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THE MUMFORD CONJECTURE

[after Madsen and Weiss]

by Geoffrey POWELL

1. INTRODUCTION

The Mumford conjecture concerns the cohomology of the moduli spaceMg of smooth

projective curves of genus g: Mumford constructed tautological classes κi, for i ≥ 1, in

the Chow ring CH i(Mg) with rational coefficients, which yield a natural morphism of

algebras Q[κi] → CH∗(M), in which CH∗(M) denotes the Chow ring of the moduli

spaces, stabilized with respect to the genus. The conjecture asserts that the above

morphism is an isomorphism [17, 8].

The conjecture can be reformulated in terms of the stable cohomology of the mapping

class groups (or Teichmüller modular groups) Γg [5, 16]. The mapping class group Γg

is the discrete group of isotopy classes of orientation-preserving diffeomorphisms of a

smooth, oriented surface of genus g. The group cohomology H∗(BΓg) of the mapping

class groups stabilizes in a given degree for sufficiently large genus. The stable value

identifies with the cohomology of the space BΓ∞, which is the homotopy colimit of the

system of classifying spaces BΓg,2 of the mapping class groups of curves with two marked

points, stabilized with respect to maps induced by group morphisms Γg,2 → Γg+1,2.

The moduli spaceMg can be constructed, as an analytic space, as the quotient of the

action of the group Γg upon Teichmüller space, Tg. Teichmüller space is contractible and

the action has finite isotopy groups, hence the Mumford conjecture can be restated in

terms of the Mumford-Morita-Miller characteristic classes [14, 15], κi ∈ H2i(BΓ∞; Q).

Conjecture 1.1. — The classes κi ∈ H2i(BΓ∞; Q) induce an isomorphism of alge-

bras α̃ : Q[κi]→ H∗(BΓ∞; Q).

The algebra H∗(BΓ∞; Q) has a Hopf algebra structure, induced by a multiplicative

structure of geometric origin on the classifying space BΓ∞. The classes κi are primitive

and non-trivial, thus the morphism α̃ is a monomorphism of Hopf algebras.

The space BΓ∞ has a structure which enriches the multiplicative structure; namely,

the space BΓ∞ has a perfect fundamental group, hence the Quillen plus construction

applies to yield a morphism BΓ∞ → BΓ+
∞, which induces an isomorphism in homology

and such that BΓ+
∞ has trivial fundamental group. Tillmann [22] showed that the
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space Z × BΓ+
∞ is an infinite loop space, hence it represents the degree zero part of a

generalized cohomology theory; the identification of the associated cohomology theory

is a problem of stable homotopy theory.

The construction of the Mumford-Morita-Miller characteristic classes uses integration

along the fibre of powers of the first Chern class of the orientation bundle of the universal

oriented surface bundle. This can be interpreted in terms of the Gysin morphism, which

is of topological origin, via the Pontrjagin-Thom construction. Madsen and Tillmann

[11] constructed a morphism of infinite loop spaces

α∞ : Z×BΓ+
∞ → Ω∞(CP∞

−1)

which lifts the construction of α̃. The infinite loop space Ω∞(CP∞
−1) is constructed

from the Thom spectrum which is associated to the complements of the canonical line

bundles on complex projective space.

The rational cohomology of the space Ω∞(CP∞
−1) is isomorphic to the rational co-

homology of the space Z× BU , where BU denotes the classifying space of the infinite

unitary group. The cohomology algebra H∗(BU ; Q) is isomorphic to the polynomial

algebra Q[κi], where the classes κi can be taken to be Chern classes, hence the Mum-

ford conjecture is implied by the following result, which is referred to as the generalized

Mumford conjecture.

Theorem 1.2. — [12] The morphism α∞ : Z × BΓ+
∞ → Ω∞(CP∞

−1) is a homotopy

equivalence.

The cohomology of the space Ω∞(CP∞
−1) with coefficients in a finite field Fp has been

calculated [4], using techniques of algebraic topology. The above theorem therefore

yields a calculation of the stable cohomology of the mapping class groups H∗(BΓ∞; Fp),

for any prime p.

1.1. Methods of proof

Madsen and Weiss reformulate the generalized Mumford conjecture using certain

generalized bundle theories; these are local in nature and their classifying spaces can

be constructed from realization spaces associated to sheaves of sets. In particular, they

give an interpretation of a modification of the morphism α∞ introduced in [11] as the

realization of a morphism of sheaves.

Let X denote the category of smooth manifolds, without boundary and with a count-

able basis and consider sheaves of sets on X. There is a natural notion of homotopy on

the sections of a sheaf, termed concordance; if F is a sheaf and X is a smooth manifold,

then concordance is an equivalence relation on the sections F(X), which is induced by

elements of F(X × R), in the usual way. The set of equivalence classes for the concor-

dance relation is written as F [X]. The contravariant functor X 7→ F [X] is represented

on the homotopy category of topological spaces by a space |F|; namely F [X] ∼= [X, |F|],
where the right hand side denotes homotopy classes of morphisms of topological spaces.
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A morphism f : E → F of sheaves is defined to be a weak equivalence if the induced

morphism |f | : |E| → |F| is a weak equivalence(1) between the representing spaces.

There are two principal techniques which are used to show that a morphism be-

tween sheaves is a weak equivalence: to exhibit explicit concordances so as to obtain

an isomorphism of concordance classes or to use the relative surjectivity criterion of

Proposition A.7 to show that a morphism is a weak equivalence.

The classifying space BΓg classifies bundles with fibres which are closed oriented

surfaces, hence the source of the morphism α∞ is related to bundles of closed oriented

surfaces. This motivates consideration of the sheaf V with sections over X the set of

pairs (π, f), where π : E → X is a smooth submersion with 3-dimensional oriented

fibres and f : E → R is a smooth morphism such that (π, f) is a proper submersion.

Ehresmann’s fibration lemma implies that this is a bundle of smooth surfaces on X×R.

The definition of V can be weakened: let hV denote the sheaf with sections over X

the set of pairs (π, f̂), where π : E → X is as before and f̂ is a smooth section of

the fibrewise 1-jet bundle J1
π(E,R) → E, subject to the condition that the morphism

(π, f) : E → X × R is a proper submersion, where f denotes the underlying smooth

map, f : E → R, of f̂ . There is a morphism of sheaves α : V → hV , induced by jet

prolongation, which induces a morphism of topological spaces |α| : |V| → |hV|, which

is related to the morphism α∞.

These definitions generalize; namely it is expedient to allow mild fibrewise sin-

gularities over X × R, by considering smooth sections of the fibrewise 2-jet bundle

J2
π(E,R) → E and permitting fibrewise critical points which are of Morse type. This

gives sheaves W , hW , where W corresponds to the integrable situation, as above. Sim-

ilarly, there are sheaves Wloc, hWloc which correspond to the local situation around the

singular sets and these sheaves form a commutative diagram

V //

j2
π

��

W //

j2
π

��

Wloc

j2
π

��
hV // hW // hWloc.

(1)

The first main theorem of Vassiliev on the space of functions with moderate singu-

larities is used to show the following Theorem, which motivates the strategy of proof.

Theorem 1.3. — The morphism j2
π :W → hW is a weak equivalence.

This result is used in conjunction with the following, which is proved using bordism

theory.

Theorem 1.4. —

1. The morphism j2
π :Wloc → hWloc is a weak equivalence.

(1)(induces an isomorphism on homotopy groups)
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2. The sequence of representing spaces |hV| → |hW| → |hWloc| is a homotopy fibre

sequence(2) of infinite loop spaces.

3. There is a homotopy equivalence |hV| ' Ω∞(CP∞
−1).

Let F denote the homotopy fibre of |W| → |Wloc|, then it follows formally from the

homotopy invariance of the homotopy fibre construction that there is a homotopy equiv-

alence F
'→ |hV|. Standard methods of homotopy theory imply that the generalized

Mumford conjecture follows from:

Theorem 1.5. — There exists a morphism Z× BΓ∞ → F which induces an isomor-

phism in homology with integral coefficients.

The proof of this theorem involves replacing the singularities inherent in W by ones

in standard form and then stratifying by critical sheets; after stratification, the concor-

dance relation is imposed by a homotopical gluing construction, the homotopy colimit

over a suitable category. The proof of the theorem relies on foundational results from

homotopy theory together with the homological stability results of Harer; in particular,

the proof uses closed surfaces with boundary.

1.2. Approximations

Much of the material of [12] is developed for bundles of manifolds of arbitrary dimen-

sion, d, and with a general notion of orientation, the Θ-orientation. For the presentation

of this text, the general notion of orientation has been suppressed and the integer d is

usually taken to be two.

To avoid set-theoretic difficulties, [12] uses the notion of graphic morphisms with

respect to a fixed set in the definitions of the sheaves which are considered; moreover set-

theoretic caveats are required in various proofs. All such details have been suppressed

in this text.

2. MAPPING CLASS GROUPS

2.1. Orientation-preserving diffeomorphisms

Let F be a smooth, compact, oriented surface with boundary ∂F , then F is classified,

up to diffeomorphism, by its genus g and the number b of boundary components; write

Fg,b for a representative of the diffeomorphism class.

The topological group of orientation-preserving diffeomorphisms of F which fix the

boundary is written Diff◦(F ; ∂F ) and Diff◦
e(F ; ∂F ) denotes the connected component

which contains the identity, so that there is a canonical monomorphism of topological

groups, Diff◦
e(F ; ∂F )→ Diff◦(F ; ∂F ).

(2)A sequence of pointed spaces F → E → B is a homotopy fibre sequence if F is weakly equivalent
to the homotopy fibre of E → B. The homotopy fibre can be defined explicitly as the fibre product
E ×B PB, where PB → B is the path space fibration over B.
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Definition 2.1. — For g, b non-negative integers, the mapping class group Γg,b is the

discrete group of path components, Γg,b := π0(Diff◦(Fg,b; ∂Fg,b)).

Earle and Eells [2] proved that the topological group Diff◦
e(F ; ∂F ) is contractible,

for F a smooth, compact, oriented surface of genus g ≥ 2.

Corollary 2.2. — For g ≥ 2 an integer, there is a homotopy equivalence BΓg,b '
BDiff◦(Fg,b; ∂Fg,b). In particular, the classifying space BΓg,b classifies isomorphism

classes of oriented Fg,b-bundles.

There is a model for the classifying space BΓg,b constructed from Teichmüller space,

for strictly positive b. Let H(F ) denote the space of hyperbolic metrics on the surface F

with geodesic boundary such that each boundary circle has unit length. The hyperbolic

model for the moduli space of Riemann surfaces of topological type F is given by

M(F ) := H(F )/Diff◦(F ; ∂F ).

Teichmüller space is defined as the quotient T (F ) := H(F )/Diff◦
e(F ; ∂F ).

Theorem 2.3. — [2, 3] Let F := Fg,b be a smooth, compact, oriented surface of genus

g > 1, with b boundary components. The following statements hold.

1. The space H(F ) is contractible.

2. The space T (F ) is contractible and homeomorphic to R6g−6+2b.

3. If b > 0, the action of Γg,b on Teichmüller space T (F ) is free and BΓg,b 'M(F ).

4. If b = 0, the action of Γg on Teichmüller space T (Fg,0) has finite isotropy groups,

hence there is a rational homotopy equivalence BΓg 'Q M(Fg,0).

In particular, the above establishes the relation between the moduli space of Riemann

surfacesM(F ) and the mapping class group.

2.2. Stabilization

There are two basic gluing constructions which allow stabilization. Recall that F1,2

is diffeomorphic to a torus with the interiors of two disjoint disks removed and F0,1 is

diffeomorphic to a disk; gluings of smooth manifolds provide concatenation diffeomor-

phisms of oriented surfaces Fg+1,b
∼= Fg,b ∪S1 F1,2 and Fg,b

∼= Fg,b+1 ∪S1 F0,1.

There are induced natural morphisms of groups Γg,b → Γg+1,b, Γg,b+1 → Γg,b which

induce morphisms between the integral cohomologies of the respective classifying spaces.

The stability theorems of Harer and Ivanov imply that these are isomorphisms in a

stable range.

Theorem 2.4. — [7, 9] The natural morphisms induce isomorphisms in cohomology

H∗(BΓg,b) ∼= H∗(BΓg+1,b) ∼= H∗(BΓg+1,b+1), for ∗ < g/2− 1.

Let Γ∞,b denote the colimit of the direct system of groups Γ∗,b.

Corollary 2.5. — The group H∗(BΓ∞,b) is isomorphic to the inverse limit of the

system H∗(BΓ∗,b) and is independent of b.
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2.3. Infinite loop space structure

The classifying space BΓg,b has perfect fundamental group for g > 1 (see [6] for

the case g ≥ 2). Hence, the Quillen plus construction BΓ+
g,b is defined, with trivial

fundamental group, and there is a canonical morphism BΓg,b → BΓ+
g,b which induces

an isomorphism in homology.

The following theorem motivated the generalized Mumford conjecture [11].

Theorem 2.6. — [22] The space Z × BΓ+
∞,b has the structure of an infinite loop

space(3).

3. GENERALIZED BUNDLE THEORY

3.1. Submersions, fibrewise tangent bundles and jet bundles

A smooth map π : E → X between smooth manifolds is a submersion if the morphism

of tangent bundles TE → TX is surjective on fibres. The vertical tangent bundle

T πE of the submersion is a vector bundle on E and there is a short exact sequence

T πE → TE → π∗TX of vector bundles on E.

The fibres of a smooth submersion are smooth manifolds of codimension equal to the

dimension of the base. Ehresmann’s fibration lemma (see [1] for example) states:

Theorem 3.1. — Let π : E → X be a smooth submersion which is proper, then π is

a smooth fibre bundle of manifolds.

The following submersion theorem of Phillips’ for open manifolds is used.

Theorem 3.2. — [18, Theorem A] Let M,W be smooth manifolds such that M is

open. If there exists a smooth surjection of tangent bundles TM � TX, then there

exists a smooth submersion M → X. Moreover, any two smooth submersions with

differentials homotopic through vector vector bundle surjections are homotopic through

submersions.

For π : E → X a smooth submersion, let Jk
π(E,R) denote the fibrewise k-jet bundle;

this is a smooth vector bundle on E which is a quotient of the k-jet bundle Jk(E,R)

of which the fibre at z identifies with Jk(Eπ(z),R), the k-jet bundle of the fibre.

The definition implies that, for k a non-negative integer, there exists a natural surjec-

tion Jk+1
π (E,R)→ Jk

π(E,R) of vector bundles on E. The bundle J0
π(E,R) is canonically

isomorphic to the trivial bundle of rank one on E, which implies the first statement of

the following Lemma.

(3)A pointed topological space (X, ∗) has an infinite loop space structure if there exists a sequence
of pointed spaces (Xn, ∗), and weak homotopy equivalences Xn ' ΩXn+1, for n ≥ 0, such that
(X, ∗) = (X0, ∗). (For technical reasons, suppose all the spaces are CW complexes).
(3)(for the purposes of this exposition, suppose without boundary)
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Lemma 3.3. — Let π : E → X be a smooth submersion and let k be a non-negative

integer, then the following statements hold.

1. A smooth section f̂ of Jk
π(E,R) induces a smooth function f : E → R.

2. A smooth morphism f : E → R induces a smooth section jk
π(f) of the bundle

Jk
π(E,R).

There is a canonical identification of the fibrewise 1-jet bundle J1
π(E,R) with

J0(E,R) ⊕ T πE∗, where T πE∗ is the fibrewise cotangent bundle. In particular, there

is a canonical surjection J2
π(E,R) → T πE∗, corresponding to the linear part of the

fibrewise jet bundle. A section of J2
π(E,R) with vanishing linear part has well-defined

quadratic part, which corresponds to a quadratic form on T πE, by choice of connection.

Definition 3.4. — Let f̂ be a smooth section of the fibrewise 2-jet bundle J2
π(E,R),

where π : E → X is a smooth submersion.

1. The section f̂ is fibrewise non-singular if the linear part is a non-vanishing section

of T πE∗.

2. The section f̂ is fibrewise Morse if it has non-degenerate quadratic part whenever

the linear part vanishes.

The submanifold of singular jets in J2
π(E,R) is written Σπ(E,R).

Definition 3.5. — Let π : E → X be a smooth submersion and let f̂ be a smooth

section of the fibrewise 2-jet bundle. The fibrewise singularity set Σ(π, f̂) ⊂ E is the

inverse image f̂−1Σπ(E,R) of the submanifold of singular jets.

If f̂ identifies with the fibrewise 2-jet prolongation j2
π(f) of a smooth function f , the

fibrewise singularity set Σ(π, f̂) is written Σ(π, f).

A smooth section of the fibrewise 2-jet bundle which is fibrewise Morse is equivalent

to a smooth section of the fibrewise cotangent bundle which is transverse to the zero

section; this implies the following result.

Lemma 3.6. — [12] Let π : E → X be a smooth submersion and let f̂ be a smooth

section of the fibrewise 2-jet bundle, which is fibrewise Morse. Then Σ(π, f̂) is a smooth

submanifold of E and the morphism π restricts to a local diffeomorphism(4) π|Σ(π,f̂) :

Σ(π, f̂)→ X.

(4)or étale map
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3.2. The sheaves hV, hW, hWloc

Let X denote the category of smooth manifolds, without boundary and with a count-

able basis; all sheaves considered in this section are sheaves of sets on X.

The lower row of the diagram of sheaves is defined in terms of analytic data.

Definition 3.7. —

1. Let hW denote the sheaf which has sections over X the set of pairs (π, f̂), where

π : E → X is a smooth submersion of fibre dimension three, with oriented fibrewise

tangent bundle. The morphism f̂ is a smooth section of the fibrewise 2-jet bundle

J2
π(E,R) such that the following conditions are satisfied:

(a) the morphism (π, f) : E → X ×R is proper, where f denotes the underlying

smooth morphism of f̂ ;

(b) the section f̂ is fibrewise Morse.

2. Let hV denote the subsheaf of hW with sections over X given by pairs (π, f̂) for

which the section f̂ is fibrewise non-singular.

There is a variant of the sheaf hW , in which the properness hypothesis is weakened.

Definition 3.8. — Let hWloc denote the sheaf which has sections over X the set of

pairs (π, f̂), where π : E → X is a smooth submersion of fibre dimension three with

oriented fibrewise tangent bundle. The morphism f̂ is a smooth section of the fibrewise

2-jet bundle J2
π(E,R) such that the following conditions are satisfied:

1. the morphism (π, f) : E → X×R restricts to a proper morphism Σ(π, f̂)→ X×R;

2. the section f̂ is fibrewise Morse.

By construction, there are canonical morphisms of sheaves hV → hW → hWloc.

3.3. The sheaves V, W, Wloc

The upper row of diagram (1) is obtained by imposing the condition that the smooth

sections are integrable.

Definition 3.9. —

1. Let W denote the sheaf with sections over X the set of pairs (π, f) such that

π : E → X is a smooth submersion of fibre dimension three, f : E → R is a

smooth morphism and (π, j2
πf) belongs to hW(X).

2. Let V denote the subsheaf ofW which is defined by the cartesian square of sheaves:

V //

��

W

��
hV // hW .

3. Let Wloc denote the sheaf with sections over X the set of pairs (π, f), where π :

E → X is a smooth submersion of fibre dimension three and f : E → R is a

smooth morphism such that (π, j2
πf) is an element of hWloc.
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Explicit examples of sections of W are given by the constructions of Section 6. The

definitions yield diagram (1) in which the vertical morphisms are induced by fibrewise

2-jet prolongation.

4. BORDISM

This section addresses the identification of the sequence of representing spaces |hV| →
|hW| → |hWloc| by using bordism-theoretic arguments(5).

4.1. Oriented bundles with Morse-like functions

Definition 4.1. — Let d, n be non-negative integers.

1. Let G(d, n) be the space of oriented d-dimensional subspaces of Rd+n.

The space G(d, n) is a classifying space for oriented d-dimensional vector bundles

with a morphism of the total space to Rd+n which restricts to a linear embedding

on each fibre.

2. Let GW(d, n) be the space of triples (V, l, q), where V is an object of G(d, n),

l : V → R is a linear map and q : V → R is a quadratic form, which is non-

degenerate if l = 0.

The space GW(d, n) is a classifying space for oriented d-dimensional vector bun-

dles equipped with the additional structure:

(a) a morphism of the total space of the bundle to Rd+n, which is a linear em-

bedding on each fibre;

(b) a morphism from the total space to R which restricts to a Morse-like function

on each fibre; namely, on each fibre, the morphism has the form l+q : V → R,

where l is linear and q is a quadratic form, which is non-degenerate if l is

zero.

3. Let Σ(d, n) be the subspace of GW(d, n) which is given by triples of the form

(V, 0, q), where q is a non-degenerate quadratic form.

4. Let GV(d, n) be the complement GW(d, n)\Σ(d, n).

There is a diagram of inclusions

GV(d, n) ↪→ GW(d, n)←↩ Σ(d, n).(2)

Remark 4.2. —

1. There is a map GW(d, n) → G(d, n) which forgets the Morse-like function. In

particular, (2) is a diagram of spaces over G(d, n).

2. There is an inclusion G(d, n) ↪→ GV(d + 1, n), which is induced by − ⊕ R via

V 7→ (V ⊕ R, l, 0), where l is the projection V ⊕ R→ R.

(5)A résumé of the classical Pontrjagin-Thom correspondence between bordism and generalized homol-
ogy theories is given in [10, Chapter 1]; the influential paper of Quillen, [19], provides the treatment
of the cohomological theory.
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3. A monomorphism Rd+n ↪→ Rd+n+1 induces a natural morphism G(d, n)→ G(d, n+

1), together with compatible natural morphisms for GV , GW , Σ.

There are tautological oriented d-dimensional bundles Tn on G(d, n) and Un on

GW(d, n). Moreover, there is a canonical monomorphism Un ↪→ GW(d, n) × Rd+n

into a trivial bundle, with complement U⊥
n of dimension n; the analogous statement

holds for Tn.

Lemma 4.3. —

1. The injection G(d, n) → GV(d + 1, n) is covered by a fibrewise isomorphism of

vector bundles T⊥n → U⊥
n |GV(d+1,n).

2. The normal bundle of the embedding Σ(d, n) ↪→ GW(d, n) is isomorphic to the

dual bundle U∗
n|Σ(d,n).

3. The non-degenerate quadratic form, q, induces an isomorphism between U∗
n|Σ(d,n)

and Un|Σ(d,n).

4.2. Thom space constructions

The Thom space Th(ξ) of a vector bundle ξ is the quotient space Th(ξ) := D(ξ)/S(ξ),

where the pair (D(ξ), S(ξ)) corresponds to the disc and sphere bundles associated to

ξ.(6)

For M ↪→ RN an embedding with normal bundle ν such that the total space E(ν) em-

beds as a tubular neighbourhood, collapsing the complement of the tubular neighbour-

hood induces the Pontrjagin-Thom map SN → Th(ν). This construction generalizes to

give the following.

Lemma 4.4. — Let Y ↪→ X be an immersion of smooth manifolds of codimension d,

with normal bundle ν, and let ξ be a vector bundle on X. Then the sequence of spaces

Th(ξ|(X − Y ))→ Th(ξ)→ Th(ξ|Y ⊕ ν) is a homotopy cofibre sequence(7).

This applies to the embedding Σ(3, n) ↪→ GW(3, n) and the vector bundle U⊥
n on

GW(3, n); together with Lemma 4.3, this implies:

Lemma 4.5. — For n a non-negative integer, there is a homotopy cofibre sequence

Th(U⊥
n |GV(3, n))→ Th(U⊥

n |GW(3, n))→ Th(U⊥
n ⊕ U∗

n|Σ(3, n)).

The Thom space Th(ξ ⊕ θ1) is homeomorphic to the suspension ΣTh(ξ), where θ

denotes the trivial bundle of rank one. In particular, a morphism of vector bundles

(6)If the base space is compact, the Thom space is homeomorphic to the one point compactification of
the total space.
(7)A sequence A → B → C of pointed topological spaces is a homotopy cofibre sequence if C is
homotopy equivalent to the mapping cone of A→ B.
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ξ ⊕ θ1 → ζ induces a morphism Th(ξ) → ΩTh(ζ), by adjunction. Such morphisms

induce the direct systems which define the infinite loop spaces below(8):

Ω∞hW := colimnΩ2+nTh(U⊥
n |GW(3,n));

Ω∞hV := colimnΩ2+nTh(U⊥
n |GV(3,n));

Ω∞hWloc := colimnΩ2+nTh(U⊥
n ⊕ U∗

n|Σ(3,n)).

Lemma 4.5 implies the following result, which corresponds to the fact that the infinite

loop space functor Ω∞ sends stable homotopy cofibre sequences to homotopy fibre

sequences of spaces.

Proposition 4.6. — There is a homotopy fibre sequence of infinite loop spaces

Ω∞hV → Ω∞hW → Ω∞hWloc.

4.3. The morphism τ : |hW| → Ω∞hW

The construction of a morphism τ : |hW| → Ω∞hW uses auxiliary sheaves hW(r)

and Z(r) which are defined as follows.

Definition 4.7. — For X a smooth closed manifold and r a non-negative integer:

1. let hW(r)(X) denote the set of sections of hW(X) with the additional structure:

a smooth embedding ω : E → X × R × R2+r over X × R and a vertical tubular

neighbourhood N ;

2. let Z(r)(X) denote the set of maps X × R→ Ω2+rTh(U⊥
r ).

The Pontrjagin-Thom construction establishes the following result.

Lemma 4.8. — There are morphisms of sheaves hW hW(r) //oo Z(r).

The sheaves hW(r) and Z(r) form direct systems as r varies, hence there are direct

systems of the representing spaces |hW(r)|, |Z(r)|. The first statement of the following

Lemma (9) is a consequence of the Whitney embedding theorem.

Lemma 4.9. — There are weak equivalences:

1. hocolimr|hW(r)| '→ |hW|;
2. hocolimr|Z(r)| '→ Ω∞hW.

The Lemma induces a morphism τ : |hW| → Ω∞hW in the homotopy category

of pointed topological spaces. This restricts to a morphism τV : |hV| → Ω∞hV and

similar constructions define a morphism τloc : |hWloc| → Ω∞hWloc so that the following

statement holds:

(8)Cf. the construction of Thom spectra, [21].
(9)(in which hocolim denotes the homotopy colimit of the direct system, which is the derived, homotopy-
theoretic version of the direct limit)
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Lemma 4.10. — There is a homotopy commutative diagram

|hV| //

τV

��

|hW|
τ

��

// |hWloc|
τloc

��
Ω∞hV // Ω∞hW // Ω∞hWloc.

4.4. Bordism approach to τ

There are bordism descriptions for the cohomology theories represented by the spaces

Ω∞hW , Ω∞hV and Ω∞hWloc.

For example, consider the case Ω∞hW ; for X a smooth manifold, the set of homotopy

classes [X,Ω∞hW ] identifies with the set of bordism classes of triples (M, g, ĝ), where

M is a closed, smooth manifold of dimension 2 + dimX and g is a morphism, M →
X × GW(3, n), such that the projection to X induces a proper morphism, M → X.

The morphism ĝ is a pull-back of vector bundles of the form

TM × R× Rj
ĝ //

��

TX × U∞ × Rj

��

M g
// X × GW(3, n),

for some non-negative integer j. An obstruction theory argument (see [12]) shows that

the integer j can be taken to be zero.

Let (π, f̂) represent an element of hW(X) then, up to concordance, one may suppose

that f : E → R is transverse to 0 ∈ R, so that M := f−1(0) is a submanifold of

dimension 2 + dimX and the induced morphism π : M → X is proper. The section

f̂ of the fibrewise 2-jet bundle, restricted to points of M , has the form f̂z = lz + qz
satisfying the non-degeneracy hypothesis. There is a classifying map M → GW(3,∞)

and it is straightforward to verify that this defines an element of [X,Ω∞hW ].

Conversely, given a triple (M, g, ĝ) representing a bordism class , so that g : M →
X × GW(3,∞), set E := M × R and let πE denote the composite morphism E →
M → X. Phillips’ submersion theorem (Theorem 3.2) implies that this gives rise to an

element of hW(X).

At the level of concordance classes, this implies the following theorem.

Theorem 4.11. — The morphism τ : |hW| → Ω∞hW is a homotopy equivalence.

Similar considerations apply to show that τV : |hV| → Ω∞hV and τloc : |hWloc| →
Ω∞hWloc are homotopy equivalences.

Corollary 4.12. — The sequence of spaces, |hV| → |hW| → |hWloc|, is a homotopy

fibre sequence of infinite loop spaces.
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4.5. The morphism j2
π :Wloc → hWloc

The following result is proved in [12].

Theorem 4.13. — The morphism of sheaves j2
π :Wloc → hWloc induces a weak equiv-

alence between the representing spaces.

The proof is geometric in nature, using a bordism theoretic description of Wloc(X),

together with an application of Phillips’ submersion theorem, Theorem 3.2.

4.6. Identification of the space Ω∞hV and the morphism j2
π : V → hV

The morphism G(2, n) → GW(3, n) gives rise to a morphism of Thom spaces

Th(T⊥n ) → Th(U⊥
n |GW(3,n)). The presence of the quadratic form does not affect the

homotopy type of the associated infinite loop space:

Lemma 4.14. — There is a weak equivalence Ω∞hV ' colimnΩ2+nTh(T⊥n ).

A standard argument involving complexification(10) implies the following result.

Proposition 4.15. — The space |hV| is equivalent to the infinite loop space,

Ω∞CP∞
−1.

The morphism j2
π : V → hV induces a map between concordance classes V [X] →

hV [X], which is induced by a map |V| → |hV| between the representing spaces. The

space |hV| is equivalent to the space Ω∞hV (remark following Theorem 4.11) and hence

to Ω∞CP∞
−1 by Proposition 4.15.

The sheaf V can be interpreted in terms of surface bundles on X × R, by Ehres-

mann’s fibration lemma. Hence the functor X 7→ V [X] is represented by the space

qFBDiff◦(F, ∂F ), as F ranges over diffeomorphism classes of smooth, closed oriented

surfaces (not necessarily connected). The natural transformation V [X] → hV [X] is

represented by a map α : qFBDiff◦(F, ∂F ) → Ω∞hV ' Ω∞CP∞
−1, which is related to

the morphism α∞ of the Introduction.

5. APPLICATION OF VASSILIEV’S FIRST MAIN THEOREM

Theorem 1.3 is deduced from Vassiliev’s first main theorem; the proof uses techniques

from sheaf homotopy theory.

(10)(passage from the structure group SO to U)
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5.1. Vassiliev’s first main theorem

Definition 5.1. — Let U ⊂ J2(Rr,R) denote the space of 2-jets represented by smooth

functions f : (Rr, z)→ R such that f(z) = 0 and df(z) = 0 and det(d2f(z)) = 0.

The space U corresponds to the space of 2-jets with singularities which have critical

value zero and which are not Morse.

Definition 5.2. — For N r, ∂N r a smooth, compact manifold with boundary and ψ :

N → R a smooth function such that j2ψ(z) 6∈ U in a neighbourhood of ∂N , define the

spaces:

1. Φ((N, ∂N), ψ) := {f ∈ C∞(N,R)|f ≡∂N ψ, j2f 6∈ U};
2. hΦ((N, ∂N), ψ) := {f̂ ∈ ΓJ2(N,R)|f̂ ≡∂N j2ψ, f̂ 6∈ U}.

(Here, ≡∂N indicates equality in a neighbourhood of ∂N .)

Jet prolongation defines a map j2 : Φ((N, ∂N), ψ)→ hΦ((N, ∂N), ψ). A special case

of Vassiliev’s main theorem reads as follows:

Theorem 5.3. — [24, 23] The map j2 : Φ((N, ∂N), ψ)→ hΦ((N, ∂N), ψ) induces an

isomorphism in integral homology.

5.2. Indications on the proof of Theorem 1.3

The Whitehead theorem implies that it is sufficient to show that the morphism j2
π :

|W| → |hW| induces an isomorphism on integral homology, using the fact that the

spaces |W|, |hW| are simple(11). This fact is deduced from the existence of compatible

monoid structures on the spaces, together with the fact that |hW| has the structure of

an infinite loop space, by Theorem 1.4.

The next step is to extendW , hW to weakly equivalent sheavesW0, hW0 in which the

Morse condition is only imposed in a neighbourhood of the critical value f−1(0). There is

a canonical extension of the jet-prolongation morphism to a morphism j2
π :W0 → hW0

and it is sufficient to show that this induces an isomorphism in integral homology.

The sheavesW0, hW0 admit homotopy colimit decompositions, expressed in terms of

the functor β of Definition A.13. Theorem 1.3 is deduced by applying Proposition A.17:

the proof reduces to showing that the morphism j2
π induces a homology equivalence

between fibres over the same point. This follows from Vassiliev’s main theorem by

identifying the morphism between the fibres explicitly.

(11)A connected space is simple if it has abelian fundamental group which acts trivially on the higher
homotopy groups.
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6. ELEMENTARY MORSE SINGULARITIES

The proof of Theorem 1.5 requires an analysis of standard models for the elements

of W in terms of certain multi-elementary Morse singularities. The constructions in-

troduced here are exploited in Section 7.

6.1. Morse vector spaces and vector bundles

Definition 6.1. —

1. A Morse vector space is a pair (V, ρ), where V is a finite dimensional real vector

space equipped with an inner product and ρ : V → V is a linear, isometric invo-

lution. The involution ρ induces a decomposition V ∼= V ρ ⊕ V −ρ, u 7→ (u+, u−),

where ρ acts trivially on V ρ and by multiplication by −1 on V −ρ.

2. The Morse index of (V, ρ) is the dimension of V −ρ.

3. The Morse function of (V, ρ) is the smooth function fV : V → R given by

fV (u) := 〈u, ρu〉 ∼= ||u+||2 − ||u−||2.

The Morse vector spaces provide a good local model for elementary Morse functions,

namely those with a single critical point.

Definition 6.2. — For (V, ρ) a Morse vector space, the saddle of (V, ρ) is the smooth

manifold with boundary: Saddle(V, ρ) := {u ∈ V | ||u+||2||u−||2 ≤ 1}.

Example 6.3. — Let (V, ρ) be a Morse vector space of dimension three and of Morse

index one; the above construction yields fV : Saddle(V, ρ) → R. The function fV is

fibrewise singular; there is an isolated critical point in the fibre above 0 ∈ R and the

morphism fV restricts to a bundle of closed surfaces above R\{0}. The fibre above a

point of (0,∞) is a hyperboloid of two sheets and above (−∞, 0) is a hyperboloid of

one sheet; the singular fibre above {0} is a cone.

Lemma 6.4. — There is a smooth embedding of codimension zero:

Saddle(V, ρ)\V ρ ↪→ D(V ρ)× S(V −ρ)× R
u 7→ (||u−||u+, ||u−||−1u−, fV (u))

with complement 0 × S(V −ρ) × [0,∞). In particular, there is a diffeomorphism of the

boundary of Saddle(V, ρ) with S(V ρ)× S(V −ρ)× R.

There is an analogous smooth embedding Saddle(V, ρ)\V −ρ ↪→ S(V ρ)×D(V −ρ)×R
with complement S(V ρ)× 0× (−∞, 0].

Example 6.5. — Let (V, ρ) be a Morse vector space as in Example 6.3 and let M be a

smooth, oriented, closed surface with boundary, with an embedding D2 × S0 ↪→ IntM

into the interior of M . There is a smooth 3-manifold constructed by gluing:

W (M, (V, ρ)) ∼= (M◦ × R) ∪S1×S0×R Saddle(V, ρ),
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where M◦ is obtained by removing the interior of the embedded disks D2 × S0, such

that fV extends to a smooth function f̃V : W (M, (V, ρ))→ R. This defines an element

of W(∗).
For example, if M = S2 is the sphere with two disjoint embedded disks then the

bundle of surfaces over R\{0} has fibre above (0,∞) a sphere and, above (−∞, 0), a

torus. The singular fibre above {0} is topologically a sphere with two disjoint points

identified.

The notion of a Morse vector space extends to that of a Morse vector bundle.

Definition 6.6. — A Morse vector bundle over X is a triple (V, p, ρ), where p : V →
X is a smooth Riemannian vector bundle and ρ : V → V is a fibrewise linear isometric

involution over X.

The saddle of a Morse vector bundle (V, p, ρ) is the smooth manifold over X obtained

by applying the saddle construction fibrewise.

Examples 6.3 and 6.5 generalize to the parametrized situation and give examples of

sections of W(X) not in V(X).

6.2. Regularization of elementary Morse singularities

There are two standard ways of regularizing the Morse singularity of the function fV ,

by removing the embedded subspace V ρ (respectively V −ρ).

Lemma 6.7. — Let (V, ρ) be a Morse vector space. There exists a proper, regular

function:

f+
V : Saddle(V, ρ)\V ρ → R

such that f+
V agrees with fV on an open subset of Saddle(V, ρ) which contains the bound-

ary and on the subset {u ∈ Saddle(V, ρ)|fV (u) ≤ −1}.

There exists an analogous construction of a proper, regular function: f−V :

Saddle(V, ρ)\V −ρ → R.

Remark 6.8. — The hypothesis on the open subset of agreement of f+
V is necessary for

two reasons: to ensure that smooth gluing is possible (using the neighbourhood of the

boundary) and to ensure that there is an explicit form of the restriction of f+
V to the

submanifold fV (u) = −1.

Lemma 6.9. — The functions f+
V , f−V induce diffeomorphisms

Saddle(V, ρ)\V ρ ↪→ D(V ρ)× S(V −ρ)× R,
Saddle(V, ρ)\V −ρ ↪→ S(V ρ)×D(V −ρ)× R,

by u 7→ (||u−||u+, ||u−||−1u−, f
+
V (u)) and u 7→ (||u+||−1u+, ||u+||u−, f−V (u)) respectively.

The following Lemma ensures that elementary Morse functions are modelled by sad-

dles; moreover, there are standard ways to reparametrize Morse functions upon saddles.
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Lemma 6.10. — [12] Let N be a smooth manifold equipped with an elementary Morse

function f : N → R, with unique critical value 0, then there exists a Morse vector space

(V, ρ) and a codimension zero embedding λ : Saddle(V, ρ)→ N\∂N , such that fλ = fV .

Definition 6.11. — For N, f as above, the positive regularization is the pair

(N rg
+ , f

rg
+ ), where N rg

+ := N\λ(V ρ) and f rg
+ is given by patching f and f+

V . If N

is oriented, N rg
+ is given the induced orientation.

The negative regularization (N rg
− , f

rg
− ) is defined in the analogous way.

Lemma 6.12. — For (N rg
+ , f

rg
+ ) the positive regularization as above, the function f rg

+ is

smooth and proper.

6.3. Surgery and the long trace construction

The following surgery construction is related to Example 6.5; there is an evident

parametrized version of the construction.

Definition 6.13. — Let M be a smooth, compact manifold, equipped with a codimen-

sion zero embedding, e : D(V ρ) × S(V −ρ) → M\∂M , for a Morse vector space (V, ρ)

with dimV = dimM + 1.

The long trace of e is the smooth manifold trace(e) which is obtained as the pushout

of the codimension zero embeddings

Saddle(V, ρ)\V ρ � � //
� _

��

Saddle(V, ρ)

(M × R)\e(0× S(V −ρ))× [0,∞).

The long trace is equipped with the elementary Morse function which is the smooth

height function on the complement of Saddle(V, ρ) and identifies with the function fV

on the copy of Saddle(V, ρ).

The regularization constructions of the previous section give two ways in which to

regularize the function fV , which correspond to removing the subspaces V ρ (respectively

V −ρ) from the embedded copy of Saddle(V, ρ).

There is a related surgery construction which corresponds to changing the choice of

regularization:

Definition 6.14. — For e : D(V ρ) ×X S(V −ρ) ↪→ M a smooth embedding, where

q : M → X is a smooth bundle of d-manifolds with an orientation of the vertical

tangent bundle and (V, ρ) is a Morse vector bundle over X, let q[ : M [ → X be the

bundle of d-manifolds which is obtained by fibrewise surgery, by removing the interior

of D(V ρ)×X S(V −ρ) and gluing in S(V ρ)×X D(V −ρ).

Example 6.15. — Let M = S2 be the sphere with an embedding e : D2 × S0 ↪→ M ;

the manifold M [ is diffeomorphic to the torus. The construction can be reversed by

inverting the rôle of the Morse index.
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7. STRATIFICATION OF THE SHEAVES W, Wloc

The proof of the generalized Mumford conjecture requires an analysis of the homotopy

fibre of the map of representing spaces, |W| → |Wloc|. This involves the formation of

homotopy colimit decompositions of the sheaves W , WT via stratifications (see Corol-

lary 7.4). The strategy of the construction is resumed in the following sequence of

results, which require the introduction of certain auxiliary sheaves.

The first step replaces the sheaves W , Wloc by sheaves L, Lloc, in which there are

standard forms for neighbourhoods of the critical points.

Proposition 7.1. — There is a commutative diagram of sheaves,

L ' //

��

Wµ ' //

��

W

��
Lloc Wµ

loc'
oo

'
// Wloc,

in which the horizontal morphisms are weak equivalences.

There are compatible stratifications of the sheaves L, Lloc, which give rise to diagrams

LT → L, Lloc,T → Lloc, indexed over the small category Kop. These provide homotopy

decompositions of L, Lloc respectively, by the following result, using the techniques of

Appendix A.6, where the definition of the homotopy colimit (as a sheaf) of a diagram

of sheaves is given.

Proposition 7.2. — There is a commutative diagram of sheaves

hocolimT∈KLT
' //

��

L

��
hocolimT∈KLloc,T '

// Lloc,

in which the horizontal morphisms are weak equivalences.

Corollary 7.4 is expressed in terms of diagrams of sheaves WT , Wloc,T , which are

indexed over Kop.

Proposition 7.3. — There are natural commutative diagrams of sheaves, for T ∈ K:

LT
' //

��

WT

��
Lloc,T '

// Wloc,T ,

in which the horizontal morphisms are weak equivalences.

Propositions 7.1, 7.2, 7.3 and homotopy invariance of homotopy colimits imply the

following:
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Corollary 7.4. — The homotopy fibre of the morphism |W| → |Wloc| is weakly equiv-

alent to the homotopy fibre of the morphism hocolimT∈K|WT | → hocolimT∈K|Wloc,T |.

7.1. The sheaves L and Lloc

The passage to the sheaves L, Lloc corresponds to requiring standard forms for neigh-

bourhoods of the critical points arising in W and Wloc.

Definition 7.5. — Let Lloc denote the sheaf which has sections over X the set of

triples (p, g, V ), where:

1. p is an étale map Y → X;

2. g is a smooth function Y → R such that the morphism (p, g) : Y → X × R is

proper;

3. ω : V → Y is a three-dimensional oriented Morse vector bundle.

The above definition implies that Y → X is a finite étale covering.

Definition 7.6. — Let L denote the sheaf which has sections over X the set of tuples

(p, g, V, π, f, λ) such that

1. (p, g, V ) ∈ Lloc(X);

2. (π, f) ∈ W(X);

3. λ : Saddle(V, ρ) → E is a smooth embedding such that Σ(π, f) ⊂ image(λ) and λ

respects the orientation along the fibrewise singularity set;

4. f is a function such that fλ(u) = fV (u) + g(ω(u)), so that fλ has the same

fibrewise singularity set as fV and g corresponds to the critical value function.

Tuples as above satisfy Y = Σ(π, f) and the vector bundle V → Y is isomorphic to

the restriction of T πE to Σ(π, f).

The definitions yield canonical morphisms of sheaves W L //oo Lloc . The

proof of Proposition 7.1 requires the introduction of the auxiliary sheavesWµ andWµ
loc;

the relative surjectivity criterion of Proposition A.7 is used to show that the morphisms

L → Wµ and Wµ
loc → Lloc are weak equivalences. The remaining comparisons are

straightforward.

7.2. The category K
The Morse index of a Morse vector space, (V, ρ), is an integer in the interval [0, dimV ].

When considering the regularization of elementary Morse singularities, one can attribute

an integer in {1,−1} to a critical point according to the way in which the function

is regularized, corresponding to sending the critical value either to ∞ or −∞. This

motivates the following definition:

Definition 7.7. — Let K denote the category with objects finite sets over [3] :=

{0, 1, 2, 3} and with morphisms injective maps over [3], ι : S ↪→ T , together with a

function ε : T\ιS → {±1}. The composition of morphisms is given in the obvious way.
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A morphism inK is the composite of ‘elementary’ morphisms of the form S ↪→ S∪{a},
monomorphism of sets over [3], together with the value ε(a) ∈ {±1}.

7.3. Stratifying - the sheaves LT and Lloc,T

The sheaves L and Lloc are stratified by taking into account the Morse index and

the possible regularizations of the fibrewise singularity sets. The following definition is

justified by the observation that, for any element (p, g, V ) of Lloc(X), the function g is

locally either bounded above or bounded below (the statement is made precise in [12]);

this follows from the properness of the morphism (p, g).

Definition 7.8. — For T an object of K, let Lloc,T denote the sheaf with sections over

X the set of tuples (p, g, V, δ, h) where:

1. (p, g, V ) ∈ Lloc(X);

2. δ : Y → {−1, 0,+1} is a continuous function;

3. h : T × X → δ−1(0) ⊂ Y is a diffeomorphism over [3] × X, where the structure

morphism Y → [3] is induced by the Morse index;

such that, for each x ∈ X, there exists a neighbourhood U of x such that g is bounded

below on p−1(U) ∩ δ−1(+1) and bounded above on p−1(U) ∩ δ−1(−1).

Remark 7.9. —

1. The function δ is locally constant; the existence of h implies that δ is constant on

each sheet of δ−1(0).

2. The data h, δ are introduced since a choice of regularization is allowed only where

the function g is locally bounded.

Lemma 7.10. — The association T 7→ Lloc,T is contravariantly functorial, where

for a generating morphism S ↪→ S ∪ {a}, (p, g, V, δ, h) ∈ Lloc,S∪{a}(X) has image

(p, g, V, δ′, h′), where the subset (δ′)−1(0) corresponds to S ×X ↪→ (S ∪ {a})(X) via h,

the morphism h′ is the induced morphism and the value of δ′ on {a} ×X is ε(a).

Definition 7.11. — For T an object of K,

1. let L′T denote the pullback of the diagram L → Lloc ← Lloc,T ;

2. let LT denote the subsheaf of L′T which is given by elements for which g is identi-

cally zero on δ−1(0).

These constructions yield the diagram of morphisms of sheaves

LT
//

��

L

��
Lloc,T

// Lloc,

natural in T .
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Proposition 7.2 asserts that the morphisms hocolimT∈KLT → L and hocolimT∈KLloc,T →
Lloc are weak equivalences. The sheaf theoretic model for the homotopy colimit intro-

duced in Definition A.13 is used, together with certain auxiliary sheaves; the proofs

appeal to the relative surjectivity criterion of Proposition A.7. The reader is referred

to [12] for the details.

7.4. The sheaves WT , Wloc,T

The sheaves WT , Wloc,T introduced in this section play a fundamental rôle in the

proof of the generalized Mumford conjecture.

Definition 7.12. — For T an object of K, let Wloc,T denote the sheaf with sections

over X the set of three-dimensional smooth, oriented Riemannian vector bundles, ω :

V → T ×X, equipped with a fibrewise linear isometric involution ρ : V → V such that

the fibres above t ×X ⊂ T ×X have Morse index given by the image of t in [3]. The

sheaf structure is given by the pull-back of vector bundles.

Lemma 7.13. — The association T 7→ Wloc,T is contravariantly functorial in K.

Definition 7.14. — For T an object of K, let WT denote the sheaf with sections over

X the set of data ((V, ρ), q : M → X, e) satisfying

1. (V, ρ) is an element of Wloc,T ;

2. q : M → X is a smooth bundle of closed surfaces, with oriented vertical tangent

bundle;

3. e : D(V ρ) ×T×X S(V −ρ) → M is a smooth embedding over X, respecting the

vertical orientations.

The functoriality of W− with respect to K corresponds to the alternative choices of

regularizations. This uses the surgery construction of Definition 6.14.

Lemma 7.15. — The association T 7→ WT is contravariantly functorial in K, with

respect to the following structure for elementary morphisms in K of the form S ↪→
S ∪ {a}. An element ((V, ρ), q, e) maps to ((V ′, ρ′), q′, e′), where

1. (M ′, q′) := (M [, q[) if ε(a) = −1, and (M ′, q′) = (M, q) otherwise;

2. (V ′, ρ′) is given by functoriality of Wloc,T ;

3. e′ is the induced embedding.

By construction, there is a forgetful map WT →Wloc,T , which is natural in T .

7.5. Relating Lloc,T and Wloc,T

There is a morphism of sheaves Lloc,T → Wloc,T which is given by (p, g, V, δ, h) 7→
h∗(V ). Similarly, there is a map Wloc,T → Lloc,T which is induced by taking δ and g to

be identically zero.

The relative surjectivity criterion of Proposition A.7 is used to show that the mor-

phism Wloc,T → Lloc,T is a weak equivalence; it is straightforward to deduce that

Lloc,T →Wloc,T is a weak equivalence.
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7.6. Regularization and the natural transformation LT →WT

A natural morphism of sheaves LT →WT is constructed by using the regularization

construction below.

Definition 7.16. — For (π, f, p, g, V, δ, h, λ) representing a section of LT (X), write

V+ for V |δ−1(1), V− for V |δ−1(−1) and V0 for V |δ−1(0).

Let (Erg, πrg, f rg) denote the structure:

1. Erg := E\λ(V ρ
+ ∪ V

ρ
0 ∪ V

−ρ
− );

2. πrg := µ|Erg ;

3. f rg : Erg → R the extension of f |E\Im(λ) by f+
V on the image of V+ ∪ V0 and f−V on

the image of V−.

Lemma 7.17. — Let (π, f, p, g, V, δ, h, λ) represent a section of LT (X), then Erg is an

open subset of E, πrg : Erg → X is a smooth submersion and f rg is regular on each

fibre of πrg. Moreover, (πrg, f rg) : Erg → X × R is a smooth, proper submersion.

Ehresmann’s fibration lemma implies that the map (πrg, f rg) : Erg → X × R is a

smooth bundle of closed, oriented surfaces.

Definition 7.18. — For (π, f, p, g, V, δ, h, λ) representing a section of LT (X), let

((V, ρ), q : M → X, e) denote the element of WT (X) defined by:

1. q : M → X is the fibre of Erg above X × {−1};
2. e : {v ∈ Saddle(V0, ρ)|fV (v) = −1} → M is the induced embedding, which has

source D(V ρ
0 )×T×X S(V −ρ

0 );

3. (V, ρ) is the object h∗(V0), considered as an object of Wloc,T (X).

Proposition 7.19. — The construction of Definition 7.18 defines a morphism of

sheaves LT →WT , which is natural in T .

Proof. — The proof of the naturality with respect to T is a verification that the functo-

rial behaviour ofWT defined in Lemma 7.15 is compatible with the functorial behaviour

of LT .

The natural morphism fits into a commutative diagram

LT
//

��

WT

��
Lloc,T

// Wloc,T ,

hence the proof of Proposition 7.3 is completed by showing that the morphism LT →WT

is a weak equivalence.

The long trace construction (Definition 6.13) induces a morphism (not natural with

respect to T ) of sheaves,WT → LT . Proposition 7.3 can be deduced from the following

result (for the proof, the reader is referred to [12]).

Proposition 7.20. — The morphism WT → LT is a weak equivalence.
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8. REFINEMENTS OF THE HOMOTOPY COLIMIT

DECOMPOSITIONS

The stratifications of the previous section require to be refined in two ways. Firstly,

it is necessary to add controlled boundaries to the 3-manifolds which are considered,

so as to allow concatenation. The second refinement reduces to the case in which the

fibres of the bundles are connected; this condition is required in Lemma 9.1.

8.1. Controlled boundaries

Let C be a non-empty closed, smooth, oriented 1-manifold. Any such manifold is

null-bordant: there exists a smooth, compact oriented 2-manifold K with boundary

∂K = C as oriented 1-manifolds.

Example 8.1. — For the application to the stable moduli space of surfaces, take C to

be the manifold S1 q−S1.

All of the sheaves considered in the previous section can be modified by allowing a

constant boundary derived from C. For example, consider the sheaf W .

Definition 8.2. — Let ∂W denote the sheaf with sections over X the set of pairs

(π, f), where π : E → X is a smooth submersion of fibre dimension three with ori-

ented fibrewise tangent bundle, f : E → R is a smooth map and ∂E over X × R has a

neighbourhood which is diffeomorphic to a collar on X × C × R, respecting the orien-

tation. The pair (π, f) should satisfy the properness and fibrewise Morse conditions of

Definition 3.9.

There is a natural morphism ∂W → W of sheaves, which is induced by the null-

bordism of C. The reader is referred to [12] for a proof of the following result.

Proposition 8.3. — The morphism ∂W →W is a weak equivalence of sheaves.

The definitions of all the sheaves of Section 7 generalize to the case where boundaries

are permitted, as above. The analogue of Proposition 8.3 holds in each case: the null-

bordism induces a natural morphism which is a weak equivalence. Henceforth, all such

sheaves are taken with boundary, without addition of the decoration ∂.

The definition of WT (X) becomes:

Definition 8.4. — For T an object of K, let WT denote the sheaf with sections over

X given by tuples ((V, ρ), q : M → X, e) such that :

1. (V, ρ) ∈ Wloc,T , of rank three;

2. q : M → X is a smooth bundle of closed 2-manifolds with boundary, with an

orientation of the vertical tangent bundle;

3. there exists a neighbourhood of ∂M in M which identifies over X with a collar on

X × C, respecting the orientations;
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4. e : D(V ρ)×T×X S(V −ρ)→ M is a smooth embedding over X, respecting orienta-

tions, with image disjoint from the boundary ∂M .

8.2. Concordance lifting and fibres

Proposition 8.6 below identifies the homotopy fibre of the morphism |WT | → |Wloc,T |,
by Corollary A.12, using the following concordance lifting property (see Definition A.9).

Lemma 8.5. — For T an object of K, the forgetful morphism WT → Wloc,T has the

concordance lifting property.

Fix an object (V, ρ) of Wloc,T (∗) ; this is a three-dimensional oriented Morse vector

bundle on the discrete space T . The canonical morphism X → ∗ for a smooth manifold

X, induces an associated object (V, ρ)X of Wloc,T (X), such that the structure is trivial

with respect to X.

Proposition 8.6. — For T an object of K, the fibre over (V, ρ) of the forgetful mor-

phism WT → Wloc,T is weakly equivalent to the sheaf which has sections over X the

set of smooth bundles (q : M → X) of vertically tangentially oriented compact surfaces

with collared boundary, where the boundary bundle ∂M → X identifies with

−(C q S(V ρ)×T S(V −ρ))×X → X.

Proof. — By cutting the interior of the embedded thickened spheres from the fibre

bundle.

8.3. The connectivity theorem

Definition 8.7. — For T an object of K, let Wc,T denote the subsheaf of WT which

has sections over X the set of tuples ((V, ρ), q : M → X, e) such that the fibres of

M\Im(e)→ X are connected.

The construction is not functorial in T , since the extreme values {0, 3} of the Morse

index can lead to the introduction of non-connected fibres. This motivates the consid-

eration of the following decomposition of the category K.

Definition 8.8. — Let K′ denote the full subcategory of K with objects such that the

structure map T → [3] has image contained in {0, 3} and let K′′ be the full subcategory

with objects such that the structure map T → [3] has image contained in {1, 2}.

The disjoint union of finite sets induces an equivalence of categories, K′ ×K′′ → K.

Lemma 8.9. — Let Q be an arbitrary object of K, then the association S 7→ Wc,QqS is

contravariantly functorial in S ∈ K′′.

The product decomposition of the category K implies the following result:

Lemma 8.10. — Let T 7→ FT be a functor from Kop to sheaves on X, then there is a

weak equivalence hocolimT∈K|FT | ' hocolimQ∈K′hocolimS∈K′′|FQqS|.
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The following technical result(12) avoids the necessity of considering the homotopy

fibre of the homotopy colimit over K′′ ofWc,QqS →WQqS, for non-trivial Q. The reader

is referred to [12] for the proof.

Lemma 8.11. — For any morphism P → Q in K′, the following commutative square

is homotopy cartesian:

hocolimS∈K′′|WQqS| //

��

hocolimS∈K′′|WPqS|

��
hocolimS∈K′′|Wloc,QqS| // hocolimS∈K′′|Wloc,PqS|.

The connectivity theorem reads as follows:

Theorem 8.12. — The inclusion hocolimS∈K′′ |Wc,S| → hocolimS∈K′′ |WS| is a weak

equivalence.

8.4. Indications on the proof of the connectivity theorem

The proof of Theorem 8.12 is by the construction of a homotopy inverse. Fibrewise

surgery is used to make the fibres connected manifolds; this is achieved by cutting out

pairs of disks and gluing in tubes. Such surgeries can be described in terms of the

functoriality of the sheaves WT with respect to Kop.

The proof uses methods of homotopical algebra to compare the surgery techniques

which correspond to the choice of the regularization parameter {±1} for morphisms in

the category K. This reduces the proof to showing that the category which parametrizes

the multiple surgeries which make a surface connected is contractible.

The reader is referred to [12] for the proof that the classifying space is contractible,

which uses the criterion, derived from Proposition A.7, for a sheaf to be contractible.

9. THE PROOF OF THE MAIN THEOREM

Throughout this section, let C denote the manifold S1q−S1. The proof of Theorem

1.2 is completed by proving that the homotopy fibre of |W| → |Wloc| is homotopy

equivalent to Z×BΓ+
∞,2.

(12)A homotopy cartesian diagram corresponds to the homotopy limit, and is a derived version of the
fibred product.
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9.1. Reduction to integral homology

The Whitehead theorem implies that it is sufficient to construct a morphism

Z×BΓ∞,2 → hfib{|W| → |Wloc|}

which induces an isomorphism in integral homology. Indeed, the morphism |W| →
|Wloc| is homotopic to a morphism of infinite loop spaces and therefore factorizes up to

homotopy across Quillen’s plus construction: Z × BΓ+
∞,2 → hfib{|W| → |Wloc|}. This

is a morphism between infinite loop spaces (not a priori an infinite loop map), which

induces an isomorphism in integral homology; the Whitehead theorem implies that it

is a weak equivalence.

9.2. Homotopy fibres for connected strata

The following result is fundamental; it follows from Proposition 8.6, restricted to the

connected case.

Lemma 9.1. — Let T be an object of K, then the homotopy fibre over any basepoint of

the localization map |Wc,T | → |Wloc,T | is homotopy equivalent to qgBΓg,2+2|T |.

9.3. Stabilization via the genus

The collared boundary of the total space E of an object of WT (X) allows for con-

catenation; this is a parametrized version of the concatenation used in the Harer-Ivanov

cohomological stability theorems.

Definition 9.2. — Let z ∈ Wc,∅(∗) be an oriented surface of genus one, with two

boundary components. For T an object of K:

1. let .z :WT →WT and .z :Wc,T →Wc,T denote the morphisms which are induced

by concatenation with z;

2. let z−1WT (respectively z−1Wc,T ) denote the colimit of the induced direct system

of sheaves.

The spaces represented by the colimits are weakly equivalent to the colimits of the

individual spaces, by the following result:

Lemma 9.3. — [12] There are natural weak equivalences |z−1WT | ' z−1|WT |,
|z−1Wc,T | ' z−1|Wc,T |.

Lemma 9.1 stabilizes to yield the following result:

Corollary 9.4. — Let T be an object of K, then the homotopy fibre of the localization

map |z−1Wc,T | → |Wloc,T | is homotopy equivalent to Z×BΓ∞,2+2|T | over any basepoint.

For Q a fixed object of K, the associations S 7→ z−1WS, S 7→ z−1Wc,QqS are con-

travariantly functorial in S in K′′. Theorem 8.12 implies the following

Corollary 9.5. — The map hocolimS∈K′′ |z−1Wc,S| → hocolimS∈K′′ |z−1WS| is a

weak equivalence.
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The realization spaces of W and z−1W by the following Proposition, which follows

from the fact that |W| is an infinite loop space (by Theorems 1.3 and 1.4).

Proposition 9.6. — There are weak equivalences |W| ' |z−1W| ' hocolimT∈K|z−1WT |.

9.4. Morphisms and homology equivalences

For any small category C and any functor F− from C to a suitable category of topo-

logical spaces, Spaces, there exists a canonical morphism FC → hocolim F−, for any

object C of C.

Lemma 9.7. — Let Q be an object of K. There is a canonical morphism

Z×BΓ∞,2+2|Q| → hfib{hocolimS∈K′′ |z−1Wc,QqS| → hocolimS∈K′′|Wloc,QqS|}.

Proof. — In the case Q = ∅, it suffices to observe that ∅ ∈ K′′ and that |z−1Wc,∅| '
Z × BΓ∞,2 and |Wloc,∅| ' ∗. The canonical morphism is the required morphism. The

general case is a straightforward modification of this argument.

The following technical result relates the homology of the homotopy fibre of a map

between spaces obtained by gluing to the homology of the homotopy fibres of the maps

between individual terms.

Proposition 9.8. — [12, 13] Let C be a small category and let u : G1 → G2 be a

natural transformation between functors Gi : C → Spaces.

Suppose that, for any morphism f : a → b of C, the map f∗ from any homotopy

fibre of ua to the corresponding homotopy fibre of ub induces an isomorphism in integral

homology. Then, for any object a of C, the inclusion of any homotopy fibre of ua in the

corresponding homotopy fibre of u∗ : hocolim G1 → hocolim G2 induces an isomorphism

in integer homology.

Proposition 9.9. — The canonical morphism

Z×BΓ∞,2 → hfib{hocolimS∈K′′ |z−1Wc,S| → hocolimS∈K′′|Wloc,S|}

induces an isomorphism in integral homology.

Proof. — There is a commutative diagram of homotopy fibre sequences, for S → T a

morphism of K′′:

Z×BΓ∞,2+2|T | //

��

|z−1Wc,T | //

��

|Wloc,T |

��
Z×BΓ∞,2+2|S| // |z−1Wc,S| // |Wloc,S|

where the map of homotopy fibres corresponds geometrically to attaching tubes D1×S1

or pairs of disks D2 × S0, according to the regularization index. The Harer-Ivanov

stability theorems imply that these morphisms induce an isomorphism in homology.

The result follows by applying Proposition 9.8.
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9.5. Applying the homotopy cartesian square

Lemma 8.11 stabilizes to give the following result.

Lemma 9.10. — For any morphism P → Q in K′, the following commutative square

is homotopy cartesian:

hocolimS∈K′′|z−1WQqS| //

��

hocolimS∈K′′|z−1WPqS|

��
hocolimS∈K′′|Wloc,QqS| // hocolimS∈K′′|Wloc,PqS|

This allows the deduction of the following result.

Lemma 9.11. — For any object Q of K, the canonical morphism

Z×BΓ∞,2+2|Q| → hfib{hocolimS∈K′′ |z−1WQqS| → hocolimS∈K′′|Wloc,QqS|}

induces an isomorphism in integral homology.

Proof. — There is a commutative diagram

Z×BΓ∞,2+2|Q| //

��

F //

'
��

hocolimS∈K′′|z−1WQqS| //

��

hocolimS∈K′′|Wloc,QqS|

��
Z×BΓ∞,2

// F ′ // hocolimS∈K′′|z−1WS| // hocolimS∈K′′|Wloc,S|

in which F, F ′ denote the respective homotopy fibres, which are weakly equivalent, since

the right hand square is homotopy cartesian.

The left hand vertical morphism is an integral homology isomorphism, by the Harer-

Ivanov stability theorems and the bottom left hand morphism induces an isomorphism

in integral homology, by the result of the previous Section and Corollary 9.4, which

implies that the term hocolimS∈K′′ |z−1WS| is equivalent to hocolimS∈K′′ |z−1Wc,S|.
The result follows.

9.6. Proof of the main theorem

The proof of the Theorem 1.5 is completed by repeating the above argument, us-

ing Proposition 9.8 together with the Harer-Ivanov stability theorem, applied to the

homotopy fibre of the morphism:

hocolimQ∈K′hocolimS∈K′′ |z−1WQqS| → hocolimQ∈K′hocolimS∈K′′|Wloc,QqS|.

APPENDIX A

HOMOTOPY THEORY OF SHEAVES

Throughout this section, all sheaves are defined on the category X of smooth mani-

folds.
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A.1. Concordance for sheaves

Definition A.1. — Let F be a sheaf and let X be a smooth manifold. Two sections

s0, s1 ∈ F(X) are concordant if there exists a section s ∈ F(X×R) such that s = p∗Xs0

on an open neighbourhood of X × (−∞, 0] and s = p∗Xs1 on an open neighbourhood of

X × [1,∞), where pX : X × R → X is the projection. The concordance s is said to

start at s0.

Concordance defines an equivalence relation on the set F(X); the set of equivalence

classes modulo concordance is written F [X].

There is a relative version of concordance with respect to a closed subset A ⊂ X (not

necessarily a manifold) of a smooth manifold X.

Definition A.2. — For A ⊂ X a closed subset of a smooth manifold X in X,

1. let FA denote the colimit FA := colimUF(U), where U ranges over the category of

open neighbourhoods of A in X;

2. for s ∈ FA, let F(X,A; s) denote the fibre of the canonical morphism F(X)→ FA

above s.

Definition A.3. — For F , X,A, s as above, elements t0, t1 ∈ F(X,A; s) are concor-

dant relative to A if there exists an element t ∈ F(X × R, A× R; q∗s) which defines a

concordance for t0, t1 regarded as elements of F(X), where q∗s ∈ FA×R is induced by

pullback of s via the projection q : A× R→ A.

Let F [X,A; s] denote the set F(X,A; s) modulo the equivalence relation given by

concordance relative to A.

A.2. The representing space |F|
Let ∆n ⊂ Rn+1 denote the affine plane Σxi = 1, so that n 7→∆n defines a cosimplicial

smooth manifold.

Definition A.4. — For F a sheaf of sets, let |F| denote the geometric realization of

the simplicial set F(∆∗).

A point z ∈ F(∗) induces a point in |F|. The following representability statement is

fundamental.

Proposition A.5. — [12] For any point z ∈ F(∗), smooth manifold X and closed

subset A ⊂ X, there is a natural isomorphism F [X,A; z] ∼= [(X,A), (|F|, z)], where the

right hand side denotes homotopy classes of maps of pairs.

The following formal properties are basic.

1. The functor F 7→ |F| takes pullback squares of sheaves to pullbacks of compactly-

generated Hausdorff spaces.

2. |F1 q F2| ∼= |F1| q |F2|.
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Definition A.6. — A morphism of sheaves of sets v : E → F is a weak equivalence

if |v| : |E| → |F| is a weak equivalence of topological spaces. This is equivalent to the

induced morphism πn(|E|, z) ∼= E [Sn, e; z] → πn(|F|, z) ∼= F [Sn, e; z] being an isomor-

phism, for all n, z.

A.3. Special weak equivalences

The following special weak equivalences resemble trivial fibrations in homotopical

algebra.

Proposition A.7. — [12] Let v : E → F be a morphism of sheaves of sets. Suppose

that v induces a surjection E [X,A; s]→ F [X,A; v(s)] for all smooth X and all s ∈ EA,

then v is a weak equivalence.

Example A.8. — Let F be the terminal sheaf which is induced by the constant presheaf

with value a singleton set; for a sheaf of sets, E , there is a canonical morphism of sheaves,

E → F . The morphism induces a surjection on relative concordance classes, as in the

Proposition above, if and only if any section s ∈ EA extends to an element of E [X,A; s].

This yields a criterion for a sheaf to be homotopically trivial.

A.4. The concordance lifting property

The concordance lifting property plays the rôle of the fibration hypothesis in homo-

topical algebra; it is important in considering the homotopy fibre of a morphism of

sheaves (see Corollary A.12 below).

Definition A.9. — A morphism u : E → F of sheaves has the concordance lifting

property if, for any section s ∈ E(X) and concordance h ∈ F(X × R) starting at u(s),

there exists a concordance H ∈ E(X × R), starting at s, which lifts h.

Proposition A.10. — [12] Let E ×G F be the pullback of the diagram of sheaves,

E → G u← F . If u has the concordance lifting property, then so does E ×G F → E and

the associated diagram of spaces,

|E ×G F| //

��

|F|

|u|
��

|E| // |G|,

is homotopy cartesian.

Definition A.11. — For u : E → F a morphism of sheaves and a ∈ F(∗), let Ea

denote the fibre of u over a, which is the sheaf defined by Ea(X) := {s ∈ E(X)|u(s) = a}.

Corollary A.12. — [12] Let u : E → F be a morphism of sheaves which has the

concordance lifting property, then the induced diagram of spaces |Ea| → |E| → |F| is a

homotopy fibre sequence.
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A.5. Functors to small categories

Let F be a sheaf with values in the category of small categories. The nerve con-

struction [20] N•F defines a sheaf with values in the category of simplicial sets; hence

N•F(∆∗) has the structure of a bisimplicial set. This can be realized as a topological

space in a number of ways; in particular, the topological realization of the diagonal

simplicial set is weakly equivalent to the classifying space B|F| of the topological cate-

gory |F|. (Here |F| is the topological category with object space |N0F| and morphism

space |N1F|).

Definition A.13. — [12] For F as above, let βF denote the sheaf of sets which has

sections over X the set of pairs (Y, φ••), where Y := {Yj|j ∈ J } is a locally finite open

cover of X, indexed by a fixed index set J , and, for nonempty finite subsets R ⊂ S,

φRS ∈ N1F(YS) is a morphism subject to cocycle conditions, where YS denotes the open

set YS :=
⋂

j∈S Yj.

The following theorem is proved in [12] and gives a sheaf theoretic model for the

classifying space B|F|.

Theorem A.14. — The spaces |βF| and B|F| are homotopy equivalent.

A.6. Homotopy colimits

Homotopy colimits are used for gluing; they behave as the derived functor of the

colimit and, in particular, satisfy a homotopy invariance property.

Definition A.15. — Let FC be a sheaf of sets, functorial in objects C of a small,

discrete category C.
1. Let C

∫
F denote the sheaf with values in small categories which associates to X the

small category with objects pairs (C,w), where C is an object of C and w ∈ FC(X).

The morphisms are defined in the usual way.

2. Let hocolimC∈C|FC | be the space

B|C
∫
F•| ' |β(C

∫
F•)|.

For F , C as above, it makes sense to define the homotopy colimit as a sheaf:

hocolimC∈CFC := β(C
∫
F•).

The structure of this object is made explicit in [12].

Definition A.16. — Let g : E → F be a natural transformation of sheaves of small

categories. The natural transformation, g, is a transport projection if the square

N1E //

��

N0E

��
N1F // N0F
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is a cartesian square of sheaves of sets.

The following gluing result for homotopy colimits allows the passage from local to

global.

Proposition A.17. — [12] Let g : E → F , g′ : E ′ → F be transport projections

between sheaves of small categories and let u : E → E ′ be a morphism of sheaves of

small categories above F . Suppose that

1. the morphisms N0E → N0F , N0E ′ → N0F have the concordance lifting property;

2. for all a ∈ F(∗), the morphism N0Ea → N0E ′a induces a weak equivalence (respec-

tively an integral homology equivalence).

Then the morphism βu : βE → βE ′ is a weak equivalence (respectively induces an

integral homology equivalence).
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