Math 464/564 : Algebra III Problem Set 2

Remark. In this problem set, if $V \subset \mathbb{F}^{n}$ is a variety then we will call the ring $\mathbb{F}\left[z_{1}, \ldots, z_{n}\right] / I(V)$ of polynomial functions on V the affine coordinate ring of V.

1. Math 564 students need to do Atiyah-Macdonald Chapter 1, problems 11 and 14. Everyone has to do the following problems.
2. In this problem, we will consider varieties in \mathbb{F}^{2} defined by polynomials in $\mathbb{F}[x, y]$.
(a) Prove that the affine coordinate ring of the variety $V\left(y-x^{2}\right)$ is isomorphic to a polynomial ring in one variable over \mathbb{F}.
(b) Prove that the affine coordinate ring of the variety $V(x y-1)$ is not isomorphic to a polynomial ring in one variable over \mathbb{F}.
3. Define

$$
Y=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{F}\right\} \subset \mathbb{F}^{3} .
$$

Prove that Y is a variety, and find generators for $I(Y)$. Finally, prove that the affine coordinate ring of Y is isomorphic to a polynomial ring in one variable over \mathbb{F}.
4. Let $Y=V\left(z_{1}^{2}-z_{2} z_{3}, z_{1} z_{3}-z_{1}\right) \subset \mathbb{F}^{3}$. Draw a picture of Y in the special case $\mathbb{F}=\mathbb{R}$. Prove that Y is a union of three irreducible components, and find generators for the prime ideals defining these components.
5. Prove that a \mathbb{F}-algebra A is the affine coordinate ring of an algebraic variety if and only if it is finitely generated and has no nilpotent elements (if you don't know the definition of a \mathbb{F}-algebra, I recommend the wikipedia article "Algebra over a field").
6. In this exercise, you'll be guided through a quick and dirty proof of the Nullstellensatz for the field \mathbb{C}. The solution should consist of proofs of the "problems" that are interspersed. In fact, what we'll prove is that every maximal ideal of $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ is of the form $\left(z_{1}-a_{1}, \ldots, z_{n}-a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in \mathbb{C}$. Consider any maximal ideal M of $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$. It is enough to prove that for all $1 \leq i \leq n$, there exists some $a_{i} \in \mathbb{C}$ such that $z_{i}-a_{i} \in M$, since then $\left(z_{1}-a_{1}, \ldots, z_{n}-a_{n}\right) \subset M$. The fact that $\left(z_{1}-a_{1}, \ldots, z_{n}-a_{n}\right)$ is maximal will then imply that we have equality.
Let K be the field $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right] / M$. We have a projection $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right] \rightarrow K$. Let $\pi_{i}: \mathbb{C}\left[z_{i}\right] \rightarrow$ K be the restriction of this projection to $\mathbb{C}\left[z_{i}\right] \subset \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$. Our goal is to find some $a_{i} \in \mathbb{C}$ such that $z_{i}-a_{i} \in \operatorname{ker}\left(\pi_{i}\right)$.

Problem. Observe that K is a vector space over \mathbb{C}. Prove that K is at most countable dimensional as a vector space over \mathbb{C}.

Problem. Let $\mathbb{C}(z)$ be the field of rational functions in one variable over \mathbb{C}, i.e. the field consisting of functions of the form $\frac{f(z)}{g(z)}$, where $f(z), g(z) \in \mathbb{C}[z]$ and $g(z) \neq 0$. The field $\mathbb{C}(z)$ is a vector space over \mathbb{C}. Prove that its dimension is uncountable. Hint : show that the set $\left\{\left.\frac{1}{z-a} \right\rvert\, a \in \mathbb{C}\right\}$ is linearly independent.
Problem. Use the previous two problems to show that $\operatorname{ker}\left(\pi_{i}\right) \neq 0$. Hint: If it is 0 , then we can find a copy of $\mathbb{C}\left[z_{i}\right]$ in K. Why does this mean we can find a copy of $\mathbb{C}\left(z_{i}\right)$ in K ?

Problem. Prove that $\operatorname{ker}\left(\pi_{i}\right)$ contains a linear term of the form $z_{i}-a_{i}$ for some $a_{i} \in \mathbb{C}$.

