0. Since Xxpγq is
a noncompact polyhedron, it must contain an infinite ray. Let c1 “ c1

1γ1 `¨ ¨ ¨`c1
kγk

be the initial point of this ray and let c2 “ c2
1γ1 ` ¨ ¨ ¨ ` c2

kγk be some other point
on this ray. For 1 ď i ď k, set ci “ c2

i ´ c1
i. We thus have

c1rγ1s ` ¨ ¨ ¨ ` ckrγks “ pc1
1rγ1s ` ¨ ¨ ¨ ` c1

krγksq ´ pc2
1rγ1s ` ¨ ¨ ¨ ` c2

krγksq “ x´ x “ 0.

Moreover, the points

tpc1
1 ` tc1qγ1 ` ¨ ¨ ¨ ` pc1

k ` tckqγk | t ě 0u

all lie in Xxpγq, i.e. c1
i ` tci ě 0 for all t ě 0 and all 1 ď i ď k. We conclude that

ci ě 0, as desired.
Let R1, . . . , Rℓ be the connected subsurfaces of Σ obtained by cutting Σ along

γ. Lemma 4.1 implies that there exists some d1, . . . , dℓ P R such that

c1γ1 ` ¨ ¨ ¨ ` ckγk “ d1BR1 ` ¨ ¨ ¨ dℓBRℓ.

Since BR1 ` ¨ ¨ ¨ ` BRℓ “ 0, we can add a large positive constant E to each di and
ensure that di ą 0 for 1 ď i ď ℓ. Set d “ maxtd1, . . . , dℓu, and assume that the Rj
are ordered such that d1 “ ¨ ¨ ¨ “ dr “ d and dr`1, . . . , dℓ ă d. Since not all the ci
are 0 and BR1 ` ¨ ¨ ¨ ` BRℓ “ 0, we must have r ă ℓ. Setting R “ R1 Y ¨ ¨ ¨ YRr, the
surface R is thus a proper subsurface of Σ, so BR ‰ 0. Observe that

c1γ1 ` ¨ ¨ ¨ ` ckγk “ dBR ` dr`1BRr`1 ` ¨ ¨ ¨ ` dℓBRℓ.

Each γi occurs as the boundary of exactly two of the Rj . Since dj ă d for r ` 1 ď

j ď ℓ and ci ě 0 for all 1 ď i ď k, the coefficients of all of the γi which appear in
BR must be `1 (as opposed to ´1). In other words,

BR “ γi1 ` ¨ ¨ ¨ ` γip

for some 1 ď i1 ă ¨ ¨ ¨ ă ip ď k, as desired. □

4.3. Prerequisites for contractibility

As we said at the beginning of this chapter, our main result will be that the com-
plex CxpΣq is contractible. This will be proven in the next section after we discuss
some preliminary results. The heart of our proof will be an explicit deformation

retraction of pCxpΣq to a point; we will then deduce that CxpΣq is contractible by

giving an explicit (and fairly simple) deformation retraction of pCxpΣq to CxpΣq. To

construct a deformation retraction of pCxpΣq to a point, we will construct canonical

“straight lines” between any two points in pCxpΣq. This will be done via a parame-

terization of pCxpΣq by a set of differential forms; see the map Λ constructed below.
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While the entirety of this set of differential forms is not convex, it is close enough
to being convex that we can use it to get the desired “straight lines”.

Hyperbolic geometry. This proof is the one place in this book where we
will use a tiny amount of hyperbolic geometry. Recall that a hyperbolic metric is a
Riemannian metric with constant sectional curvature ´1. These exist on all closed
surfaces whose genus is at least 2. Fixing a hyperbolic metric on Σ, the following
three facts then hold.

‚ Every nonnullhomotopic simple closed curve on Σ is homotopic to a unique
simple geodesic.

‚ Any two distinct simple geodesics on Σ intersect transversely.
‚ Let γ and γ1 be disjoint nonnullhomotopic simple closed curves on Σ.
Assume that γ and γ1 are not homotopic to each other. Then the geodesics
that are homotopic to γ and γ1 are disjoint.

See [FM12, §1.1] for this and much more.

Cleaning up curves. If γ1Y¨ ¨ ¨Yγk is a collection of disjoint oriented simple
closed curves on Σ and c1, . . . , ck P R, then c1γ1 ` ¨ ¨ ¨ ` ckγk is not necessarily a
positively weighted oriented multicurve : some of the ci might be negative, some of
the γi might be homotopic to each other (possibly with opposite orientations), and
some of the γi might be nullhomotopic. However, by discarding the nullhomotopic
γi, reversing the orientations of some of the γi (and changing the signs of the
corresponding ci), and collecting together the homotopic γi, we obtain a canonical
positively weighted oriented multicurve c. We will say that c is obtained by cleaning
up c1γ1 ` ¨ ¨ ¨ ` ckγk. This definition extends in an obvious way if some of the γi
are oriented 1-submanifolds with multiple components.

Maps to circle. Consider a smooth map f : Σ Ñ S1. For any regular
value p P S1 of f , the pullback f´1ppq is an oriented 1-submanifold of Σ. We will
say that f represents the associated element rf´1ppqs of H1pΣ;Zq; this makes sense
since rf´1ppqs “ rf´1pqqs for any two regular values p, q P S1. This latter assertion
follows from the fact that if λ is an oriented arc of S1 with oriented boundary p´ q,
then f´1pλq is a subsurface whose oriented boundary is f´1ppq\´f´1pqq. Another
way of describing rf´1ppqs is that it is the element of H1pΣ;Zq which is Poincaré
dual to f˚prS1sq P H1pΣ;Zq. This can be derived from the relationship between cup
products on cohomology and intersection products on homology; see, e.g., [Bre97,
§VI.12].

Weighted multicurve from map to circle. Now assume that f : Σ Ñ S1

represents x P H1pΣ;Zq and has finitely many critical values. These critical values
divide S1 into arcs λ1, . . . , λn. Normalize S1 such that its circumference is 1. Setting
ci “ lengthpλiq, we thus have c1 ` ¨ ¨ ¨ ` cn “ 1. For all 1 ď i ď n, let qi be an
arbitrary point in the interior of λi and let δi “ f´1pqiq. Since rδis “ x for all
1 ď i ď n, we have

c1rδ1s ` ¨ ¨ ¨ ` cqrδns “ pc1 ` ¨ ¨ ¨ ` cnqrxs “ rxs.

Define Ψpfq P pCxpΣq to be the result of cleaning up c1δ1 ` ¨ ¨ ¨ ` cnδn. The element
Ψpfq appears to depend on the choice of the qi; however, different choices of qi will
yield homotopic δi, and thus Ψpfq is well-defined.
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Globalizing the construction. Define FxpΣ, S1q to be the space of smooth
maps Σ Ñ S1 representing x which have finitely many critical values. Give
FxpΣ, S1q the C8-topology. The above construction yields a map Ψ : FxpΣ, S1q Ñ
pCxpΣq.

Lemma 4.5. The map Ψ : FxpΣ, S1q Ñ pCxpΣq is continuous.

Proof. As f moves around FxpΣ, S1q, the critical values of f move continu-
ously around S1. The 1-submanifolds of Σ used to define Ψpfq therefore also move
homotopically around in Σ. When two critical values come together (causing one
of the arcs used to define Ψpfq to disappear), the weight on the corresponding
submanifold of Σ shrinks to 0. □

The following two lemmas show that Ψ is insensitive to certain deformations of its
input.

Lemma 4.6. Let r : S1 Ñ S1 be a rotation. Then for all f P FxpΣ, S1q we have
Ψpfq “ Ψpr ˝ fq.

Proof. Obvious. □

Lemma 4.7. Let ft P FxpΣ, S1q be a continuous family of maps for t P r0, 1s.
Assume that the critical values of ft and ft1 are equal for all t, t1 P r0, 1s. Then
Ψpf0q “ Ψpf1q.

Proof. Let λ1, . . . , λn be the arcs into which S1 is divided by the common
critical values of the ft, and set ci “ lengthpλiq. For 1 ď i ď n, let qi be an
arbitrary point in the interior of λi. Finally, for 0 ď t ď 1 let γiptq “ f´1

t pqiq.
The key observation is that the curve γiptq depends continuously on t, so γip0q is
homotopic to γip1q. Thus

c1γ1p0q ` ¨ ¨ ¨ ` cnγnp0q “ c1γ1p1q ` ¨ ¨ ¨ ` cnγnp1q,

and the lemma follows. □

Constructing maps using one-forms. To make the above results useful,
we need a way of constructing elements of FxpΣ, S1q. Consider a smooth closed
1-form ω on Σ which is Poincaré dual to x P H1pΣ;Zq. In other words,

ż

h

ω “ îpx, hq ph P H1pΣ;Zqq.

For all basepoints p0 P Σ, we can define a smooth map Φpω, p0q : Σ Ñ S1 as follows.
Regard S1 as R{Z. The for any q P Σ, we define Φpω, p0qpqq to be the image of

ş

α
ω

in S1, where α is a smooth path on Σ from p0 to q. The fact that ω is Poincaré
dual to x implies that the integral of ω around any closed loop is an integer, so this
is well-defined. The critical points of Φpω, p0q are exactly the zeros of ω.

Define ΩxpΣq to be the set of smooth closed 1-forms ω on Σ with the following
two properties.

‚ ω is Poincaré dual to x P H1pΣ;Zq.
‚ The zero set of ω has finitely many connected components.

Endow ΩxpΣq with the C8-topology. The above discussion is summarized in the
following lemma.
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Figure 4.5. An ϵ-strip.

Lemma 4.8. There exists a continuous map Φ : ΩxpΣq ˆ Σ Ñ FxpΣ, S1q.

Proof. The only new assertion here is the continuity of Φ, but this is obvious
from its definition. □

Changing the basepoint p0 has the following effect on Φpω, p0q.

Lemma 4.9. Let ω P ΩxpΣq and p0, p
1
0 P Σ. Then Φpω, p1

0q “ r˝Φpω, p0q, where
r : S1 Ñ S1 is a rotation.

Proof. We can take r to be a rotation of S1 by
ş

α
ω, where α is a smooth

path on Σ from p1
0 to p0. □

Combining the constructions. Define a map Λ : ΩxpΣq Ñ pCxpΣq by
setting Λpωq “ ΨpΦpω, p0qq, where p0 P Σ is an arbitrary base point. Lemmas 4.6
and 4.9 show that Λpωq does not depend on the choice of p0. The main properties
of Λ are contained in the following two lemmas.

Lemma 4.10. The map Λ : ΩxpΣq Ñ pCxpΣq is continuous.

Proof. An immediate consequence of Lemmas 4.5 and 4.8. □

Lemma 4.11. For 0 ď t ď 1, let ωt P ΩxpΣq be a continuous family of 1-
forms. Assume that we can find a set tp0, . . . , pℓu of points on Σ with the following
properties.

‚ For all 0 ď t ď 1, the set tp0, . . . , pℓu consists of exactly one point in each
connected component of the zero set of ωt.

‚ For all 1 ď i ď ℓ, there exists an arc αi in Σ connecting p0 to pi such that
ş

αi
ωt “

ş

αi
ωt1 for all 0 ď t, t1 ď 1.

Then Λpω0q “ Λpω1q.

Proof. By construction, for all 0 ď t ď 1 the critical values of Φpωt, p0q are
exactly the images in S1 “ R{Z of the set t0,

ş

α1
ωt, . . . ,

ş

αℓ
ωtu. The lemma thus

follows from Lemma 4.7. □

Example I : single curve. We now give the first of two examples of the
above techniques. Let γ be an oriented simple closed curve on Σ such that rγs “ x.
We will construct some ω P ΩxpΣq such that Λpωq “ γ. Assume that we have fixed a
hyperbolic metric on Σ. Homotoping γ, we can assume that it is a geodesic. Param-
eterize the annulus A in polar coordinates as tpr, θq | 1 ď r ď 3 and 0 ď θ ă 2πu.
For ϵ ą 0, an ϵ-strip map around γ is an embedding ι : A ãÑ Σ with the following
properties.
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‚ The map ι takes the oriented “core” curve tpr, θq | r “ 2, 0 ď θ ă 2πu of
A to γ, parameterized at constant speed.

‚ For all angles 0 ď θ0 ă 2π, the map ι takes the oriented line segment
tpr, θ0q | 1 ď r ď 3u in A to a geodesic segment of length 2ϵ that inter-
sects γ orthogonally with a positive sign. Again, this geodesic segment is
parameterized at constant speed.

See Figure 4.5. For ϵ ą 0 sufficiently small these exist and are unique up to
precomposition with a rotation of A. The image A of ι will be called an ϵ-strip
around γ. Define µ : R Ñ R to be the function

µpxq “

#

1
ş8

´8 e´1{p1´pz´2q2qdz

şx

0
e´1{p1´pz´2q2qdz if x P r1, 3s,

0 if x R r1, 3s.

Thus µ is a smooth nonnegative function of total integral 1 which is supported on
r1, 3s. There is a smooth closed 1-form µprqdr on A. We can therefore define a
smooth closed 1-form ω on Σ via the formulas

ω|A “ ι˚pµprqdrq and ω|ΣzA “ 0.

We will call ω the ϵ-strip form dual to γ. It is clear that ω represents rγs “ x.
Additionally, we have the following lemma

Lemma 4.12. With the notation as above, we have Λpωq “ γ.

Proof. Fix a basepoint p0 P ΣzA. Regarding S1 as R{Z, it is then clear from
the definitions that Φpω, p0q : Σ Ñ S1 is the map

Φpω, p0qpqq “

#

şr

1
µprqdr if q “ ιpr, θq P A with pr, θq P A,

0 if q R A.

In particular, the only critical value of Φpω, p0q is 0, and the preimage under Φpω, p0q

of a regular value q1 P p0, 1q Ă S1 is a loop of the form tιpr1, θq | 0 ď θ ă 2πu for
some 1 ă r1 ă 3. This loop is homotopic to γ, so we conclude that

Λpωq “ ΨpΦpω, p0qq “ 1 ¨ λ “ λ,

as desired. □

Example II : multicurve. We now generalize the previous example. Let
c “ c1γ1 ` ¨ ¨ ¨ ` ckγk be an arbitrary positively weighted oriented multicurve on Σ
which represents x. Again assume that we have fixed a hyperbolic metric on Σ and
that each γi is a geodesic. Let ϵ ą 0 be small enough that there are ϵ-strips around
each γi which are pairwise disjoint. For 1 ď i ď k let ωi be the ϵ-strip form dual to
γi, so ωi represents rγis. Finally, define ω “ c1ω1 ` ¨ ¨ ¨ ` ckωk. It is then an easy
exercise in the definitions to see that ω represents c1rγ1s ` ¨ ¨ ¨ ` ckrγks. Moreover,
we have the following generalization of Lemma 4.12.

Lemma 4.13. With the notation as above, we have Λpωq “ c.

Proof. For 1 ď i ď k, let Ai be the ϵ-strip around γi. Pick a basepoint
p0 P Σz Yk

i“1 Ai. Just like in the proof of Lemma 4.12, the map ΦpΣ, p0q : Σ Ñ S1

takes p0 to 0 P S1 “ R{Z, takes each component of Σz Yk
i“1 Ai to a critical value,

and takes Ai to an arc of S1 “ R{Z of length ci (starting and ending at a critical
value; observe that this arc can contain critical values in its interior). Let λ1, . . . , λn
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be the arcs into which S1 is divided by the critical values, let di “ lengthpλiq, and
let qi be an arbitrary point in the interior of λi. Define δi “ ΦpΣ, p0q´1pqiq, so Λpωq

is the result of cleaning up

(6) d1δ1 ` ¨ ¨ ¨ ` dnδn.

It is clear that Yn
j“1δj Ă Yk

i“1Ai.
Fix some 1 ď i ď k. The components of δ1 Y ¨ ¨ ¨ Y δn lying in Ai consist of a

set of curves each of which is homotopic to γi. From (6), each of these curves has
a weight from among the numbers d1, . . . , dn. It is easy to see that these weights
add up to ci. The lemma follows. □

4.4. Contractibility

We finally prove the following theorem of Bestvina–Bux–Margalit [BBM10].
In its proof, we will use all of the notation introduced in §4.3.

Theorem 4.14. Let Σ be a closed surface and let x P H1pΣ;Zq be a primitive
vector. Then CxpΣq is contractible.

Proof. The theorem has no content if the genus of Σ is 0 since in that case
H1pΣ;Zq “ 0 contains no primitive vectors. If the genus of Σ is 1, then Σ contains no
oriented multicurves with more than one component. The complex CxpΣq therefore
is a discrete set of points, one for each homotopy class of oriented simple closed
curve γ with rγs “ x. Theorem 2.8 says that there is at least one such curve,
and Proposition 3.24 says that the Torelli group IpΣq acts transitively on them.
However, Lemma 3.2 says that IpΣq “ 1. We conclude that if the genus of Σ is 1,
then CxpΣq consists of exactly one point and is hence contractible.

We can therefore assume without loss of generality that Σ has genus at least 2,
which allows us to fix a hyperbolic metric on Σ. The proof of the theorem now has
two steps.

Step 1. The space pCxpΣq is contractible.

Using Theorem 2.8, we can find an oriented simple closed curve γ0 on Σ such
that rγ0s “ x. Homotoping γ0, we can assume that it is a hyperbolic geodesic. We

will construct an explicit homotopy ft : pCxpΣq Ñ pCxpΣq such that f0 “ id and such

that f1pcq “ γ0 for all c P pCxpΣq. This construction is divided into three substeps.
In the first, we construct ft on a fixed cell Xxpγq. This construction depends on a
parameter ϵ ą 0; the second substep shows that in fact its output is independent
of ϵ. The final substep shows how to piece together the maps on the various cells
to define ft.

Substep 1.1. Let γ be an oriented multicurve such that Xxpγq is nondegenerate.

For all ϵ ą 0 sufficiently small, we construct a homotopy f ϵγ,t : Xxpγq Ñ pCxpΣq such
that f ϵγ,0 is the inclusion and f ϵγ,1pcq “ γ0 for all c P Xxpγq.

Write γ “ γ1 Y ¨ ¨ ¨ Y γk. Homotoping the γi, we can assume that they are all
hyperbolic geodesics. For 0 ď i ď k, let Aϵi be an ϵ-strip around γi. Choosing ϵ ą 0
small enough, we can assume that that the following hold.

‚ For 1 ď i ă j ď k, we have Aϵi XAϵj “ H.
‚ For 1 ď i ď k, the ϵ-strips Aϵ0 and Aϵi intersect transversely as in Figure
4.6.
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Figure 4.6. Left : Two transverse ϵ-strips. Right : The arc αi
crosses some of the ϵ-strips.

For 0 ď i ď k, let ωϵi be the ϵ-strip form dual to γi. For a point c1γ1 ` ¨ ¨ ¨ ` ckγk
of Xxpγq and some 0 ď t ď 1, the 1-form

(7) tωϵ0 ` p1 ´ tqc1ω
ϵ
1 ` ¨ ¨ ¨ ` p1 ´ tqckω

ϵ
k

represents x. Moreover, the following hold.

‚ For t “ 0, the zero set of (7) is the complement of Aϵ1 Y ¨ ¨ ¨ YAϵk.
‚ For 0 ă t ă 1, the zero set of (7) is the complement of Aϵ0 Y ¨ ¨ ¨ Y Aϵk
(this follows from our assumptions on the intersections of Aϵ0 and Aϵi for
1 ď i ď k).

‚ For t “ 1, the zero set of (7) is the complement of Aϵ0.

In particular, the zero set of (7) has finitely many components. The upshot of all
of this is that (7) is an element of ΩxpΣq for all 0 ď t ď 1. We can therefore define

a function f ϵγ,t : Xxpγq Ñ pCxpΣq via the formula

f ϵγ,tpc1γ1 ` ¨ ¨ ¨ ` ckγkq “ Λptωϵ0 ` p1 ´ tqc1ω
ϵ
1 ` ¨ ¨ ¨ ` p1 ´ tqckω

ϵ
kq.

Lemma 4.10 implies that f ϵγ,t is continuous (both as a function and as a homotopy).
Also, it follows from Lemma 4.13 that f ϵγ,0 is the inclusion and f ϵγ,1pcq “ γ0 for all
c P Xxpγq.

Substep 1.2. Let γ be an oriented multicurve such that Xxpγq is nondegenerate

and let ϵ, ϵ1 ą 0 be small enough that f ϵγ,t and f
ϵ1

γ,t are defined. Then f ϵγ,t “ f ϵ
1

γ,t.

Without loss of generality, ϵ1 ă ϵ. As in Substep 1.1, write γ “ γ1 Y ¨ ¨ ¨ Y γk
with γi a hyperbolic geodesic for 1 ď i ď k. Fix some c1γ1 ` ¨ ¨ ¨ ` ckγk P Xxpγq

and some 0 ď t0 ď 1. Our goal is to show that

(8) f ϵγ,t0pc1γ1 ` ¨ ¨ ¨ ` ckγkq “ f ϵ
1

γ,t0pc1γ1 ` ¨ ¨ ¨ ` ckγkq.

To simplify our notation, we will deal with the case where 0 ă t0 ă 1; the other
cases are similar.

We now set up some notation. For 0 ď i ď k let Aϵi be an ϵ-strip around γi.
Also, for 0 ď i ď k and ϵ1 ď e ď ϵ let ωei be the e-strip form dual to γi. Finally, for
ϵ1 ď e ď ϵ let

ωe “ tωe0 ` p1 ´ tqc1ω
e
1 ` ¨ ¨ ¨ ` p1 ´ tqckω

e
k.

The assertion of (8) is thus equivalent to the assertion that Λpωϵq “ Λpωϵ
1
q.

We will prove this using Lemma 4.11, whose conditions we now verify. First, by
construction the differential forms ωe depend continuously on e. Let tp0, . . . , pℓu
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be a set of points on Σ that contains exactly one point in the interior of each
component of

Σz

k
ď

i“0

Aϵi .

Clearly tp0, . . . , pℓu also contains exactly one point in the interior of each component
of

Σz

k
ď

i“0

Aei

for each ϵ1 ď e ď ϵ. As we said in Substep 1.1, these are exactly the components
of the zero set of ωe (this is where we use the fact that 0 ă t0 ă 1). Finally, for
1 ď i ď ℓ let αi be any smooth arc from p0 to pi that crosses the γi transversely.
Letting îpαi, γjq be the algebraic intersection number between the arc αi and the
simple closed curve γj , it is clear that for 1 ď i ď ℓ and ϵ1 ď e ď ϵ we have

ż

αi

ωe “ t̂ipαi, γ0q `

k
ÿ

j“1

p1 ´ tqciîpαi, γjq.

See Figure 4.6. As this does not depend on e, the conditions of Lemma 4.11 are
satisfied and we conclude that Λpωϵq “ Λpωϵ

1
q, as desired.

Substep 1.3. We construct a homotopy ft : pCxpΣq Ñ pCxpΣq such that f0 “ id

and such that f1pcq “ δ0 for all c P pCxpΣq.

If γ is any oriented multicurve such that Xxpγq is nondegenerate, then using

Substep 1.2 we can write fγ,t : Xxpγq Ñ pCxpΣq for f ϵγ,t, where ϵ ą 0 is an sufficiently

small number. To show that the fγ,t piece together to give a function ft : pCxpΣq Ñ

pCxpΣq, it is enough to show that if γ and γ1 are any oriented multicurves such that
Xxpγq and Xxpγ1q are nondegenerate, then fγ,t and fγ1,t agree on the intersection

of Xxpγq and Xxpγ1q in pCxpΣq. If this intersection is nonempty, then it is exactly
Xxpγ2q, where γ2 is the oriented multicurve consisting of all oriented simple closed
curves that appear in both γ and γ1. But it is clear from their definitions that if
ϵ ą 0 is small enough that all three of f ϵγ,t and f

ϵ
γ1,t and f

ϵ
γ2,t are defined, then all

three of them agree on Xxpγ2q.

Step 2. The space pCxpΣq deformation retracts to CxpΣq Ă pCxpΣq.

Consider a point c “ c1γ1 ` ¨ ¨ ¨ ` ckγk in pCxpΣq. Discarding some the the γi,
we can assume that ci ą 0 for all 1 ď i ď k. We will write down a canonical (i.e.
independent of all choices) path from c to CxpΣq. It will be clear that this path
depends continuously on c and that it is the constant path if c P CxpΣq.

If c R CxpΣq, then the cell Xxpγq is not reduced. Lemma 4.4 therefore implies
that there exists some subsurface R of Σ such that

BR “ γi1 ` ¨ ¨ ¨ ` γip

for some 1 ď i1 ă ¨ ¨ ¨ ă ip ď k. Let R1, . . . , Rq be all such subsurfaces. It follows
that

BR1 ` ¨ ¨ ¨ ` BRq “ d1γ1 ` ¨ ¨ ¨ ` dkγk

for some di ě 0 (not all 0). Setting T “ mintci{di | di ą 0u, we have a path

t ÞÑ c´ tpBR1 ` ¨ ¨ ¨ ` BRqq
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in pCxpΣq defined for 0 ď t ď T . At the endpoint of this path, the coefficient of at
least one of the γi has become 0. Repeat this process until c ends up in CxpΣq. □





CHAPTER 5

Stabilizers of simple closed curves

Let γ be an oriented nonseparating simple closed curve on Σg. This chapter is
devoted to the stabilizer pIgqγ of γ in Ig. Most of the hard work here is devoted
to understanding the symplectic representation of the stabilizer pModgqγ of γ in
the mapping class group. This lands in the stabilizer in Sp2gpZq of the homology
class rγs P H1pΣg;Zq, and §5.1 is devoted to understanding this stabilizer subgroup.
Next, in §5.2 we discuss the mapping class group, and finally in §5.3 we discuss the
Torelli group. The results in this chapter are due to van den Berg [vdB03] and
Putman [Put07].

5.1. Stabilizers in the symplectic group

Pick a symplectic basis ta1, b1, . . . , ag, bgu for H1pΣg;Zq. Using this basis, we
will identify H1pΣg;Zq with Z2g. The goal of this section is to understand the
stabilizer subgroup pSp2gpZqqbg of bg.

Special linear group. As motivation, we begin by discussing an analogous
stabilizer subgroup in SLnpZq. Let te⃗1, . . . , e⃗nu be the standard basis for Zn. We
then have

pSLnpZqqe⃗n “ t

¨

˚

˚

˚

˚

˝

A
0
...

0
c1 ¨ ¨ ¨ cn´1 1

˛

‹

‹

‹

‹

‚

| A P SLn´1pZq, c1, . . . , cn´1 P Zu.

This decomposes as

(9) pSLnpZqqe⃗n “ Zn´1 ¸ SLn´1pZq,

where SLn´1pZq is embedded in SLnpZq in the usual way and

Zn´1 “ t

¨

˚

˚

˚

˚

˝

I
0
...

0
c1 ¨ ¨ ¨ cn´1 1

˛

‹

‹

‹

‹

‚

| c1, . . . , cn´1 P Zu.

The action of SLn´1pZq on the abelian group Zn´1 is the obvious one. The associ-
ated projection ρ : pSLnpZqqe⃗n Ñ SLn´1pZq can be described as follows. Consider
some ϕ P pSLnpZqqe⃗n . For v P Zn´1, we have ϕpvq “ v1 ` pe⃗n for some v1 P Zn´1

and p P Z. We then have that ρpϕqpvq “ v1. From this point of view, we see that
the kernel Zn´1 of ρ is exactly the subgroup of all ϕ P pSLnpZqqe⃗n such that for all
v P Zn´1, we have ϕpvq “ v ` pe⃗n for some p P Z.

57
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Symplectic group. We now return to the symplectic group. We begin with
the following lemma. Identify Z2pg´1q with the subgroup xa1, b1, . . . , ag´1, bg´1y of
Z2g.

Lemma 5.1. Consider ϕ P pSp2gpZqqbg . Then for all v P Z2pg´1q, we have

ϕpvq “ v1 ` pbg for some v1 P Z2pg´1q and p P Z.

Proof. Write ϕpvq “ v1 ` p1ag ` pbg, where v
1 P Z2pg´1q and p, p1 P Z. We

then have

0 “ îpv, bgq “ îpϕpvq, ϕpbgqq “ îpv1 ` p1ag ` pbg, bgq “ p1,

as desired. □

We now define a homomorphism π : pSp2gpZqqbg Ñ Sp2pg´1qpZq as follows. Consider

ϕ P pSp2gpZqqbg and v P Z2pg´1q. Using Lemma 5.1, write ϕpvq “ v1 ` pbg with

v1 P Z2pg´1q and p P Z. We then define πpϕqpvq “ v1. It is easy to see that π is
a homomorphism whose image lies in Sp2pg´1qpZq. Define Kg “ kerpπq. Thus Kg

is the subgroup of pSp2gpZqqbg consisting of all ϕ P pSp2gpZqqbg such that for all

v P Z2pg´1q, we have ϕpvq “ v`pbg for some p P Z. We have a short exact sequence

1 ÝÑ Kg ÝÑ pSp2gpZqqbg
π

ÝÑ Sp2pg´1qpZq ÝÑ 1

which splits via the standard inclusion Sp2pg´1qpZq ãÑ pSp2gpZqqbg . We thus have
proved the following proposition.

Proposition 5.2. If ta1, b1, . . . , ag, bgu is a symplectic basis for H1pΣg;Zq,
then we have pSp2gpZqqbg “ Kg ¸ Sp2pg´1qpZq.

The kernel. Unlike in SLnpZq, the kernel group Kg is not abelian. Rather,
we will soon see that it is 2-step nilpotent. The key to this is the following lemma.

Lemma 5.3. Consider ϕ P Kg. We then have ϕpagq “ w ` ag ` qbg for some

w P Z2pg´1q and q P Z. Moreover, for v P Z2pg´1q we have ϕpvq “ v ` îpv, wqbg.

Proof. We can write ϕpagq “ w`q1ag`qbg for some w P Z2pg´1q and q, q1 P Z.
Then

1 “ îpag, bgq “ îpϕpagq, ϕpbgqq “ îpw ` q1ag ` qbg, bgq “ q1,

as desired. For the second part of the lemma, we know by the definition of Kg that

for v P Z2pg´1q we have ϕpvq “ v ` pbg for some p P Z. We then have

0 “ îpv, agq “ îpϕpvq, ϕpagqq “ îpv ` pbg, w ` ag ` qbgq “ îpv, wq ´ p,

so p “ îpv, wq. □

For w P Z2pg´1q and q P Z, define ϕw,q : Z2g Ñ Z2g via the formulas

ϕw,qpagq “ w ` ag ` qbg and ϕw,qpbgq “ bg

and

ϕw,qpvq “ v ` îpv, wqbg pv P Z2pg´1qq.

It is clear that ϕw,q P Kg, and by Lemma 5.3 every element of Kg is of the form ϕw,q
for some unique w P Z2pg´1q and q P Z. We now make the following calculation.
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Lemma 5.4. For w1, w2 P Z2pg´1q and q1, q2 P Z, we have

ϕw1,q1ϕw2,q2 “ ϕw1`w2,q1`q2`îpw2,w1q.

Proof. Using the definition of the ϕwi,qi , we calculate as follows.

ϕw1,q1pϕw2,q2pagqq “ ϕw1,q1pw2 ` ag ` q2bgq

“ pw2 ` îpw2, w1qbgq ` pw1 ` ag ` q1bgq ` q2bg

“ pw1 ` w2q ` ag ` pq1 ` q2 ` îpw2, w1qqbg.

The lemma follows. □

We can now prove the following.

Proposition 5.5. There is a nonsplit central extension

1 ÝÑ Z ÝÑ Kg ÝÑ Z2pg´1q ÝÑ 1,

where the central Z consists of tϕ0,q | q P Zu.

Proof. Using Lemma 5.4, we can define a homomorphism π : Kg Ñ Z2pg´1q

via the formula πpϕw,qq “ w. The kernel of π is exactly tϕ0,q | q P Zu, which is
in the center of Kg by Lemma 5.4. To see that the resulting central extension is
not split, it is enough to observe that Kg is not abelian, which is immediate from
Lemma 5.4. □

Remark 5.6. One might thing that a splitting Z2pg´1q Ñ Kg can be defined
by the formula w ÞÑ ϕw,0. However, the formulas in Lemma 5.4 show that this is
not actually a homomorphism. For instance,

ϕb1,0ϕa1,0 “ ϕa1`b1,1.

5.2. The symplectic representation of Modg,γ

We now turn to the mapping class group. Fix g ě 2, and let γ be an oriented
nonseparating simple closed curve on Σg.

Cut open surface. We begin by recalling the notation and results from §1.4.
Recall that Σg,γ is the surface obtained by cutting Σg along γ and Modg,γ is the
mapping class group of Σg,γ . Letting tB1, B2u be the boundary components of Σg,γ ,
Lemma 1.20 says that there is a short exact sequence

(10) 1 ÝÑ Z ÝÑ Modg,γ ÝÑ pModgqγ ÝÑ 1,

where Z is generated by TB1T
´1
B2

. Recall that a γ-splitting surface in Σg,γ is a
subsurface S of Σg,γ such that Σg,γzS is a 3-holed sphere two of whose boundary

components are tB1, B2u. Fix a γ-splitting surface S. Letting pΣg,γ be the result of
gluing a disc to Σg,γ along B1, Lemma 1.21 says that there is a decomposition

(11) Modg,γ “ π1pU pΣg,γq ¸ ModpSq.

One should view (11) as being analogous to Proposition 5.2 above.

Symplectic representation. The map H1pΣg,γ ;Zq Ñ H1pΣg;Zq induced by
the map Σg,γ Ñ Σg that glues B1 and B2 back together is injective, and we will iden-
tify H1pΣg,γ ;Zq with its image in H1pΣg;Zq. Also, the map H1pS;Zq Ñ H1pΣg,γ ;Zq

induced by the inclusion S ãÑ Σg,γ is injective, and we will identify H1pS;Zq with
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Figure 5.1. The various surfaces involved in the proof of Lemma 5.7

its image in H1pΣg,γ ;Zq Ă H1pΣg;Zq. Choose a symplectic basis ta1, b1, . . . , ag, bgu

for H1pΣg;Zq such that bg “ rγs and such that ta1, b1, . . . , ag´1, bg´1u is a symplec-
tic basis for H1pS;Zq Ă H1pΣg;Zq. Composing the surjection Modg,γ Ñ pModgqγ
with the symplectic representation Modg Ñ Sp2gpZq, we obtain a homomorphism

ψ : Modg,γ ÝÑ pSp2gpZqqbg .

Semidirect product decompositions and the symplectic representa-
tion. Proposition 5.2 says that there is a decomposition

(12) pSp2gpZqqbg “ Kg ¸ Sp2pg´1qpZq.

Our first result says that ψ “respects” the semidirect product decompositions (11)
and (12).

Lemma 5.7. We have ψpπ1pU pΣg,γqq Ă Kg and ψpModpSqq Ă Sp2pg´1qpZq.

Proof. The fact that ψpModpSqq Ă Sp2pg´1qpZq is an immediate consequence

of the fact that the set ta1, b1, . . . , ag´1, bg´1u is a symplectic basis for H1pS;Zq Ă

H1pΣg;Zq.

We now prove that ψpπ1pU pΣg,γqq Ă Kg. To keep the various surfaces con-
structed in this part of the proof straight, we recommend that the reader consult
Figure 5.1. We showed in Lemma 5.1 that pSp2gpZqqbg preserves the subspace
H1pΣg,γ ;Zq “ xa1, b1, . . . , ag´1, bg´1, bgy. By definition, Kg is the group consist-
ing of elements of pSp2gpZqqbg that act trivially on the quotient of H1pΣg,γ ;Zq by
xbgy “ rB2s. Letting T be the surface obtained by gluing a disc to Σg,γ along B2,
the map H1pΣg,γ ;Zq Ñ H1pT ;Zq induced by the inclusion T ãÑ Σg,γ is a surjection
whose kernel is spanned by rB2s. There is a map Modg,γ Ñ ModpT q that extends
mapping classes over the glued-in disc by the identity, and by what we have said it

is enough to show that the image of π1pU pΣg,γq Ă Modg,γ in ModpT q acts trivially
on H1pT ;Zq (i.e. lies in IpT q).

Letting pT be the result of gluing a disc to T along B1, there is a Birman exact
sequence

1 ÝÑ π1pU pT q ÝÑ ModpT q ÝÑ Modp pT q ÝÑ 1;

see Theorem 1.17. Clearly the image of the disc-pushing subgroup π1pU pΣg,γq in

ModpT q lies in the disc-pushing subgroup π1pU pT q, so it is enough to show that

π1pU pT q Ă IpT q. We showed this in Theorem 3.31; recall that the key point is

that the inclusion map T ãÑ pT induces an isomorphism H1pT ;Zq – H1p pT ;Zq, so
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the symplectic representation of ModpT q factors through Modp pT q. The lemma
follows. □

Disc-pushing and the symplectic representation. We now investigate
the restriction of the symplectic representation ψ : Modg,γ Ñ pSp2gpZqqbg to the

disc-pushing subgroup π1pU pΣg,γq, which Lemma 5.7 says lands in Kg. The group

π1pU pΣg,γq fits into an exact sequence

(13) 1 ÝÑ Z ÝÑ π1pU pΣg,γq ÝÑ π1ppΣg,γq ÝÑ 1,

where the kernel Z is generated by the loop around the fiber. Recall from §1.4 that
the loop around the fiber corresponds to the mapping class TB1 P Modg,γ .

The following lemma says that the exact sequence (13) is compatible with the

one given by Proposition 5.5. In its statement, we are identifying H1ppΣg,γq with

H1pS;Zq – Z2pg´1q using the fact that pΣg,γ deformation retracts to S.

Lemma 5.8. We have a commutative diagram

(14) 1 // Z

–

��

// π1pU pΣg,γq

ψ

��

// π1ppΣg,γq

ψ

��

// 1

1 // Z // Kg
// Z2pg´1q // 1

where ψ is the abelianization map.

Proof. We will use the notation ϕw,q introduced in §5.1. The surjection
Modg,γ Ñ pModgqγ from (10) takes TB1 P Modg,γ to Tγ P Modg. Since rγs “ bg,
Lemma 3.4 says that Tγ acts on H1pΣg;Zq as

h ÞÑ h` îpbg, hqbg.

This is exactly the element ϕ0,´1 of Kg, which generates the kernel of the exact
sequence

1 ÝÑ Z ÝÑ Kg ÝÑ Z2pg´1q ÝÑ 1.

It follows immediately that we have a commutative diagram like (14); all that re-

mains to check is that the induced map ψ : π1ppΣg,γq Ñ Z2pg´1q is the abelianization
map.

Since π1ppΣg,γq is generated by simple closed curves, it is enough to verify that

if δ P π1ppΣg,γq is a simple closed curve, then ψpδq “ rδs. To do this, it is enough to

find some lift δ̃ P π1pU pΣg,γq of δ and check that ψpδ̃q “ ϕrδs,0, i.e. that

ψpδ̃qpagq “ rδs ` ag.

This is immediate from Figure 5.2. □

Corollary 5.9. The homomorphism ψ : Modg,γ Ñ pSp2gpZqqbg is surjective.

Proof. Immediate from Lemmas 5.7 and 5.8. □
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Figure 5.2. The bottom figures illustrate the effect of dragging
the boundary component around the simple closed curve δ. The arc
µ is chosen such that when the two boundary components are glued
together, the two endpoints of µ match up to form an oriented
simple closed curve homologous to ag. As shown, dragging the
boundary component around δ replaces µ with an arc homologous
to rµs ` rδs.

5.3. Stabilizers in the Torelli group

We finally discuss the Torelli group. Like in §5.2, fix some g ě 2 and some
oriented simple closed nonseparating curve γ on Σg.

Torelli on the cut-open surface. Let Ig,γ be the kernel of the symplectic
representation ψ : Modg,γ Ñ pSp2gpZqqrγs discussed in §5.2. We then have the
following. Let tB1, B2u be the boundary components of Σg,γ .

Lemma 5.10. There is a short exact sequence

1 ÝÑ Z ÝÑ Ig,γ ÝÑ pIgqγ ÝÑ 1.

Proof. An immediate consequence of Lemma 1.20. □

Semidirect product decomposition. We now come to the following theo-
rem, which is the main result of this chapter. Versions of it were originally proved
by van den Berg [vdB03, Proposition 2.4.1] and Putman [Put07, Theorem 4.1].

Theorem 5.11. Fix g ě 2, let γ be an oriented simple closed nonseparating

curve on Σg, and let S be a γ-splitting surface in Σg,γ . Letting pΣg,γ be the result

of gluing a disc to one of the boundary components of Σg,γ and π “ π1ppΣg,γq, we
then have a decomposition

Ig,γ “ rπ, πs ¸ IpSq.

Proof. Lemma 1.21 says that there is a decomposition

Modg,γ “ π1pU pΣg,γq ¸ ModpSq.

Lemma 5.7 then implies that

Ig,γ “ kerpψ|π1pU pΣg,γq
q ¸ kerpψ|ModpSqq.



5.3. STABILIZERS IN THE TORELLI GROUP 63

Figure 5.3. On the left is a curve δ P rπ, πs that can be realized
by a simple closed separating curve. The next figure shows a par-

ticular lift δ̃ “ Tδ1T
´1
δ2

of δ to π1ppΣg,γq; in fact, this is the element

Pushδ discussed in §1.4. We claim that Tδ1T
´1
δ2
TB1 P Ig,γ . This

is equivalent to saying that Tδ1T
´1
δ2
TB1 maps to an element of Ig

when B1 and B2 are glued back together. As is shown in the right
most figure, the image of Tδ1T

´1
δ2
TB1 in Modg is Tδ1T

´1
δ2
Tγ , which

lies in Ig since Tδ1 is a separating twist and T´1
δ2
Tγ “ TγT

´1
δ2

is
a bounding pair map. The TB1 is necessary here since Tδ2 is not
a separating twist in Ig even though δ2 does separate Σg,γ . The
problem is that δ2 is not nullhomologous in Σg,γ .

By definition we have kerpψ|ModpSqq “ IpSq. Also, Lemma 5.8 implies that the pro-

jection map π1pU pΣg,γq Ñ π takes kerpψ|π1pU pΣg,γq
q isomorphically onto the kernel

of the abelianization map π Ñ Z2pg´1q, i.e. onto rπ, πs. The theorem follows. □

Examples of elements. Let the notation be as in Theorem 5.11. The group

rπ, πs is embedded in π1ppΣg,γq in a somewhat complicated way. Consider some
curve δ P rπ, πs. The proof of Theorem 5.11 shows that the associated element of
Ig,γ can be obtained as follows. Let

δ̃ P π1pU pΣg,γq Ă Modg,γ

be any lift of

δ P π “ π1ppΣg,γq.

Then there exists a unique k P Z such that δ̃T kB1
P Ig,γ ; this is the element of Ig,γ

corresponding to δ. This takes a particularly simple form when δ can be realized
by a simple closed separating curve; see Figure 5.3.

Separating twists and bounding pair maps. We will say that an element
of Ig,γ is a separating twist (resp. a bounding pair map) if it maps to a separating
twist (resp. a bounding pair map) in Ig Ă Modg when the boundary components

B1 and B2 of Σg,γ are glued back together. We will also say that TB1T
´1
B2

P Ig,γ
is a bounding pair map even though it maps to the identity in Ig,γ . In the ex-
ample discussed in Figure 5.3, the element of Ig,γ corresponding to the element
δ P rπ, πs that can be realized by a separating simple closed curve is the product of
a separating twist and a bounding pair map in Ig,γ .





CHAPTER 6

The genus 2 Torelli group

In this chapter, we use the complex of cycles from Chapter 4 to prove Theorem
3.14, which says that I2 is an infinite-rank free group. This theorem is due to
Mess [Mes92], but the proof we give is due to Bestvina–Bux–Margalit [BBM10].
We begin in §6.1 by discussing the topology of the complex of cycles on a genus 2
surface. Next, in §6.2 we prove a special case of the main theorem of Bass–Serre
theory. We finally Theorem 3.14 in §6.3. This proof depends on a lemma whose
proof is postponed until §6.4.

6.1. The complex of cycles in genus 2

This section is devoted to the structure of the complex of reduced cycles on a
genus 2 surface.

Global topology. We begin with the following lemma.

Lemma 6.1. Let x P H1pΣ2;Zq be a primitive element. Then the complex
CxpΣ2q is a tree.

Proof. Theorem 4.14 says that CxpΣ2q is contractible, so it is enough to prove
that CxpΣ2q is 1-dimensional. Let γ be an oriented multicurve on Σ2 such that
Xxpγq is nondegenerate and let the components of Σ2 cut along γ be R1, . . . , Rℓ.
Corollary 4.2 says that Xxpγq is pℓ ´ 1q-dimensional, so it is enough to show that
ℓ ď 2. Clearly none of the Ri are closed surfaces. Also, none of the components of γ
are nullhomotopic, so none of the Ri are homeomorphic to a 1-holed sphere. Finally,
no two components of γ are homotopic to each other (ignoring orientations), so none
of the Ri are homeomorphic to 2-holed spheres. The upshot is that χpRiq ď ´1 for
1 ď i ď ℓ. For 1 ď i ă j ď ℓ the intersection Ri XRj is a collection of circles. Since
χpS1q “ 0, we conclude that

´2 “ χpΣ2q “ χpR1q ` ¨ ¨ ¨ ` χpRℓq ď ´ℓ;

i.e. that ℓ ď 2, as desired. □

Realizing homology classes by multicurves. Our next goal is to study
the action of the genus 2 Torelli group on the complex of reduced cycles. Our main
result (Lemma 6.7 below) says that the quotient of the complex of reduced cycles
on a genus 2 surface by the Torelli group is also a tree. We begin by describing
which collections of homology classes can be realized by nonseparating multicurves.
Here we work on an arbitrary genus g surface. A collection tv1, . . . , vku of elements
of H1pΣg;Zq is unimodular if it is a basis for a direct summand of H1pΣg;Zq – Z2g

and isotropic if îpvi, vjq “ 0 for all 1 ď i, j ď k. See Figure 6.1 for a picture of the
curves in the lemma below.

65
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Figure 6.1. On the left is a collection tγ1, γ2u of disjoint oriented
simple closed curves whose union does not separate the surface.
On the right is how to complete this to a geometric symplectic
basis.

Lemma 6.2. For some g ě 1, let tv1, . . . , vku be a collection of distinct elements
of H1pΣg;Zq. Then there exist disjoint oriented simple closed curves tγ1, . . . , γku

on Σg such that γ1 Y ¨ ¨ ¨ Y γk does not separate Σg and such that rγis “ vi for
1 ď i ď k if and only if the vi are unimodular and isotropic.

Proof. Assume first that such curves tγ1, . . . , γku exist. Since the γi are
disjoint and γ1 Y ¨ ¨ ¨ Y γk does not separate Σg, we can find oriented simple closed
curves γk`1, . . . , γg, δ1, . . . , δg on Σg such that tγ1, δ1, . . . , γg, δgu is a geometric
symplectic basis (see Figure 6.1). This implies that trγ1s, rδ1s, . . . , rγgs, rδgsu is
a symplectic basis for H1pΣg;Zq. It follows immediately that trγ1s, . . . , rγksu “

tv1, . . . , vku is a set of elements which is unimodular and isotropic.
Now assume that tv1, . . . , vku is a set of elements of H1pΣg;Zq which is uni-

modular and isotropic. Since any symplectic basis can be realized by a geomet-
ric symplectic basis (Proposition 2.10), it is enough to prove that there exist
vk`1, . . . , vg, w1, . . . , wg P H1pΣg;Zq such that tv1, w1, . . . , vg, wgu is a symplectic
basis. Let X Ă H1pΣg;Zq be the span of the vi. Since the vi are unimodular, we
can find X 1 Ă H1pΣg;Zq such that H1pΣg;Zq “ X ‘ X 1. For 1 ď i ď k, define a
linear map ϕi : H1pΣg;Zq Ñ Z via the formulas

ϕi|X1 “ 0 and ϕipviq “ 1 and ϕipvjq “ 0 for j ‰ i.

Since îp¨, ¨q is a symplectic form (Lemma 2.1), we can find elements w1, . . . , wk P

H1pΣg;Zq such that for 1 ď i ď k, we have ϕipuq “ îpu,wiq for all u P H1pΣg;Zq.
Let Y be the span of tv1, w1, . . . , vk, wku. Define a homomorphism ψ : H1pΣg;Zq Ñ

Z2k via the formula

ψpuq “ p̂ipv1, uq, îpw1, uq, . . . , îpvk, uq, îpwk, uqq.

Clearly ψ takes Y isomorphically onto Z2k. Defining Z “ kerpψq, we obtain that

H1pΣg;Zq – Y ‘ Z. It is easy to see that îp¨, ¨q restricts to a symplectic form
on Z, so we can find a symplectic basis tvk`1, wk`1, . . . , vg, wgu for Z. The set
tv1, w1, . . . , vg, wgu is then the desired symplectic basis for H1pΣg;Zq. □

Vertices of quotient. We continue to work on an arbitrary genus g surface.
If x P H1pΣg;Zq is a primitive element, then Lemma 4.3 says that the vertices of
CxpΣgq are exactly the points c1γ1`¨ ¨ ¨`ckγk, where γ “ γ1Y¨ ¨ ¨Yγk is an oriented
multicurve that does not separate Σg and c1, . . . , ck are positive integers such that

x “ c1rγ1s ` ¨ ¨ ¨ ` ckrγks.

Proposition 3.24 implies that two vertices c1γ1 `¨ ¨ ¨`ckγk and c1
1γ

1
1 `¨ ¨ ¨`c1

k1γ1
k1 of

CxpΣgq are in the same Ig-orbit if and only if k “ k1 and rγis “ rγ1
is and ci “ c1

i for
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Figure 6.2. On the left are three nonseparating simple closed
curves tγ1, γ2, γ3u on Σ2 that are pairwise disjoint and nonhomo-
topic. Their union separates Σ2 into two subsurfaces S1 and S2.
On the right are the two curves δ and δ1 constructed in the proof
of Lemma 6.5.

1 ď i ď k. Setting vi “ rγis for 1 ď i ď k, we denote this orbit by the formal symbol
c1vv1w`¨ ¨ ¨`ckvvkw. We will say that k is the size of the vertex c1vv1w`¨ ¨ ¨`ckvvkw.
Combining these observations with Lemma 6.2, we deduce the following.

Lemma 6.3. For g ě 1, fix some primitive element x P H1pΣg;Zq. Then the
vertices of CxpΣgq{I2 are the formal symbols c1vv1w ` ¨ ¨ ¨ ` ckvvkw, where c1, . . . , ck
are positive integers, the set tv1, . . . , vku is a unimodular and isotropic set of ele-
ments of H1pΣg;Zq, and x “ c1v1 ` ¨ ¨ ¨ ` ckvk.

Edges in genus 2. We now describe the edges of the quotient of the complex
of reduced cycles by the Torelli group in genus 2.

Lemma 6.4. Let x P H1pΣ2;Zq be a primitive element and let c1vv1w ` c2vv2w

be a vertex of CxpΣ2q{I2 of size 2. Order the vi such that c1 ě c2. Then there
are exactly three edges containing c1vv1w ` c2vv2w. Their other endpoints are pc1 ´

c2qvv1w ` c2vv1 ` v2w and pc1 ` c2qvv2w ` c1vv1 ´ v2w and pc1 ` c2qvv1w ` c2vv2 ´ v1w.

Before we prove Lemma 6.4, we need two auxiliary lemmas.

Lemma 6.5. Let γ1 Y γ2 Y γ3 be an oriented multicurve on Σ2. Assume that
none of the γi separate Σ2. Then the symplectic representation ψ : Mod2 Ñ Sp4pZq

restricts to an isomorphism from the stabilizer subgroup

Γ “ tf P Mod2 | fpγiq “ γi for 1 ď i ď 3u

to the stabilizer subgroup

G “ tf P Sp4pZq | fprγisq “ γi for 1 ď i ď 3u.

Proof. An Euler characteristic argument similar to the one that appeared in
the proof of Lemma 6.1 shows that γ1 Y γ2 Y γ3 separates Σ2 into two subsurfaces
S1 and S2, each of which is homeomorphic to a 3-holed sphere (see Figure 6.2).
For j “ 1, 2 we have ModpSjq – Z3 with generators tTγ1 , Tγ2 , Tγ3u (this is an easy
exercise; see [FM12, §3.6.4] for details). It follows that Γ – Z3 with generators
tTγ1 , Tγ2 , Tγ3u.

As in Figure 6.2, pick disjoint oriented simple closed curves δ and δ1 on Σ2 such
that δ (resp. δ1) intersects γ1 and γ2 (resp. γ2 and γ3) each once. Orienting δ and
δ1 appropriately, we can arrange for trγ1s, rδs, rγ3s, rδ1su to be a symplectic basis for
H1pΣ2;Zq. To keep our notation from getting out of hand, define

a1 “ rγ1s and b1 “ rδs and a2 “ rγ3s and b2 “ rδ1s.
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Consider f P G. By definition, we have fpa1q “ a1 and fpa2q “ a2. Since

îpfpa1q, fpb1qq “ 1 and îpfpa2q, fpb1qq “ 0, we must have

fpb1q “ b1 ` c1a1 ` c2a2

for some c1, c2 P Z. Similarly, we must have

fpb2q “ b2 ` d1a1 ` d2a2

for some d1, d2 P Z. We then have

0 “ îpfpb1q, fpb2qq “ ´d1 ` c2,

i.e. d1 “ c2. Define ϕ : G Ñ Z3 by ϕpfq “ pc1, c2, d2q. It is easy to see that
ψ is a homomorphism, and by construction the kernel of ϕ is trivial, i.e. ϕ is an
isomorphism.

It is enough now to prove that

tϕ ˝ ψpTγ1q, ϕ ˝ ψpTγ2q, ϕ ˝ ψpTγ3qu

is a basis for Z3. First, we have

Tγ1pb1q “ b1 ` a1 and Tγ1pb2q “ b2,

so ϕ˝ψpTγ1q “ p1, 0, 0q. Similarly, we have ϕ˝ψpTγ3q “ p0, 0, 1q. Finally, as is clear
from Figure 6.2 we have rγ2s “ e1a1 `e2a2 for some e1, e2 P t´1, 1u. It follows that

Tγ2pb1q “ b1 ` a1 ` e1e2a2 and Tγ2pb2q “ b2 ` e1e2a1 ` a2,

so ϕ ˝ ψpTγ2q “ p1, e1e2, 1q. The lemma follows. □

Lemma 6.6. Let γ1 Y γ2 Y γ3 and γ1
1 Y γ1

2 Y γ1
3 be two oriented multicurves on

Σ2. Assume that none of the γi or γ
1
i separate Σ2 and that rγis “ rγ1

is for 1 ď i ď 3.
Then there exists a unique f P I2 such that fpγiq “ γ1

i for 1 ď i ď 3.

Proof. Just like in the proof of Lemma 6.5, the multicurve γ1 Y γ2 Y γ3
separates Σ2 into two subsurfaces S1 and S2, each of which is homeomorphic to a
3-holed sphere (see Figure 6.2). Order the Si such that S1 lies to the right of γ1.
Similarly, γ1

1 Y γ1
2 Y γ1

3 separates Σ2 into two subsurfaces S1
1 and S1

2, each of which
is homeomorphic to a 3-holed sphere, and we order the S1

i such that S1
1 lies to the

right of γ1
1. The subsurface S1 and S1

1 give homologies showing that

rγ1s ` e2rγ2s ` e3rγ3s “ 0 and rγ1
1s ` e1

2rγ1
2s ` e1

3rγ1
3s “ 0

for some e2, e3, e
1
2, e

1
3 P t´1, 1u. Since rγ2s “ rγ1

2s and rγ3s “ rγ1
3s, we see that

e2 “ e1
2 and e3 “ e1

3. In other words, for 1 ď i ď 3 the orientations of γi and
the boundary of S2 agree/disagree exactly when the the orientations of γ1

i and the
boundary of S1

2 agree/disagree. The classification of surfaces trick thus say that
there exists some mapping class f 1 P Mod2 such that f 1pγiq “ γ1

i for 1 ď i ď 3.
Any f P Mod2 satisfying fpγiq “ γ1

i for 1 ď i ď 3 can be written f “ f 1h,
where h P Mod2 is a mapping class that fixes γi for 1 ď i ď 3. By construction,

the image f
1
of f 1 in Sp4pZq fixes rγis for 1 ď i ď 3. Lemma 6.5 therefore says that

there exists a unique h P Mod2 that fixes γi for 1 ď i ď 3 such that the image of

h in Sp4pZq is pf
1
q´1. This implies that there exists a unique f P Mod2 satisfying

fpγiq “ γ1
i for 1 ď i ď 3 such that the image of f in Sp4pZq is trivial, i.e. such that

f P I2. □
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Figure 6.3. Realizing the four possible homology classes for the
third curve γ3 in the proof of Lemma 6.4. As in that proof, we
have x “ c1rγ1s ` c2rγ2s. Below each configuration of curves is the

associated cell of pCxpΣ2q. The upper left hand configuration gives
a non-reduced cell.

Proof of Lemma 6.4. Let γ1 Y γ2 be an oriented multicurve such that v1 “

rγ1s and v2 “ rγ2s. Using Corollary 4.2, the edges of CxpΣ2q{I2 that contain
c1vv1w ` c2vv2w are exactly the I2-orbits of nondegenerate cells Xxpγq such that
γ is a multicurve that separates Σ2 into two components and contains γ1 Y γ2.
Such multicurves have three components γ1 Y γ2 Y γ3, and Lemma 6.6 says that
their I2-orbits are determined by rγ3s P H1pΣ2;Zq. Moreover, since γ1 Y γ2 Y γ3
separates Σ2 into two components, we must have rγ3s “ e1rγ1s ` e2rγ2s for some
signs e1, e2 P t´1, 1u (just like in Figure 6.2). As is shown in Figure 6.3, all four
possibilities are actually realized. The cell with rγ3s “ ´rγ1s ´ rγ2s is not reduced,
and the other three edges are exactly the edges described in the statement of the
lemma. □

The quotient is a tree. We finally come to the following lemma.

Lemma 6.7. Let x P H1pΣ2;Zq be a primitive element. Then CxpΣ2q{I2 is a
tree.

Proof. By Lemma 6.3, the vertices of CxpΣ2q{I2 are exactly vxw and c1vv1w `

c2vv2w, where v1, v2 P H1pΣ2;Zq are unimodular and isotropic and c1, c2 P Z are
positive and satisfy

x “ c1v1 ` c2v2.

Say that the height of vxw is 1 and that the height of c1vv1w ` c2vv2w is c1 ` c2.
There is thus a unique vertex vxw of height 1. Also, examining the edges given in
Lemma 6.4 we see that for a size 2 vertex c1vv1w ` c2vv2w of CxpΣ2q{I2, there is a
unique edge coming out of c1vv1w ` c2vv2w which ends at a vertex of smaller height.
The other two edges coming out of c1vv1w ` c2vv2w end at vertices of larger height.
This immediately implies that CxpΣ2q{I2 is a tree. Indeed, assume that p1, . . . , pk
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are vertices of CxpΣ2q{I2 such that

p0 ´ p2 ´ ¨ ¨ ¨ ´ pk

is an embedded loop. Thus p0 “ pk and pi ‰ pj for 0 ď i, j ď k with ti, ju ‰ t0, ku.
Choose 1 ď ℓ ď k such that the height of pℓ is maximal among the heights of the pi.
Then the heights of pℓ`1 and pℓ´1 (indices taken modulo k) are strictly less than
the height of pℓ, which is impossible. □

6.2. A little Bass–Serre theory

Bass–Serre theory is the study of group actions on trees. We will need a very
special case of it. Two classic sources for the general case are the book [Ser80]
by Serre and the long survey [SW79] by Scott–Wall. Our approach is close to the
combinatorial techniques of [Ser80]; the paper [SW79] is more topological. All
group actions on simplicial complexes in this section are assumed to be simplicial.

Strict fundamental domains. Consider a group G acting on a simplicial
complex X. A strict fundamental domain for the action of G on X is a subcomplex
D of X such that for all simplices σ of X, there is a unique simplex σ1 of D in the
G-orbit of σ. If D is a strict fundamental domain for the action of G on X, then
the following two things hold.

‚ The group G acts without rotation on X, that is, for all simplices σ of
X, the stabilizer subgroup Gσ of σ stabilizes σ pointwise. This implies
in particular that X{G is a cell-complex whose cells are exactly the G-
orbits of simplices in X. We remark that the quotient spaces of groups
acting without rotations on simplicial complexes need not be simplicial
complexes in general; see the remark after the second example below.

‚ The projection map X Ñ X{G restricts to an isomorphism D – X{G of
cell complexes.

Here is an example and a non-example. In both of these examples, R is triangulated
by placing a vertex at each integer.

Example 6.8. The infinite dihedral group

D8 “ xs, t | s2 “ 1, sts´1 “ t´1y

acts on R via the formulas

spxq “ ´x and tpxq “ x` 2

for x P R. The edge r0, 1s is a strict fundamental domain for this action. Observe
that the stabilizers of the vertices 0 and 1 are both isomorphic to Z{2, with the
former generated by s and the latter generated by ts. Also, the stabilizer of the
entire edge r0, 1s is trivial.

Example 6.9. The group Z “ xs |y acts on R via the formula

spxq “ x` 1

for x P R. There is no strict fundamental domain for this action. Indeed, the
quotient R{Z is a circle S1, and no subcomplex of R is homeomorphic to S1.

Remark 6.10. The above action of Z on R is without rotations. While the
quotient R{Z is a cell complex with a single vertex and a single edge, it is not a
simplical complex.
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Figure 6.4. Illustration of Step 1 in the proof of Theorem 6.12,
which asserts that ρ is surjective. On the top is the edge-path in
the tree T , and on the bottom is the projection of this path to the
strict fundamental domain D.

Existence of strict fundamental domains. The following lemma charac-
terizes which group actions on trees have strict fundamental domains.

Lemma 6.11. Let G be a group acting without rotations on a tree T . There
exists a strict fundamental domain for the action of G on T if and only if T {G is
a tree.

Proof. If a strict fundamental domain D exists, then as noted above we have
D – T {G. Since D – T {G is connected and connected subgraphs of trees are
themselves trees, we deduce that T {G is a tree.

Conversely, assume that T {G is a tree. Let D be the set of all connected
subgraphs of T that map isomorphically into T {G, partially ordered by inclusion.
Clearly D satisfies the conditions of Zorn’s lemma, so it contains a maximal element
D. If D is not a strict fundamental domain, then there must exist an edge e of
T {G such that one vertex of e lies in the image of D and the other vertex does
not (this is where we use the fact that T {G is a tree). We can lift e to an edge e
of T such that one vertex of e lies in D and the other does not. Then D Y e P D,
contradicting the maximality of D. □

Decompositions from strict fundamental domains. The following the-
orem is a special case of the “fundamental theorem of Bass–Serre theory”. Applied
to Example 6.9 above, it says that D8 “ Z{2 ˚ Z{2.

Theorem 6.12. Let G be a group acting on a tree T . Assume that D Ă T is
a strict fundamental domain for the action of G and that for all edges e of T , the
stabilizer subgroup Ge is trivial. Then

G “ ˚
vPDp0q

Gv.

Remark 6.13. If Ge ‰ 1 for some edge e with endpoints v and v1, then one
has to identify the images of Ge in Gv and Gv1 . See [Ser80] and [SW79] for more
details.

Proof of Theorem 6.12. Define

Γ “ ˚
vPDp0q

Gv.

There is a natural projection map ρ : Γ Ñ G.

Step 1. The map ρ is surjective.



72 6. THE GENUS 2 TORELLI GROUP

Figure 6.5. Illustration of Step 2 in the proof of Theorem 6.12,
which asserts that ρ is injective. On the top is the loop that we
construct in the strict fundamental domain D, and on the bottom
is the resulting loop in T . The loop in D on the top is not locally
injective, but we prove that the loop in T on the bottom is.

This step in the proof is illustrated in Figure 6.4. Consider g P Gzt1u. Fixing
an edge e0 of D, there exists a path in T starting with the edge e0 and ending with
the edge gpe0q. Since Ge0 “ 1, this path has at least 2 edges in it. Let its edges be

(15) e0 ´ e1 ´ ¨ ¨ ¨ ´ ek “ gpe0q.

For each 1 ď i ď k, there exists a unique edge e1
i of D and some hi P G such that

ei “ hipe
1
iq. Choose the hi such that h0 “ 1 and hk “ g. The edges

(16) e1
0 ´ e1

1 ´ ¨ ¨ ¨ ´ e1
k

form a path in D; indeed, identifying D with T {G, this is the projection of (15)
to T {G. For 0 ă i ď k, let v1

i be the vertex of D that is shared by e1
i and e

1
i´1 in

(16). Letting vi be the vertex of T that is shared by ei and ei´1 in (15), we have
hipv

1
iq “ hi´1pv1

iq “ vi. It follows that h
´1
i´1hipv

1
iq “ v1

i, so h
´1
i´1hi P ψpΓq. Using the

fact that h0 “ 1, we have that

g “ hk “ ph´1
0 h1qph´1

1 h2q ¨ ¨ ¨ ph´1
k´1hkq P ψpΓq,

as desired.

Step 2. The map ρ is injective.

This step in the proof is illustrated in Figure 6.5. Assume that ρ is not injective,
so there exists some nontrivial w P kerpρq. As notation, for v P Dp0q and g P Gv,
we will denote by gv the associated element of Γ. Write

w “ pg1qv1 ¨ ¨ ¨ pgkqvk ,

where the gi and vi satisfy the following conditions.

‚ For 1 ď i ď k, we have vi P Dp0q and gi P Gvizt1u.
‚ For 1 ď i ă k, we have vi ‰ vi`1.

Choose w such that k is as small as possible. Clearly k ą 1. Also, if v1 “ vk, then
w is conjugate to

pg´1
k g1qv1pg2qv2 ¨ ¨ ¨ pgk´1qvk´1

.

Since kerpρq is normal, this contradicts the minimality of k. We deduce that v1 ‰ vk.
Set v0 “ vk.

For 0 ď i ă k, let ηi be a simple (i.e. embedded) edge-path path in D from vi
to vi`1. For 1 ď i ď k, the fact that gi P Gvi implies that the terminal point of
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ηi´1 and the starting point of gipηiq are both vi. This implies that the terminal
point of g1 ¨ ¨ ¨ gi´1pηi´1q and the initial point of g1 ¨ ¨ ¨ gi´1gipηiq are the same. We
thus have a path

(17) η0 ´ g1pη1q ´ g1g2pη2q ´ ¨ ¨ ¨ ´ g1g2 ¨ ¨ ¨ gk´1pηk´1q

in T . The final point of g1g2 ¨ ¨ ¨ gk´1pηk´1q is

g1g2 ¨ ¨ ¨ gk´1pvkq “ g1g2 ¨ ¨ ¨ gk´1gkpvkq “ vk “ v0;

here we are using the fact that gkpvkq “ vk and g1 ¨ ¨ ¨ gk “ 1. The path (17) is
thus a closed path. The space T is a tree, so the closed path (17) must not be
locally injective. Since each ηi is simple and nontrivial, this implies that for some
0 ď i ă k ´ 1 the final edge of g1 ¨ ¨ ¨ gipηiq must be the same as the initial edge of
g1 ¨ ¨ ¨ gi`1pηi`1q. Equivalently, the final edge of ηi must be the same as the initial
edge of gi`1pηi`1q.

Let e be the final edge of ηi and let e1 be the initial edge of ηi`1. We thus have
e1 P Dp1q and gi`1pe1q “ e P Dp1q. Since D is a strict fundamental domain, we must
have e “ e1 and gi`1peq “ e. But Ge “ 1, so gi`1 “ 1, a contradiction. □

6.3. Mess’s theorem

This section is devoted to the proof of Theorem 3.14, which asserts that I2 is
an infinite-rank free group.

Separating splittings. In fact, we will prove a more precise result. Recall
from §3.4 that if δ is a simple closed separating curve on Σg, then the separating
splitting induced by δ is defined as follows. Let S1 and S2 be the subsurfaces of Σg
obtained by cutting Σg along δ. The separating splitting induced by δ is then the
unordered pair pU1, U2q, where Ui is the image of H1pSi;Zq in H1pΣg;Zq. Each Ui
is a symplectic subspace of H1pΣg;Zq, and the Ui are orthogonal with respect to the

algebraic intersection form in the sense that îpu1, u2q “ 0 for u1 P U1 and u2 P U2.
Corollary 3.28 says that two separating twists Tδ and Tδ1 in Ig are conjugate in Ig
if and only if δ and δ1 induce the same separating splitting.

Improved result. The above implies that if B Ă I2 is a free basis, then B
can contain at most one separating twist Tδ inducing a given separating splitting.
Define S to be the set of all possible separating splittings of H1pΣ2;Zq. More
precisely, S consists of all unordered pairs pU1, U2q, where the Ui are orthogonal
2-dimensional symplectic subspaces of H1pΣ2;Zq such that H1pΣ2;Zq “ U1 ‘ U2.
We then have the following strengthening of Theorem 3.14. It was originally proved
by Mess in his thesis [Mes92].

Theorem 6.14. There exists a set C of simple closed separating curves on Σ2

with the following two properties.

‚ I2 is a free group on the free basis tTδ | δ P Cu.
‚ There exists a bijection ϕ : C Ñ S such that for δ P C, the curve δ induces
the separating splitting ϕpδq.

We will prove Theorem 6.14 at the end of this section. The proof we will give is
due to Bestvina–Bux–Margalit [BBM10].

Dividing up the splittings. Fix a primitive element x P H1pΣ2;Zq. In
preparation for the proof of Theorem 6.14, we partition S into subsets labeled by
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the vertices of CxpΣ2q{I2. Lemma 6.3 says that these vertices fall into the following
two classes.

‚ The vertex vxw. Define

Svxw “ tpU1, U2q P S | x P U1u.

‚ Size 2 vertices c1vv1w ` c2vv2w. Define

Sc1vv1w`c2vv2w “ tpU1, U2q P S | v1 P U1, v2 P U2u.

We then have the following.

Lemma 6.15. Fix a primitive element x P H1pΣ2;Zq. Then S is the disjoint
union of the sets Sv as v ranges over the vertices of CxpΣ2q{I2.

Proof. Consider pU1, U2q P S. We must show that there exists a unique vertex
v of CxpΣ2q{I2 such that pU1, U2q P Sv. Since H1pΣ2;Zq “ U1‘U2, there is a unique
expression x “ c1v1 ` c2v2 with the vi and ci as follows for i “ 1, 2.

‚ vi P Ui is a primitive element or 0.
‚ ci P Z satisfies ci ě 0. Also, ci “ 0 if and only if vi “ 0.

We then have pU1, U2q P Sc1vv1w`c2vv2w, and c1vv1w`c2vv2w is the unique vertex with
this property. We remark that c1vv1w ` c2vv2w “ vxw exactly when one of the ci
vanishes. □

Vertex stabilizers Continue to let x P H1pΣ2;Zq be a fixed primitive element.
Our next goal is to understand the stabilizers in I2 of the vertices of CxpΣ2q. These
are given by the following lemma.

Lemma 6.16. Let x P H1pΣ2;Zq be a primitive element and let c be a vertex
of CxpΣ2q. Then there exists a set Cc of simple closed separating curve on Σ2 with
the following three properties.

‚ Each δ P Cc is disjoint from the oriented multicurve on which c is sup-
ported.

‚ The stabilizer subgroup pI2qc is a free group on the free basis tTδ | δ P Ccu.
‚ Let c be the image of c in CxpΣ2q{I2. Then there exists a bijection ϕ :
Cc Ñ Sc such that for δ P Cc, the curve δ induces the separating splitting
ϕpδq.

Lemma 6.16 is proved below in §6.4. Its proof makes use of the results from Chapter
5 on stabilizers in Torelli of nonseparating simple closed curves.

The proof. We now prove Theorem 6.14.

Proof of Theorem 6.14. Fix some primitive element x P H1pΣ2;Zq. The
group I2 acts without rotations on the complex CxpΣ2q of reduced cycles, which
by Lemma 6.1 is a tree. Lemma 6.7 says that the quotient CxpΣ2q{I2 is also a
tree, so by Lemma 6.11 there exists a strict fundamental domain D for the action
of I2 on CxpΣ2q. Using Corollary 4.2, the edges of CxpΣ2q are the nondegenerate
cells Xxpγq, where γ is a multicurve that separates Σ2 into two subsurfaces. Such
multicurves have three components, so by Lemma 6.6 the stabilizers in I2 of the
edges in CxpΣ2q are trivial (here we are using the uniqueness claimed in Lemma 6.6
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– the only element that fixes our edge is the identity). Theorem 6.12 therefore says
that

(18) I2 “ ˚
cPDp0q

pI2qc.

Define

C “
ď

cPDp0q

Cc,

where Cc is the set of separating curves given by Lemma 6.16. Lemma 6.16 com-
bined with (18) implies that I2 is a free group with free basis tTδ | δ P Cu. Moreover,
combining Lemma 6.16 with Lemma 6.15 we obtain a bijection ϕ : C Ñ S such
that for all δ P C, the separating twist Tδ induces the separating splitting ϕpδq, as
desired. □

6.4. Curve stabilizers

This section is devoted to the proof of Lemma 6.16. We divide it into two cases
which we treat separately.

Lemma 6.17. Let x P H1pΣ2;Zq be a primitive element and let γ be an oriented
simple closed curve on Σ2 such that rγs “ x. Then there exists a set Cγ of simple
closed separating curves on Σ2 with the following three properties.

‚ Each δ P Cγ is disjoint from γ.
‚ The stabilizer subgroup pI2qγ is a free group on the free basis tTδ | δ P Cγu.
‚ There exists a bijection ϕ : Cγ Ñ Sx such that for δ P Cγ , the curve δ
induces the separating splitting ϕpδq.

Proof. We will use the notation and results from Chapter 5 concerning the
stabilizers in Torelli of oriented nonseparating simple closed curves. Recall that
Σ2,γ is the surface that results from cutting Σ2 open along γ. Let tB1, B2u be the
boundary components of Σ2,γ (see Figure 6.6) and let ψ : I2,γ Ñ pI2qγ be the
homomorphism obtained by gluing B1 and B2 back together. Lemma 5.10 says that
there is a short exact sequence

1 ÝÑ Z ÝÑ I2,γ
ψ

ÝÑ pI2qγ ÝÑ 1,

where the kernel Z is generated by TB1T
´1
B2

. Next, let S be the γ-splitting surface

depicted in Figure 6.6, let pΣ2,γ be the result of gluing a disc to Σ2,γ along B1, and

let π “ π1ppΣ2,γq. Theorem 5.11 says that there is a decomposition

I2,γ “ rπ, πs ¸ IpSq.

Since S is a genus 1 surface with 1 boundary component, Lemma 3.3 says that
IpSq – Z with generator the Dehn twist about boundary component of S. Below
in Claim 1 we will prove that ψ : I2,γ Ñ pI2qγ restricts to an isomorphism between
rπ, πs and pI2qγ , so most of this proof will concern rπ, πs.

Let α, β P π be the curves depicted in Figure 6.7. Thus π is a rank 2 free group
on α and β. The curve rα, βs P rπ, πs is as shown in Figure 6.7. Using the recipe
discussed at the end of §5.3, we see that the element of I2,γ associated to rα, βs

is T
pηT

´1
B2
TB1 , where pη is the boundary component of S (again, see Figure 6.7). It

follows that ψprα, βsq “ Tη, where η is the simple closed separating curve depicted
in Figure 6.7. We now prove the following.
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Figure 6.6. On the left is an oriented simple closed nonseparating
curve γ on Σ2. In the middle is the cut-open surface Σ2,γ . The
boundary components are tB1, B2u and S is a γ-splitting surface.

On the right is the surface pΣ2,γ that results from gluing a disc to

B1. The basepoint for π1ppΣ2,γq in this glued-on disc is as indicated.

Figure 6.7. In the upper-left, generators α and β for π “ π1ppΣ2,γq

are drawn. Their commutator rα, βs “ αβα´1β´1 is the curve
in the upper-right. The element of I2,γ associated to rα, βs is

T
pηT

´1
B2
TB1 , where pη is the curve shown in the lower-left. The key

point here is that pη and B2 are the boundary components of a
regular neighborhood of rα, βs (see the recipe for this at the end
of §5.3). Since ψ is induced by the map that glues B1 and B2 back
together, we have ψpT´1

B2
TB1q “ 1, and thus ψprα, βsq “ Tη, where

η is the curve shown in the lower-right.

Claim 1. The restriction of the surjection ψ : Ig,γ Ñ pIgqγ to rπ, πs ă Ig,γ is
an isomorphism.

Proof of claim. As was discussed above, the kernel of ψ is Z with generator
TB1T

´1
B2

. It is clear that no nontrivial power of TB1T
´1
B2

lies in rπ, πs ă Ig,γ ; indeed,
this follows immediately from the fact that rπ, πs consists of all mapping classes in
Ig,γ that become trivial when a disc is glued to Σg,γ along B1. We deduce that ψ
restricts to an injection rπ, πs ãÑ pIgqγ . To see that this injection is a surjection,
since Ig,γ “ rπ, πs ¸ IpSq it is enough to show that its image contains ψpIpSqq. As
we discussed above, IpSq – Z with generator the Dehn twist about the boundary
component of S. The map ψ takes this Dehn twist to Tη, which is also ψprα, βsq.
The claim follows. □

We now focus on rπ, πs. If G is a group and x, y P G, then let xy denote yxy´1.

Claim 1. The group rπ, πs is a free group with free basis trα, βsα
kβℓ

| k, ℓ P Zu.
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Figure 6.8. On the left is the cover X of the wedge of two circles
corresponding to rπ, πs. The horizontal edges map to the circle
corresponding to α (going from left to right) and the vertical edges
map to the circle corresponding to β (going from bottom to top).
On the right is a maximal tree T in X; the omitted edges are
dashed. Identifying X with a subset of R2, the tree T consists of
the horizontal line y “ 0 and the vertical lines x “ n for all n P Z.

Proof of claim. The group π is a rank two free group with free basis tα, βu.
This is the fundamental group of a wedge of two circles. The cover of this wedge of
two circles corresponding to rπ, πs is the “grid” X shown in Figure 6.8. In words,
X is a graph with vertex set Z2 and with edges connecting pn,mq to pn`1,mq and
pn,m ` 1q for all pn,mq P Z2. Let T Ă X be the maximal tree depicted in Figure
6.8. For pi, jq P Z2, let ai,j be the edge in X connecting pi, jq and pi ` 1, jq and
let si,j P rπ, πs be the element corresponding to the loop in X that starts at p0, 0q,
goes along the unique path in T to pi, jq, then goes along aij to pi` 1, jq, and then
goes along the unique path in T connecting pi` 1, jq to p0, 0q. The edges of X that
do not lie in T are

tai,j | pi, jq P Z2, j ‰ 0u,

so rπ, πs is a free group with free basis

tsi,j | pi, jq P Z2, j ‰ 0u.

With respect to this basis, for pk, ℓq P Z2 we have

rα, βsα
kβℓ

“ αkβℓαβα´1β´1β´ℓα´k “

#

sk,ℓs
´1
k,ℓ`1 if ℓ ‰ 0,

s´1
k,ℓ`1 if ℓ “ 0.

It follows immediately that the desired set is also a free basis for rπ, πs. □

We now determine the image under ψ of the generators for rπ, πs given by Claim 2.

Claim 2. For k, ℓ P Z, we have ψprα, βsα
kβℓ

q “ Tηk,ℓ
, where ηk,ℓ is a separating

curve inducing the separating splitting

pxa1, b1 ` ka2 ` ℓb2y, xa2 ` ℓa1, b2 ´ ka1yq.

Proof of claim. Recall that rπ, πs is embedded in I2,γ as follows. The group

Mod2,γ contains the “disc-pushing” subgroup, which is isomorphic to π1pU pΣ2,γq.

Here U pΣ2,γ is the unit tangent bundle of pΣ2,γ . There is a natural projection map

π1pU pΣ2,γq Ñ π1ppΣ2,γq “ π. For every curve ζ P rπ, πs, there is a unique rζ in the

disc-pushing subgroup π1pU pΣ2,γq of Mod2,γ that projects to ζ such that rζ P I2,γ ;
this is the element of I2,γ corresponding to ζ.
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As we said above, the element of I2,γ corresponding to rα, βs is T
pηT

´1
B2
TB1 .

Now let θk,ℓ be an arbitrary element of the disc-pushing subgroup π1pU pΣ2,γq that
projects to αkβℓ P π. Since I2,γ is a normal subgroup of Mod2,γ , we have that

θk,ℓpTpηT
´1
B2
TB1qθ´1

k,ℓ P I2,γ .

Thus θk,ℓpTpηT
´1
B2
TB1qθ´1

k,ℓ is the element of I2,γ corresponding to rα, βsα
kβℓ

. It fol-
lows that

ψprα, βsα
kβℓ

q “ ψpθk,ℓqTηψpθk,ℓq
´1 “ Tψpθk,ℓqpηq.

We thus can take ηk,ℓ “ ψpθk,ℓqpηq. Since η is a separating curve inducing the
separating splitting pxa1, b1y, xa2, b2yq, we deduce that ηk,ℓ is a separating curve
inducing the separating splitting

pxpθk,ℓq˚pa1q, pθk,ℓq˚pb1qy, xpθk,ℓq˚pa2q, pθk,ℓq˚pb2qyq.

Using Lemma 5.8, we see that this is

pxa1, b1 ` ka2 ` ℓb2y, xa2 ` ℓa1, b2 ´ ka1yq,

as desired. □

Define Cγ “ tηk,ℓ | k, ℓ P Zu. Combining the three claims above, we see that pI2qγ
is the free group on the set tTδ | δ P Cγu. Next, define ϕ : Cγ Ñ Sx via the formula

ϕpηk,ℓq “ pxa1, b1 ` ka2 ` ℓb2y, xa2 ` ℓa1, b2 ´ ka1yq.

Thus for δ P Cγ , the separating splitting induced by δ is ϕpδq. We then have the
following.

Claim 3. The map ϕ is a bijection.

Proof of claim. It is enough to show that ϕ is surjective. Consider pU1, U2q P

Sx, so a1 “ x P U1. We must have U1 “ xa1, wy, where w P H1pΣ2;Zq satisfies

îpa1, wq “ 1. Expanding w out in terms of our symplectic basis ta1, b1, a2, b2u for

H1pΣ2;Zq, the fact that îpa1, wq “ 1 implies that w “ b1 ` ka2 ` ℓb2 for some
k, ℓ P Z. Also, using the fact that

U2 “ tv P H1pΣ2;Zq | îpa1, vq “ îpw, vq “ 0u,

we see that U2 “ xa2 ` ℓa1, b2 ´ ka1y. Thus pU1, U2q “ ϕpηk,ℓq, as desired. □

This completes the proof of Lemma 6.17. □

Lemma 6.18. Let x P H1pΣ2;Zq be a primitive element and let c1γ1 ` c2γ2 be
a vertex of CxpΣ2q such that c1, c2 ‰ 0. Then there exists a set Cc1γ1`c2γ2 of simple
closed separating curves on Σ2 with the following three properties.

‚ Each δ P Cc1γ1`c2γ2 is disjoint from γ1 Y γ2.
‚ The stabilizer subgroup pI2qc1γ1`c2γ2 is a free group on the free basis

tTδ | δ P Cc1γ1`c2γ2u.

‚ Let c1vv1w`c2vv2w be the image of c1γ1`c2γ2 in CxpΣ2q{I2. Then there ex-
ists a bijection ϕ : Cc1γ1`c2γ2 Ñ Sc1vv1w`c2vv2w such that for δ P Cc1γ1`c2γ2 ,
the curve δ induces the separating splitting ϕpδq.
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Figure 6.9. On the left is the surface pΣ2,γ with the curve γ1

on it together with the elements α, β P π. On the right is the

surface X obtained by cutting pΣ2,γ open along γ1. The curves
ν, µ P π1pXq form a free basis for the rank 2 free group π1pXq, and
the natural map π1pXq Ñ π that glues the boundary components
back together takes ν to α and νµ´1 to rα, βs.

Proof. Clearly we have

pI2qc1γ1`c2γ2 “ pI2qγ1Yγ2 “ ppI2qγ1qγ2 .

To identify this with a subgroup of the group described in Lemma 6.17, we define
γ “ γ1. Let the notation be as in the proof of Lemma 6.17, so pI2qγ – rπ, πs, where

π “ π1ppΣ2,γq. Let γ1 be the curve in Σ2,γ Ă pΣ2,γ that maps to γ2 under the map
Σ2,γ Ñ Σ2 that glues the boundary components B1 and B2 back together. We then
have

ppI2qγqγ2 – tζ P rπ, πs | ζ is disjoint from γ1u.

To simplify our notation, let

Γ “ tζ P rπ, πs | ζ is disjoint from γ1u.

Assume that the curves α and β from the proof of Lemma 6.17 are chosen as in
Figure 6.9. Also, choose the expression pxa1, b1y, xa2, b2yq for the separating splitting
induced by η such that a2 “ rγ2s “ v2 (recall that a1 “ rγs “ v1). It is then enough
to prove two things. The first is as follows.

Claim 1. The group Γ is a free group with free basis trα, βsα
k

| k P Zu.

Proof of claim. Let X be the result of cutting pΣ2,γ open along γ1 and let
ν, µ P π1pXq be the curves shown in Figure 6.9. The natural map π1pXq Ñ π takes
ν to α and νµ´1 to rα, βs. The group π1pXq is a rank 2 free group with basis tν, µu.
Also, letting Γ1 be the kernel of the map π1pXq Ñ Z that takes ν and µ both to
1, it is clear that the map π1pXq Ñ π takes Γ1 isomorphically onto Γ. Regarding
π1pXq as the fundamental group of a wedge of two circles, the cover corresponding
to Γ1 is as shown in Figure 6.10. From this cover, it is clear that Γ1 is a free group
with free basis

tνkµν´pk`1q | k P Zu “ tνkpν´1µqν´k | k P Zu.

This free basis maps to the free basis

tprα, βs´1qα
k

| k P Zu

for Γ. The claim follows. □

For the second claim that must be proved, recall that Sc1vvw`c2vv1w is the set of all
separating splittings pU1, U2q P S such that a1 “ v P U1 and a2 “ v1 P U2. We then
have the following.
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Figure 6.10. The cover of the wedge of two circles whose funda-
mental group is Γ1. The edges of this graph map to the circles
corresponding to ν and µ as indicated.

Claim 2. The set Sc1vvw`c2vv1w of separating splittings equals

tpxa1, b1 ` ka2y, xa2, b2 ´ ka1yq | k P Zu.

Proof of claim. An arbitrary element of Sc1vvw`c2vv1w is of the form

pxa1, w1y, xa2, w2yq

for some w1, w2 P H1pΣ2;Zq such that

îpa1, w1q “ îpa2, w2q “ 1 and îpa1, w2q “ îpa2, w1q “ îpw1, w2q “ 0.

Since îpa1, w1q “ 1 and îpa2, w1q “ 0, we have w1 “ b1 ` ℓa1 ` ka2 for some
ℓ, k P Z. Since all we care about is the span of a1 and w1, we can assume that ℓ “ 0.
Similarly, we have w2 “ b2 ` k1a1 for some k1 P Z. Finally, since îpw1, w2q “ 0 we
must have k1 “ ´k, as desired. □
Lemma 6.18 follows immediately. □
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The Johnson Homomorphism





CHAPTER 9

A commutator quotient

In this chapter, we prove the following theorem, which will play an important
role in the construction of the Johnson homomorphism. Recall that Fn is the free
group on n letters. For x P Fn, denote by rxs the associated element of F ab

n “ Zn.

Theorem 9.1. There exists a homomorphism ρ : rFn, Fns Ñ ^2Zn such that

ρprx, ysq “ rxs ^ rys px, y P Fnq.

We will give three proofs of Theorem 9.1. The first is in §9.1 and uses Magnus
expansions, which are certain homomorphisms from a free group to a truncation of
a tensor algebra. The second in in §9.2 and uses the Fox free differential calculus,
which will also be used later when we study cup products. The third proof is in
§9.3 and uses some tools from group cohomology.

Thoughout this section, we will give a more complete exposition of the tools we
use than is strictly necessary for the proof of Theorem 9.1. These tools are impor-
tant in many contexts, and a geodesic path to Theorem 9.1 would not necessarily
be the most enlightening one.

Since we will need them later, we pause now to record some naturality prop-
erties of the homomorphism ρ from Theorem 9.1. Observe that AutpFnq acts on
^2Zn via its action on F ab

n “ Zn.

Lemma 9.2. For w P rFn, Fns and f P AutpFnq, we have ρpfpwqq “ fpρpwqq.

Proof. Clearly it is enough to prove this for w “ rx, ys with x, y P Fn. But
then

ρpfpwqq “ ρprfpxq, fpyqsq “ rfpxqs ^ rfpyqs “ fprxs ^ rysq “ fpρpwqq. □

This has the following corollary.

Corollary 9.3. Assume that f P AutpFnq acts trivially on Zn. Then

ρpfpwqq “ ρpwq pw P rFn, Fnsq.

This holds in particular for inner automorphisms, so for all x P Fn we have

ρpxwx´1q “ ρpwq pw P rFn, Fnsq.

9.1. Via Magnus expansions

In this section, we introduce Magnus expansions and use them to prove The-
orem 9.1. Magnus introduced these homomorphisms in [Mag35] and used them
to prove that the intersection of the lower central series of a free group is trivial
(see Theorem 9.12 below). See [MKS76, Chapter 5] for more details concerning
Magnus expansions.

87
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The truncated tensor algebra Let T pZnq be the tensor algebra of Zn, so

T pZnq “

8
à

i“0

T ipZnq with T ipZnq “ pZnqbi.

The algebra structure on T pZnq comes from the tensor product. For all k ě 0, the
algebra T pZnq contains an ideal

IkpZnq “

8
à

i“k

T ipZnq.

The degree k truncated tensor algebra of Zn, denoted AkpZnq, is T pZnq{Ik`1pZnq.
We will regard AkpZnq as composed of expressions

f “ f0 ` f1 ` ¨ ¨ ¨ ` fk pfi P T ipZnqq

and will call fi the degree i component of f . Observe that

pf0 ` f1 ` ¨ ¨ ¨ ` fkqpg0 ` g1 ` ¨ ¨ ¨ gkq “
ÿ

i`jďk

figj .

Invertible elements. The following lemma gives many invertible elements
in AkpZnq.

Lemma 9.4. If the degree 0 component of f P Ak is 1, then f is invertible.
Moreover, the degree 0 component of f´1 is also 1.

Proof. Write f “ 1 ` f1 ` ¨ ¨ ¨ ` fk. Our goal is to find some g “ g0 ` g1 `

¨ ¨ ¨ ` gk P Ak such that

(19) p1 ` f1 ` ¨ ¨ ¨ ` fkqpg0 ` g1 ` ¨ ¨ ¨ ` gkq “ 1.

We can solve for the gj inductively as follows. First, g0 “ 1. Second, if we have
already found g0, . . . , gj´1, then (19) implies that

gj ` f1gj´1 ` f2gj´2 ` ¨ ¨ ¨ ` fjg0 “ 0,

so
gj “ ´fjg0 ´ fj´1g1 ´ ¨ ¨ ¨ ´ f1gj´1. □

The Magnus expansion. Define A1
kpZnq to be the set of all elements of

AkpZnq whose degree 0 components are 1. Lemma 9.4 says that A1
kpZnq forms a

group under multiplication. Letting tx1, . . . , xnu be a fixed free basis for Fn, there
thus exists a homomorphism

ψk : Fn Ñ A1
kpZnq

taking xi P Fn to 1 ` rxis P AkpZnq for 1 ď i ď n. We will call ψk the degree k
Magnus expansion of Fn.

Remark 9.5. The Magnus expansion depends on the free basis tx1, . . . , xnu.

Remark 9.6. For all k ě 1, the homomorphism ψk : Fn Ñ A1
kpZnq is the

composition of ψk`1 : Fn Ñ A1
k`1pZnq with the natural projection A1

k`1pZnq Ñ

A1
kpZnq. Letting A1

8pZnq be the inverse limit of the A1
kpZnq, the ψk thus piece

together to yield a homomorphism ψ8 : Fn Ñ A1
8pZnq. Most authors only call

ψ8 a Magnus expansion, but we find it more straightforward to work with the
individual ψk.
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Abelian quotients on kernels. The following lemma shows that the degree
1 Magnus expansion ψ1 : Fn Ñ A1

1pZnq can be identified with the abelianization
map Fn Ñ Zn.

Lemma 9.7. For all x P Fn we have ψ1pxq “ 1 ` rxs P A1
1pZnq. Consequently,

we have kerpψ1q “ rFn, Fns.

Proof. Using the recipe in the proof of Lemma 9.4 for computing inverses in
Ak, we see that in A1

1pZnq we have

p1 ` rxisq
´1 “ 1 ´ rxis p1 ď i ď nq.

Therefore, given a word w “ xϵ1i1 ¨ ¨ ¨xϵℓiℓ in Fn with 1 ď ij ď n and ϵj P t1,´1u for
1 ď j ď ℓ, we have

ψ1pwq “ p1 ` ϵ1rxi1sq ¨ ¨ ¨ p1 ` ϵℓrxiℓsq “ 1 ` pϵ1rxi1s ` ¨ ¨ ¨ ` ϵℓrxiℓsq “ 1 ` rws,

as desired. Observe that in the above calculation we discarded all components of
degree 2 and higher. □

The following lemma generalizes the main insight of Lemma 9.7.

Lemma 9.8. Fix k ě 2. Then there exists a homomorphism ϕk : kerpψk´1q Ñ

T kpZnq such that

ψkpwq “ 1 ` ϕkpwq pw P kerpψk´1qq.

Proof. Let π : A1
kpZnq Ñ A1

k´1pZnq be the natural projection homomorphism,
so ψk´1 “ π ˝ ψk. Since

kerpπq “ t1 ` fk | fk P T kpZnqu,

there exists a set map ϕk : kerpψk´1q Ñ T kpZnq such that

ψkpwq “ 1 ` ϕkpwq pw P kerpψk´1qq.

The fact that ϕk is a homomorphism follows from the easy calculation

p1 ` fkqp1 ` gkq “ 1 ` pfk ` gkq pfk, gk P T kpZnqq

in A1
kpZnq; here we discard all components of degree k ` 1 and higher. □

Deeper in the lower central series. We will not need the results in this
paragraph later in the book, but it would be strange to not include them in a
discussion of Magnus expansions. We start with the following lemma.

Lemma 9.9. Fix k ě 2. Then for all x P Fn and w P kerpψk´1q we have
ψkpxwx´1q “ ψkpwq.

Proof. Using Lemma 9.8, we have ψkpwq “ 1 ` fk for some fk P T kpZnq.
Write

ψkpxq “ 1 ` g1 ` ¨ ¨ ¨ ` gk pgi P T ipZnqq.

We then have

ψkpxqfk “ fk ` g1fk ` ¨ ¨ ¨ ` gkfk “ fk.

Similarly, we have fkψkpx´1q “ fk. Therefore,

ψkpxwx´1q “ ψkpxqp1 ` fkqψkpx´1q “ pψkpxq ` fkqψkpx´1q “ 1 ` fk “ ψkpwq,

as desired. □



90 9. A COMMUTATOR QUOTIENT

This has the following corollary. The lower central series of a group G is the
sequence of subgroups defined inductively by

γ1pGq “ G and γk`1pGq “ rG, γkpGqs.

Corollary 9.10. For all k ě 1, we have γk`1pFnq Ă kerpψkq.

Proof. The proof will be by induction on k. The base case k “ 1 is Lemma
9.7. Assume now that γkpFnq Ă kerpψk´1q. Consider x P Fn and w P γkpFnq. We
must show that rx,ws P kerpψkq. By Lemma 9.9 we have

ψkprx,wsq “ ψkpxwx´1qψkpw´1q “ ψkpwqψkpw´1q “ 1,

as desired. □
Remark 9.11. Witt [Wit37] proved that for all k ě 1, the group kerpψkq

is actually equal to γk`1pFnq. In addition to the original source, see [MKS76,
Chapter 5] and [Ser92, Chapter IV.6] and [CFL58] for the details of this.

We finally deduce the following theorem of Magnus [Mag35]. For an alternate
topological proof, see [MP10].

Theorem 9.12. The group Fn is residually nilpotent, that is, X8
k“1γkpFnq “ 1.

Proof. Consider w P Fn such that w ‰ 1. Write w “ xm1
i1

¨ ¨ ¨xmk
ik

for some
1 ď ij ď n and mj P Zzt0u satisfying ij ‰ ij`1 for 1 ď j ă k. For 1 ď j ď k,
observe that

ψkpx
mj

ij
q “ p1 ` rxij sqmj

is 1 plus a Z-linear combination of terms of the form rxij sp with 1 ď p ď k. Also,

the coefficient of rxij s is mj . Consider the T
kpZnq term of

ψkpwq “ ψkpxm1
i1

q ¨ ¨ ¨ψkpxmk
ik

q.

Expressing this in terms of the basis

trxp1srxp2s ¨ ¨ ¨ rxpk s | 1 ď pj ď n for 1 ď j ď ku,

the only term that does not involve a basis element with pj “ pj`1 for some
1 ď j ă k is

m1m2 ¨ ¨ ¨mkrxi1srxi2s ¨ ¨ ¨ rxik s.

This implies in particular that ψkpwq ‰ 1, so by Corollary 9.10 we have w R

γk`1pwq. □

The quotient of the commutator subgroup. We finally prove Theorem
9.1.

Proof of Theorem 9.1. Combining Lemmas 9.7 and 9.8, we obtain a homo-
morphism

ρ : rFn, Fns Ñ T 2pZnq

such that ψ2pwq “ 1 ` ρpwq for all w P rFn, Fns. We will prove that the image of
ρ lies in ^2Zn Ă T 2pZnq. To do this, it is enough to prove the formula claimed in
the theorem, namely ρprx, ysq “ rxs ^ rys P ^2Zn for all x, y P Fn. Write

ψ2pxq “ 1 ` rxs ` f2 and ψ2pyq “ 1 ` rys ` g2

for some f2, g2 P T 2pZnq. Using the recipe from the proof of Lemma 9.4, we have

p1`rxs`f2q´1 “ 1´rxs`prxsrxs´f2q and p1`rys`g2q´1 “ 1´rys`prysrys´g2q.
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We then have that

ψ2prx, ysq “ p1 ` rxs ` f2qp1 ` rys ` g2qp1 ` rxs ` f2q´1p1 ` rys ` g2q´1

“ p1 ` rxs ` f2qp1 ` rys ` g2q

p1 ´ rxs ` prxsrxs ´ f2qqp1 ´ rys ` prysrys ´ g2qq

“ 1 ` rxsrys ´ rysrxs

“ 1 ` rxs ^ rys,

as desired. Here we discard all components of degree 3 and higher. □

9.2. Via the Fox free differential calculus

We next show how to prove Theorem 9.1 via the Fox free differential calculus,
which was introduced by Fox in [Fox53]. This proof will appear quite different
from the proof in §9.1, but in reality it is very similar. We will comment on the
connection between the two approaches at the end of this section.

Derivations. Let G be a group and M be a G-module. A derivation from
G to M is a function ϕ : G Ñ M such that

ϕpghq “ ϕpgq ` g ¨ ϕphq pg, h P Gq.

Derivations are also sometimes called crossed homomorphisms.

Example 9.13. If the action of G on M is trivial, then derivations from G to
M are the same as homomorphisms.

Example 9.14. For m P M , define a function ϕm : G Ñ M via the formula
ϕmpgq “ g ¨m´m. Then ϕm is a derivation; indeed,

ϕmpghq “ gh ¨m´m “ pg ¨m´mq ` pgh ¨m´ g ¨mq “ ϕmpgq ` g ¨ ϕmphq.

The derivation ϕm is often called a principal derivation.

The following lemma gives a useful alternate definition of a derivation.

Lemma 9.15. Let G be a group and M be a G-module. Then a set map ϕ : G Ñ

M is a derivation if and only if the map pϕ, idq : G Ñ M ¸G is a homomorphism.

Proof. The map pϕ, idq is a homomorphism if and only if for all g, h P G we
have

pϕpghq, ghq “ pϕpgq, gqpϕphq, hq “ pϕpgq ` g ¨ ϕphq, ghq.

The second equality follows from the definition of a semidirect product. □

This lemma has the following corollary. Let Fn be the free group on the set
tx1, . . . , xnu.

Corollary 9.16. If M is an Fn-module and m1, . . . ,mn P M , then there
exists a unique derivation ϕ : Fn Ñ M such that ϕpxiq “ mi for 1 ď i ď n.

Proof. The universal property of a free group says that there exists a unique
homomorphism ψ : Fn Ñ M ¸ Fn such that ψpxiq “ pmi, xiq for 1 ď i ď n. The
corollary now follows from Lemma 9.15. □



92 9. A COMMUTATOR QUOTIENT

Free derivatives. A free derivative on Fn is a derivation ϕ : Fn Ñ ZrFns.
Denote the set of all free derivatives on Fn by Dern. Clearly Dern is closed under
addition. Moreover, if ϕ P Dern and τ P ZrFns, then the map ϕpτq : Fn Ñ ZrFns

defined by the formula

ϕpτqpgq “ ϕpgq ¨ τ

is a free derivative. Thus Dern is a right ZrFns-module. Its most important elements
are the free derivatives B

Bxi
for 1 ď i ď n defined via the formula

B

Bxi
pxjq “

#

1 if i “ j,

0 otherwise

for 1 ď j ď n. Corollary 9.16 says that these exist and are uniquely defined by the
above formula. We then have the following.

Lemma 9.17. The module Dern is a free right ZrFns-module on the basis
t B

Bxi
| 1 ď i ď nu.

Proof. Consider ϕ P Dern. For 1 ď i ď n, set τi “ ϕpxiq. Define

ϕ1 “ p
B

Bx1
qpτ1q ` ¨ ¨ ¨ p

B

Bxn
qpτnq.

Then ϕ1pxiq “ ϕpxiq for 1 ď i ď n. Corollary 9.16 therefore says that ϕ1 “ ϕ.
Morover, it is clear that ϕ1 is the only ZrFns-linear combination of the B

Bxi
with this

property. □

Basic properties of free derivatives. The following lemma summarizes
some basic facts about free derivatives.

Lemma 9.18. Consider ϕ P Dern.

(1) We have ϕp1q “ 0.
(2) For x P Fn, we have ϕpx´1q “ ´x´1ϕpxq. In particular, for 1 ď i, j ď n

we have

B

Bxi
px´1
j q “

#

´x´1
j if j “ i,

0 otherwise.

Proof. For the first claim, observe that

ϕp1q “ ϕp1 ¨ 1q “ ϕp1q ` 1 ¨ ϕp1q “ 2ϕp1q,

so ϕp1q “ 0. For the second claim, observe that

0 “ ϕpx´1xq “ ϕpx´1q ` x´1ϕpxq,

so ϕpx´1q “ ´x´1ϕpxq. □

Augmentations and extending to the group ring. Let α : ZrFns Ñ Z
be the augmentation map, that is, the unique Z-linear map that takes each g P Fn
to 1. We then have the following. If ϕ P Dern, then observe that ϕ can be linearly
extended to a map ϕ : ZrFns Ñ ZrFns.

Lemma 9.19. If ϕ P Dern and θ, δ P ZrFns, then ϕpθδq “ ϕpθqαpδq ` θϕpδq.
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Proof. This holds by definition if θ, δ P Fn. To extend this to general elements
of the group ring, simply observe that both sides of the purported equality ϕpθδq “

ϕpθqαpδq ` θϕpδq are bilinear functions of θ and δ. □

From derivatives to homomorphisms. We now prove the following
lemma.

Lemma 9.20. If ϕ P Dern, then the map α ˝ ϕ : Fn Ñ Z is a homomorphism.

Proof. For x, y P Fn we have

αpϕpxyqq “ αpϕpxq ` xϕpyqq “ αpϕpxqq ` αpxqαpϕpyqq “ αpϕpxqq ` αpϕpyqq. □

The following lemma shows that α ˝ B
Bxa

is the homomorphism that counts the
signed number of occurances of xa in a word.

Lemma 9.21. For 1 ď a ď n, the homomorphism α ˝ B
Bxa

: Fn Ñ Z is the
homomorphism taking xa to 1 and xi to 0 for 1 ď i ď n with i ‰ a.

Proof. Immediate. □

Corollary 9.22. Consider some w P Fn. Then αpϕpwqq “ 0 for all ϕ P Dern
if and only if w P rFn, Fns.

Proof. Lemma 9.17 implies that αpϕpwqq “ 0 for all ϕ P Dern if and only if
αp B

Bxa
pwqq “ 0 for all 1 ď a ď n. Lemma 9.21 implies that this holds if and only if

w P rFn, Fns. □

Higher derivatives. An order k free derivative is a function ϕ : Fn Ñ ZrFns

of the form ϕ “ ϕ1 ˝ ϕ2 ˝ ¨ ¨ ¨ ˝ ϕk, where ϕi P Dern. Here we are extending the ϕi
to functions ϕi : ZrFns Ñ ZrFns by linearity as above. Let Derkn be the set of all
order k free derivatives. Define

Γkn “ tw P Fn | αpϕpwqq “ 0 for all ϕ P Derℓn with 1 ď ℓ ď ku.

We then have the following.

Lemma 9.23. Consider x P Fn and w P Γkn and ϕ P Derℓn for some k, ℓ ě 1
satisfying ℓ ď k ` 1. Then

ϕpxwq “ ϕpxq ` xϕpwq.

Proof. The proof is by induction on ℓ. The base case ℓ “ 1 is the definition
of a derivation. Now assume that 1 ă ℓ ď k ` 1. We can write ϕ “ ϕ1 ˝ ϕ2 with
ϕ1 P Dern and ϕ2 P Derℓ´1

n . Using our inductive hypothesis and Lemma 9.19, we
have

ϕpxwq “ ϕ1pϕ2pxwqq

“ ϕ1pϕ2pxq ` xϕ2pwqq

“ ϕ1pϕ2pxqq ` ϕ1pxqαpϕ2pwqq ` xϕ1pϕ2pwqq

“ ϕpxq ` xϕpwq.

Here the fourth equality uses the fact that αpϕ2pwqq “ 0, which follows from the
fact that w P Γkn. □
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Corollary 9.22 says that Γ1
n “ rFn, Fns. This is in particular a normal subgroup of

Fn. The following lemma generalizes this.

Lemma 9.24. The set Γkn is a normal subgroup of Fn for all k ě 1.

Proof. We first prove that it is a subgroup. Consider w1, w2 P Γkn. Our goal
is to show that w1w2 P Γkn. In other words, we want to show that αpϕpw1w2qq “ 0

for all ϕ P Derℓn with 1 ď ℓ ď k. This follows immediately from Lemma 9.23, which
implies that

αpϕpw1w2qq “ αpϕpw1qq ` αpw1qαpϕpw2qq “ 0 ` 0.

We now prove that Γkn is a normal subgroup. Consider w P Γkn and x P Fn.
Our goal is to show that xwx´1 P Γkn. In other words, we want to show that

αpϕpxwx´1qq “ 0 for all ϕ P Derℓn with 1 ď ℓ ď k. Define ϕ1 : Fn Ñ ZrFns via the
formula

ϕ1pzq “ x´1ϕpxzx´1qx.

We claim that ϕ1 P Derℓn. Indeed, write ϕ “ ϕ1˝¨ ¨ ¨˝ϕℓ with ϕi P Dern for 1 ď i ď ℓ.
Define ϕ1

i : ZrFns Ñ ZrFns via the formula

ϕ1
ipzq “ x´1ϕipxzx

´1qx.

For z1, z2 P Fn we have

ϕ1
ipz1z2q “ x´1ϕipxz1z2x

´1qx

“ x´1pϕipxz1x
´1q ` xz1x

´1ϕipxz2x
´1qqx

“ ϕ1
ipz1q ` z1ϕ

1
ipz2q,

so ϕ1
i P Dern. Since ϕ1 “ ϕ1

1 ˝ ¨ ¨ ¨ ˝ ϕ1
ℓ, we deduce that ϕ1 P Derℓn, as claimed. We

now deduce that

αpϕpxwx´1qq “ αpx´1ϕpxwx´1qxq “ αpϕ1pwqq “ 0,

as desired. □

Remark 9.25. In fact, using the same paper of Witt [Wit37] that we cited
when discussing the analogous fact for the Magnus expansions, Fox [Fox53] proved
that Γkn “ γk`1pFnq. See Lemma 9.28 below for the easy half of this.

From derivatives to homomorphisms II. We now prove the following.

Lemma 9.26. If ϕ P Derk`1
n , then the map α ˝ ϕ : Γkn Ñ Z is a homomorphism.

Proof. Consider w1, w2 P Γkn. Lemma 9.23 implies that

α ˝ ϕpw1w2q “ αpϕpw1q ` w1ϕpw2qq “ α ˝ ϕpw1q ` α ˝ ϕpw2q. □

The homomorphism constructed in Lemma 9.26 has the following property.

Lemma 9.27. If ϕ P Derk`1
n and w P Γkn and x P Fn, then α ˝ ϕpxwx´1q “

α ˝ ϕpwq.

Proof. For 1 ď ℓ ď k ` 1, let Sℓ be the subset of ZrFns consisting of all
Z-linear combinations of elements of the set

tηpuq | η P Derℓ
1

n for some 1 ď ℓ1 ă ℓ and u P Γknu.
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By definition, we have αpsq “ 0 for all s P Sℓ. We will prove that for all 1 ď ℓ ď k`1

and all η P Derℓn, we have

(20) ηpxwx´1q “ ηpxq ` xηpwq ´ xwx´1ηpxq ` s

for some s P Sℓ. Applying this to η “ ϕ and composing the result with α, it will
follow that

αpϕpxwx´1qq “ αpϕpxqq ` αpxϕpwqq ´ αpxwx´1ϕpxqq ` αpsq

“ αpϕpxqq ` αpϕpwqq ´ αpϕpxqq ` 0

“ αpϕpwqq,

as desired.
It remains to prove (20). The proof will be by induction on ℓ. The base case is

ℓ “ 1. In this case, we can apply Lemma 9.18 and get that

ηpxwx´1q “ ηpxq ` xηpwq ` xwηpx´1q “ ηpxq ` xηpwq ´ xwx´1ηpxq,

as claimed. Now assume that 1 ă ℓ ď k`1 and that the result is true for all smaller
ℓ. Write η “ η1 ˝ η2 with η1 P Dern and η2 P Derℓ´1

n . Our inductive hypothesis says
that

η2pxwx´1q “ η2pxq ` xη2pwq ´ xwx´1η2pxq ` s

for some s P Sℓ´1. Using the fact that αpη2pwqq “ 0, we now apply Lemma 9.19 to
see that

ηpxwx´1q “ ηpxq ` η1pxqαpη2pwqq ` xηpxq

´ η1pxwx´1qαpη2pxqq ´ xwx´1ηpxq ` η1psq

“ ηpxq ` xηpxq ´ xwx´1ηpxq ` s1

with

s1 “ ´η1pxwx´1qαpη2pxqq ` η1psq P Sℓ,

as claimed. □

Lower central series. As we said above, Fox [Fox53] proved that Γkn “

γk`1pFnq. One direction of this is easy.

Lemma 9.28. For all k ě 1, we have γk`1pFnq Ă Γkn.

Proof. The proof is by induction on k. The base case k “ 1 is Corollary 9.22.
Now assume that k ą 1 and that the lemma is true for all smaller k. Consider
w P γkpFnq and x P Fn. We must show that rx,ws P Γkn, i.e. that for all ϕ P Derℓn
with 1 ď ℓ ď k we have αpϕprx,wsqq “ 0. Since rx,ws P γkpFnq Ă Γk´1

n , this holds
if ℓ ă k. If ℓ “ k, then we can apply Lemmas 9.26 and 9.27 to see that

αpϕprx,wsqq “ αpϕpxwx´1qq ` αpϕpw´1qq “ αpϕpwqq ´ αpϕpwqq “ 0,

as desired. □

A calculation. We now record the following calculation. Recall our conven-
tion that rxi, xjs “ xixjx

´1
i x´1

j .
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Lemma 9.29. For 1 ď a ă b ď n and 1 ď i ă j ď n, we have

αp
B

Bxa
˝

B

Bxb
prxi, xjsqq “

#

1 if a “ i and b “ j,

0 otherwise.

Proof. There are several cases; we will do the case where a “ i and b “ j and
leave the others to the reader. Observe that

B

Bxb
prxa, xbsq “ xa ´ rxa, xbs,

and hence
B

Bxa
p

B

Bxb
prxa, xbsqq “ 1 ´ p1 ´ xaxbx

´1
a q.

Applying α, we get that

αp
B

Bxa
p

B

Bxb
prxa, xbsqqq “ 1 ´ p1 ´ 1q “ 1. □

The quotient of the commutator subgroup. We finally prove Theorem
9.1.

Proof of Theorem 9.1. Define a set map ρ : rFn, Fns Ñ ^2Zn via the
formula

ρpwq “
ÿ

1ďaăbďn

αp
B

Bxa
˝

B

Bxb
pwqqrxas ^ rxbs.

Lemma 9.26 says that the maps rFn, Fns Ñ Z given by

w ÞÑ αp
B

Bxa
˝

B

Bxb
pwqq

are homomorphisms, so ρ is a homomorphism. We must prove that ρprx, ysq “

rxs ^ rys for x, y P Fn.
Define a set map η : Fn ˆ Fn Ñ ^2Zn via the formula ηpx, yq “ ρprx, ysq.

Our goal is to prove that ηpx, yq “ rxs ^ rys. We begin by proving a sequence of
properties of η. As notation, for v, w P Fn we write vw for wvw´1.

‚ For all x, y P Fn, we have ηpx, yq “ ´ηpy, xq. This follows from the fact
that rx, ys “ ry, xs´1. This relation is reflected in ^2Zn as rxs ^ rys “

´rys ^ rxs.
‚ For all x, y, z P Fn, we have ηpxz, yq “ ηpx, yq ` ηpz, yq. Using the easily-
verified commutator identity

rxz, ys “ rz, ysxrx, ys

and Lemma 9.27, we have

ηpxz, yq “ ρprz, ysxq ` ρprx, ysq “ ρprz, ysq ` ρprx, ysq “ ηpx, yq ` ηpz, yq,

as desired. This relation is reflected in ^2Zn as

rxzs ^ rys “ prxs ` rzsq ^ rys “ rxs ^ rys ` rzs ^ rys.

‚ For all x, y P Fn, we have ηpx´1, yq “ ´ηpx, yq. This follows from the
previous bullet point and the easy identity

ηp1, yq “ ρpr1, ysq “ ρp1q “ 0.

This relation is reflected in ^2Zn as p´rxsq ^ rys “ ´prxs ^ rysq.
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Using the above three facts repeatedly, we reduce the desired fact to showing that
ηpxi, xjq “ rxis ^ rxjs for 1 ď i ă j ď n. This follows immediately from Lemma
9.29. □

Relationship between Fox calculus and Magnus expansions. The
results in this section are related to the results in §9.1 via the following lemma. Let
ψk : Fn Ñ AkpZnq be the degree k Magnus expansion.

Lemma 9.30. For all k ě 1, we have

ψkpwq “ 1 `

k
ÿ

ℓ“1

p
ÿ

1ďi1,...,iℓďn

pαp
B

Bxi1
¨ ¨ ¨

B

Bxiℓ
pwqqqrxi1srxi2s ¨ ¨ ¨ rxiℓsq.

See [Fox53, §3] for the details of the proof of this.

9.3. Via group cohomology

We now sketch a final proof of Theorem 9.1. The main tool is the following
theorem concerning group homology. Recall that if G is a group, then HkpG;Zq is
defined to be the kth homology group of a KpG, 1q. Also, if M is an abelian group
on which G acts, then the coinvariants of M , denoted MG, is the quotient of M by
the submodule xm´ gpmq | m P M , g P Gy.

Theorem 9.31. If

1 ÝÑ K ÝÑ G ÝÑ Q ÝÑ 1

is a short exact sequence of groups, then there exists a 5-term exact sequence

H2pG;Zq ÝÑ H2pQ;Zq ÝÑ pH1pK;ZqqG ÝÑ H1pG;Zq ÝÑ H1pQ;Zq ÝÑ 0.

In the statement of Theorem 9.31, the action of G on H1pK;Zq is induced by the
conjugation action of G on K. Theorem 9.31 (or, rather, a dual statement in coho-
mology) was first proven by Hochschild–Serre [HS53, Theorem 2] as an application
of the Hochschild–Serre spectral sequence in group homology; see [Bro94, Chap-
ter VII.6] for a textbook exposition of this proof and [Bro94, Exercise II.5.6] and
[Coc85] for alternate proofs.

Proof of Theorem 9.1 (sketch). Consider the short exact sequence

1 ÝÑ rFn, Fns ÝÑ Fn ÝÑ Zn ÝÑ 1.

The associated 5-term exact sequence given by Theorem 9.31 is of the form

H2pFn;Zq ÝÑ H2pZn;Zq ÝÑ pH1prFn, FnsqqFn ÝÑ H1pFn;Zq ÝÑ H1pZn;Zq ÝÑ 0.

Since Fn is a free group, we have H2pFn;Zq “ 0. Also, the map H1pFn;Zq Ñ

H1pZn;Zq is an isomorphism. Finally, using the fact that the n-torus Tn is a
KpZn, 1q we have that H2pZn;Zq – ^2Zn. We conclude that

^2Zn – pH1prFn, FnsqqFn .

The map ρ : rFn, Fns Ñ ^2Zn is then the composition

rFn, Fns Ñ rFn, Fnsab “ H1prFn, Fns;Zq Ñ pH1prFn, Fns;ZqqFn – ^2Zn.
The claimed description of ρ follows from a careful examination of the maps involved
in the proof of Theorem 9.31. □
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