Math 464/564 : Algebra III Problem Set 11

1. This problem is intended to give you practice in chasing diagrams. Consider a commutative diagram with exact rows

Assume that h_1 and h_2 and h_4 and h_5 are isomorphisms. Prove that h_3 is an isomorphism (this is usually called the *five lemma*).

- 2. (a) Regard \mathbb{F} as a $\mathbb{F}[x]$ module where x acts as 0. Construct a free resolution of \mathbb{F} over $\mathbb{F}[x]$.
 - (b) Calculate the following, where $P_n = \mathbb{F}[x]/(x^n)$.
 - i. $\operatorname{Tor}_{*}^{\mathbb{F}[x]}(\mathbb{F},\mathbb{F})$ and $\operatorname{Ext}_{\mathbb{F}[x]}^{*}(\mathbb{F},\mathbb{F})$.
 - ii. $\operatorname{Tor}_{*}^{\mathbb{F}[x]}(\mathbb{F}, P_n)$ and $\operatorname{Ext}_{\mathbb{F}[x]}^{*}(\mathbb{F}, P_n)$.
- 3. For any $f \in \mathbb{F}[x_1, \ldots, x_n]$, prove that $\{f\}$ is a Grobner basis for the principal ideal (f).
- 4. Let $I = (x^{\alpha(0)}, \ldots, x^{\alpha(k)})$ be a monomial ideal in $\mathbb{F}[x_1, \ldots, x_n]$ for some multi-indices $\alpha(0), \ldots, \alpha(k)$. Consider a polynomial $f \in I$, and let $c_\beta x^\beta$ be a term in f with $c_\beta \neq 0$. Prove that x^β is divisible by one of the $\alpha(i)$.
- 5. Fix real numbers w_1, \ldots, w_n . For a monomial $x^{\alpha} \in \mathbb{F}[x_1, \ldots, x_n]$ with $\alpha = (\alpha_1, \ldots, \alpha_n)$, define $w(x^{\alpha}) = w_1\alpha_1 + \cdots + w_n\alpha_n$. Order the monomials in $\mathbb{F}[x_1, \ldots, x_n]$ such that $x^{\alpha} > x^{\beta}$ if and only if $w(x^{\alpha}) > w(x^{\beta})$. This is called a *weight ordering*.
 - (a) Take n = 2 and $w_1 = 3$ and $w_2 = 7$. Is the associated weight ordering a monomial ordering?
 - (b) Take n = 2 and $w_1 = 1$ and $w_2 = \pi$. Is the associated weight ordering a monomial ordering?
 - (c) Give necessary and sufficient conditions on the weights w_i for a weight ordering to be a monomial ordering.
 - (d) Can lexicographic order be given as a weight ordering?
- 6. Prove that there is a unique monomial ordering on $\mathbb{C}[x]$.
- 7. (a) Give an example of a monomial ideal in $\mathbb{C}[x, y]$ with a minimal set of generators consisting of five elements.
 - (b) Is there any bound on the number of generators of a monomial ideal in $\mathbb{C}[x, y]$?
- 8. Show that $\{x_1 x_2^{37}, x_1 x_2^{38}\}$ is not a Grobner basis with respect to lexicographic order.