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Abstract. This overview is intended as a lightweight companion to the long

article [20]. One of the main results there is the determination of the rational
cohomology of the stable mapping class group, in agreement with the Mum-

ford conjecture [26]. This is part of a recent development in surface theory

which was set in motion by Ulrike Tillmann’s discovery [34] that Quillen’s plus
construction turns the classifying space of the stable mapping class group into

an infinite loop space. Tillmann’s discovery depends heavily on Harer’s homo-

logical stability theorem [15] for mapping class groups, which can be regarded
as one of the high points of geometric surface theory.

1. Surface bundles without stable homotopy theory

We denote by Fg,b an oriented smooth compact surface of genus g with b bound-
ary components; if b = 0, we also write Fg. Let Diff(Fg,b; ∂) be the topological
group of all diffeomorphisms Fg,b → Fg,b which respect the orientation and restrict
to the identity on the boundary. (This is equipped with the Whitney C∞ topol-
ogy.) Let Diff1(Fg,b; ∂) be the open subgroup consisting of those diffeomorphisms
Fg,b → Fg,b which are homotopic to the identity relative to the boundary.

Theorem 1.1. [10], [11]. If g > 1 or b > 0, then Diff1(Fg,b; ∂) is contractible.

Idea of proof. For simplicity suppose that b = 0, hence g > 1. Write F = Fg = Fg,0.
Let H(F ) be the space of hyperbolic metrics (i.e., Riemannian metrics of constant
sectional curvature −1) on F . The group Diff1(F ; ∂) acts on H(F ) by transport of
metrics. The action is free and the orbit space is the Teichmüller space T(F ). The
projection map

H(F ) −→ T(F )
admits local sections, so that H(F ) is the total space of a principal bundle with
structure group Diff1(F ; ∂). By Teichmüller theory, T(F ) is homeomorphic to a
euclidean space, hence contractible. It is therefore enough to show that H(F ) is
contractible.
This is not easy. Let S(F ) be the set of conformal structures on F (equivalently,
complex manifold structures on F which refine the given smooth structure and
are compatible with the orientation of F ). Let J(F ) be the set of almost complex
structures on F . Elements of J(F ) can be regarded as smooth vector bundle au-
tomorphisms J : TF → TF with the property J2 = −id and det(a(v), aJ(v)) > 0
for any x ∈ F , v ∈ TxF and oriented isomorphism a :TxF → R2. Hence J(F ) has
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a canonical (Whitney C∞) topology. It is a consequence of the “uniformization
theorem” that the forgetful map H(F ) → S(F ) is a bijection. The forgetful map
S(F ) → J(F ) is also a bijection. This is another hard old theorem (the Korn–
Lichtenstein theorem); see e.g. [8], [27]. Hence the composite map H(F ) → J(F )
is a bijection. It is clearly continuous. One of the main points of [10] and [11] is
that the inverse J(F ) → H(F ) is also continuous. Hence H(F ) is homeomorphic
to J(F ), and J(F ) is clearly contractible. �

Definition 1.2. With the assumptions of theorem 1.1, the mapping class group
Γg,b is π0Diff(Fg,b; ∂) = Diff(Fg,b; ∂)/Diff1(Fg,b; ∂).

Remark 1.3. BDiff(Fg,b; ∂) ' BΓg,b.

Proof. By theorem 1.1, the projection Diff(Fg,b; ∂) → Γg,b is a homotopy equiv-
alence. Hence the induced map BDiff(Fg,b; ∂) −→ BΓg,b is a homotopy equiva-
lence. �

It seems that a homological theory of mapping class groups emerged only after
the Earle–Eells–Schatz result, theorem 1.1. One of the most basic homological
results is the following, due to Powell [29].

Proposition 1.4. H1(BΓg; Z) = 0 for g ≥ 3.

This is of course equivalent to the statement that Γg is perfect when g ≥ 3. The
proof is based on a result of Dehn’s which states that Γg can be generated by a
finite selection of Dehn twists along simple closed curves in Fg. Powell shows that
each of these generating Dehn twists is a commutator.
An important consequence of proposition 1.4 is that there exist a simply connected
space BΓ+

g and a map f :BΓg → BΓ+
g which induces an isomorphism in integer

homology. The space BΓ+
g and the map f are essentially unique and the whole

construction is a special case of Quillen’s plus construction, beautifully explained
in [1].

Around 1980, Hatcher and Thurston [16] succeeded in showing that Γg is finitely
presented. The new ideas introduced in their paper may have influenced the proof
of the following theorem. (Added later : This refers to the “curve complexes” used
by Hatcher and Thurston, but it seems that W. J. Harvey invented them a few
years before that.)

Theorem 1.5. Let N be an oriented compact surface, N = N1∪N2 where N1∩N2

is a union of finitely many smooth circles in N r ∂N . Suppose that N1
∼= Fg,b and

N ∼= Fh,c. Then the homomorphism H∗(BΓg,b; Z) → H∗(BΓh,c; Z) induced by the
inclusion N1 → N is an isomorphism for ∗ ≤ g/2− 1.

This is the homological stability theorem of Harer [15] with improvements due
to Ivanov [17], [18]. It is a hard theorem and we shall not attempt to outline the
proof.

Corollary 1.6. H1(BΓg,b; Z) = 0 for all b if g ≥ 4.

Proof. This follows easily from proposition 1.4 and theorem 1.5. �

By remark 1.3, there is a “universal” surface bundle E → BΓg,b with oriented
fibers ∼= Fg,b and trivialized boundary bundle ∂E → BΓg,b (so that ∂E is identified
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with ∂Fg,b×BΓg,b). Let TvE be the vertical tangent bundle of E, a two-dimensional
oriented vector bundle on E with a trivialization over ∂E. This has an Euler class

e ∈ H2(E, ∂E; Z).

The image of ei+1 under the Gysin transfer H2i+2(E, ∂E; Z)→ H2i(BΓg,b; Z) (alias
integration along the fiber) is the Mumford–Morita–Miller characteristic class

κi ∈ H2i(BΓb,g; Z).

It was introduced by Mumford [26], but the description in differential topology
language which we use here owes much to Miller [22] and Morita [24]. The class
κ0 equals the genus g ∈ Z ∼= H0(BΓb,g; Z). For i > 0, however, κi is stable, i.e.,
independent of g and b. Namely, the homomorphism H∗(BΓh,c; Z)→ H∗(BΓg,b; Z)
induced by an embedding Fg,b → Fh,c as in theorem 1.5 takes the κi class in
H∗(BΓh,c; Z) to the κi class in H∗(BΓg,b; Z). Mumford conjectured in [26] that
the homomorphism of graded rings

Q[x1, x2, x3, . . . ] −→ H∗(BΓg,b; Q)

taking xi to κi (where deg(xi) = 2i) is an isomorphism in a (then unspecified)
“stable range”. By the Harer–Ivanov stability theorem, which is slightly younger
than Mumford’s conjecture, we can take that to mean: in degrees less than g/2−1.
Morita [24], [25] and Miller [22] were able to show relatively quickly that Mumford’s
homomorphism Q[x1, x2, x3, . . . ] −→ H∗(BΓg,b; Q) is injective in the stable range.
There matters stood until, in 1996-7, Tillmann introduced concepts from stable
homotopy theory into surface bundle theory.

2. Stabilization and Tillmann’s theorem

Here it will be convenient to consider oriented surfaces Fg,b where each of the
b boundary circles is identified with S1. These identifications may or may not be
orientation preserving; if it is, we regard the boundary component as “outgoing”,
otherwise as “incoming”. We write Fg,b1+b2 to indicate that there are b1 incoming
and b2 outgoing boundary circles.

Fix standard surfaces Fg,1+1 for g ≥ 0 in such a way Fg+h,1+1 is identified with
the union Fg,1+1 tS1 Fh,1+1 (the outgoing boundary circle of Fg,1+1 being glued to
the incoming boundary circle of Fh,1+1). A smooth automorphism α of Fg,1+1 ,
relative to the boundary, can be regarded as a smooth automorphism α tS1 id of
Fg,1+1 tS1 F1,1+1

∼= Fg+1,1+1. This gives us stabilization homomorphisms

· · · −→ Γg,1+1 −→ Γg+1,1+1 −→ Γg+2,1+1 −→ · · ·

and we define Γ∞,1+1 as the direct limit colimg→∞Γg,1+1. This is the most obvious
contender for the title of a stable mapping class group. It is still a perfect group.
A more illuminating way to proceed is to note that a pair of smooth automorphisms
α :Fg,1+1 → Fg,1+1 and β :Fh,1+1 → Fh,1+1 , both relative to the boundary, deter-
mines an automorphism α t β of Fg+h,1+1. In other words, we have concatenation
homomorphisms

Γg,1+1 × Γh,1+1 −→ Γg+h,1+1
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which induce maps BΓg,1+1 × BΓh,1+1 → BΓg+h,1+1. These maps amount to a
structure of topological monoid on the disjoint union∐

g≥0

BΓg,1+1.

We can form the group completion ΩB(
∐
g BΓg,1+1). The inclusion of

∐
g BΓg,1+1

in the group completion is a map of topological monoids and the target is a group–
like topological monoid (i.e., its π0 is a group) because it is a loop space.

Proposition 2.1. ΩB(
∐
g BΓg,1+1) ' Z×BΓ+

∞,1+1.

Idea of proof. It is enough to produce a map from right–hand side to left–hand side
which induces an isomorphism in integer homology. Indeed, the existence of such
a map implies that H1(left–hand side; Z) = 0. Since the left–hand side is a loop
space, the vanishing of H1 implies that all its connected components are simply
connected.
Let M =

∐
g BΓg,1+1 and let F be the homotopy direct limit (here: telescope) of

the sequence
M

z·−→M
z·−→M

z·−→M
z·−→ · · ·

where z· is left multiplication by a fixed element in the genus one component of M.
The topological monoid M acts on the right of F. Theorem 1.5 implies that it acts
by maps F → F which induce isomorphisms in integer homology. It follows [21]
that the projection from the Borel construction FhM to the classifying space BM

is a homology fibration. (The Borel construction FhM is the classifying space of the
topological category with object space F and morphism space F ×M, where the
“source” map is the projection F ×M → F, the “target” map is the right action
map F×M→ F, and composition of morphisms is determined by the multiplication
in M.) In particular, the inclusion of the fiber of

FhM −→ BM

over the base point into the corresponding homotopy fiber induces an isomorphism
in integer homology. Since the fiber over the base point is F ' Z × BΓ∞,1+1, it
remains only to identify the homotopy fiber over the base point as ΩB(M). For
that it is enough to show that FhM is contractible. But FhM is the homotopy direct
limit (telescope) of the sequence

MhM
·z−→MhM

·z−→MhM
·z−→MhM

·z−→ · · ·

where each term MhM is contractible. �

One remarkable consequence of proposition 2.1 is that Z × BΓ+
∞,1+1 is a loop

space. Miller did better than that [22] by constructing a two–fold loop space struc-
ture on Z × BΓ+

∞,1+1. To be more accurate, he constructed such a structure on a
space which ought to be denoted

Z×BΓ+
∞,0+1

but which is homotopy equivalent to Z × BΓ+
∞,1+1 by the Harer–Ivanov theorem.

This construction of Miller’s will not be explained here (perhaps unfairly, because
it may have influenced the proof of the following theorem due to Tillmann).

Theorem 2.2. [34] The space Z×BΓ+
∞,1+1 is an infinite loop space.
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Remark. If Y is an infinite loop space, then the contravariant functor taking a
space X to [X,Y ], the set of homotopy classes of maps from X to Y , is the 0–th
term of a generalized cohomology theory. Apart from Eilenberg–MacLane spaces,
the most popular example is Y = Z×BU, which is an infinite loop space because it is
homotopy equivalent to its own two–fold loop space. The corresponding generalized
cohomology theory is, of course, the K–theory of Atiyah, Bott and Hirzebruch. The
construction, description, classification, etc., of generalized cohomology theories is
considered to be a major part of stable homotopy theory.

Outline of proof of theorem 2.2. It is well known that infinite loop spaces can be
manufactured from symmetric monoidal categories, i.e., categories with a notion of
“direct sum” which is associative and commutative up to canonical isomorphisms.
For more details on symmetric monoidal categories, see [1]. If C is such a category,
then the classifying space BC has a structure of topological monoid which reflects
the direct sum operation in C. If this happens to be group–like, i.e., π0BC is a
group, then BC is an infinite loop space. If not, then at least the group completion
ΩB(BC) is an infinite loop space. More details and a particularly satisfying proof
can be found in [32]. For an overview and alternative proofs, see also [1].
The standard example of such a category is the category of finitely generated left
projective modules over a ring R, where the morphisms are the R–isomorphisms.
Here group completion of the classifying space is required and the resulting infinite
loop space is the algebraic K–theory space K(R). For a slightly different example,
take the category of finite dimensional vector spaces over C, with mor(V,W ) equal
to the space of C–linear isomorphisms from V toW . The new feature here is that we
have a symmetric monoidal category with a topology on each of its morphism sets.
This “enrichment” must be fed into the construction of the classifying space, which
then turns out to be homotopy equivalent to

∐
nBU(n). Again, group completion

is required and the associated infinite loop space is Z × BU, up to a homotopy
equivalence.
Another example which is particularly important here is as follows. Let ob(C)
consist of all closed oriented 1–manifolds. Given two such objects, say C and C ′, we
would like to say roughly that a morphism from C to C ′ is a smooth compact surface
F with boundary −C tC ′ (where the minus sign indicates a reversed orientation).
To be more precise, let mor(C,C ′) be “the” classifying space for bundles of smooth
compact oriented surfaces whose boundaries are identified with the disjoint union
−C t C ′. The composition map

mor(C,C ′)×mor(C ′, C ′′) −→ mor(C,C ′′)

is given by concatenation, as usual. Disjoint union of objects and morphisms can
be regarded as a “direct sum” operation which makes C into a symmetric monoidal
category, again with a topology on each of its morphism sets. The enrichment must
be fed into the construction of BC. Then BC is clearly connected, and by the above
it is an infinite loop space.
Unfortunately it is not clear whether the homotopy type of BC is at all closely
related to that of Z × BΓ+

∞,1+1. This is mostly due to the fact that, in the above
definition of mor(C,C ′) for objects C and C ′ of C, we allowed arbitrary compact
surfaces with boundary ∼= −C tC ′ instead of insisting on connected surfaces. And
if we had insisted on connected surfaces throughout, we would have lost the “direct
sum” alias “disjoint union” operation which is so essential. (Disjoint unions of
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connected things are typically not connected.) A new idea is required, and Tillmann
comes up with the following beautiful two–liner.
Make a subcategory C0 of C by keeping all objects of C, but only those morphisms
(surfaces) for which the inclusion of the outgoing boundary induces a surjection in
π0. In the above notation, where we have a surface F and ∂F is identified with
−C t C ′, the condition means that π0C

′ → π0F is onto.
It is clear that C0 is closed under the disjoint union operation, and that BC0 is
connected, so BC0 is still an infinite loop space. While the surfaces which we see in
the definition of C0 need not be connected, they always become connected when we
compose on the left (i.e., concatenate at the outgoing boundary) with a morphism
to the connected object S1. This observation leads fairly automatically, i.e., by
imitation of the proof of proposition 2.1, to a homotopy equivalence

Ω(BC0) ' Z×BΓ+
∞,1+1

and so to the conclusion that Z×BΓ+
∞,1+1 is an infinite loop space.

Namely, we introduce a contravariant functor F on C0 in such a way that F(C), for
an object C, is the homotopy direct limit (= telescope) of the sequence

morC0(C,S1) z·−→ morC0(C,S1) z·−→ morC0(C,S1) z·−→ · · ·

where z· is left multiplication by a fixed element in the genus one component of
morC0(S1,S1). Theorem 1.5 implies that any map F(C ′)→ F(C) determined by a
morphism C → C ′ in C0 induces an isomorphism in integer homology. It follows
that the projection from the homotopy direct limit of F to BC0 is a homology
fibration. (The homotopy colimit of F replaces the Borel construction in the proof
of proposition 2.1; see definition 6.1 below for more details.) The fiber over the
vertex determined by the object S1 is

F(S1) ' Z×BΓ∞,1+1 .

It remains to show that the corresponding homotopy fiber is ' ΩBC0, and for that
it is enough to prove that hocolim F is contractible. But hocolim F is the homotopy
direct limit (telescope) of a sequence

hocolim E
z·−→ hocolim E

z·−→ hocolim E
z·−→ hocolim E

z·−→ · · ·

where E is the representable contravariant functor C 7→ morC0(C,S1). Homotopy
colimits of representable contravariant functors (on categories where the morphism
sets are topologized and composition of morphisms is continuous) are always con-
tractible. �

Remark. The outline above is deliberately careless about the definition of the
composition maps (alias concatenation maps)

mor(C,C ′)×mor(C ′, C ′′) −→ mor(C,C ′′)

in the category C. This is actually not a straightforward matter. Tillmann has a
very elegant solution in a later article [35] where she constructs a category equivalent
to the C0 above using (few) generators and relations.
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3. Mock surface bundles

Relying on theorem 2.2, Tillmann in [35] began to develop methods to split off
known infinite loop spaces from Z × BΓ+

∞,1+1 , specifically infinite loop spaces of
the “free” type

Q(X) = colim
n→∞

ΩnΣnX

where X is a pointed space. This was taken to a higher level in a joint paper by
Madsen and Tillmann [19]. The paper begins with the construction of an integral
version of the total Mumford–Morita–Miller class, which is an infinite loop map
α∞ from Z × BΓ+

∞,1+1 to a well known infinite loop space Ω∞CP∞
−1. The main

result is a splitting theorem, formulated in terms of α∞ and known decompositions
of Ω∞CP∞

−1, which can be regarded as a p–local version of the Morita–Miller in-
jectivity result. It is proved by methods which are somewhat similar to Morita’s
methods. Here we are going to describe α∞ from a slightly different angle, em-
phasizing bordism theoretic ideas and initially downplaying the motivations from
characteristic class theory.

Definition 3.1. Let X be a smooth manifold (with empty boundary). A mock
surface bundle on X consists of a smooth manifold M with dim(M)−dim(X) = 2,
a proper smooth map

q :M → X ,

a stable vector bundle surjection δq :TM → q∗TX and an orientation of the two–
dimensional kernel vector bundle ker(δq) on M .

Explanations. The word stable in “stable vector bundle surjection” means that
δp is a vector bundle map TM ×Ri → p∗TX ×Ri for some i, possibly large. Note
that δq is not required to agree with the differential dq of q. It should be regarded
as a “formal” differential of q. If δq = dq, then q is a smooth proper submersion.
Smooth proper submersions are fiber bundles by Ehresmann’s lemma [5]. In short,
an integrable mock surface bundle (δq = dq) is a surface bundle.

Mock surface bundles share many good properties with honest surface bundles.
They can (usually) be pulled back, they have a classifying space, and they have
Mumford–Morita–Miller characteristic classes, as we shall see.
To begin with the pullback property, suppose that q :M → X2 with δq etc. is a
mock surface bundle and let f :X1 → X2 be a smooth map. If f is transverse to
q, which means that the map (x, y) 7→ (f(x), q(y)) from X1 ×M to X2 × X2 is
transverse to the diagonal, then the pullback

f∗M = {(x, y) ∈ X1 ×M | f(x) = q(y)}

is a smooth manifold, with projection p : f∗M → X1. The transversality property
and the information in δq can be used to make a canonical choice of formal (stable)
differential

δp :T (f∗M) −→ p∗TX1

with oriented two–dimensional kernel bundle. Then (p, δp) is a mock surface bundle
on X1. The details are left to the reader. If f is not transverse to q, then we can
make it transverse to q by a small perturbation [5, 14.9.3]. In that situation, of
course, (p, δp) is not entirely well defined because it depends on the perturbation.
It is however well defined up to a concordance:
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Definition 3.2. Two mock surface bundles q0 :M0 → X and q1 :M1 → X (with
vector bundle data which we suppress) are concordant if there exists a mock surface
bundle qR :MR → X ×R (with vector bundle data ...) such that qR is transverse to
X × {0} and X × {1}, and the pullbacks of qR to X × {0} and X × {1} agree with
q0 × {0} and q1 × {1}, respectively.

Next we turn to the construction of a classifying space for mock surface bundles.
This is an instance of Pontryagin–Thom theory in a cohomological setting which
was popularized by Quillen [9] and later by Buoncristiano–Rourke–Sanderson [7].
Let Gr2(R2+n) be the Grassmannian of oriented 2-planes in R2+n and let Pn, Vn
be the canonical vector bundles of dimension 2 and n on Gr2(R2+n), respectively.
Let Th(Vn) be the Thom space (one–point compactification of the total space) of
Vn. Since Vn+1|Gr2(R2+n) is identified with Vn×R, there is a preferred embedding
ΣTh(Vn) → Th(Vn+1), with adjoint Th(Vn) → ΩTh(Vn+1). We form the direct
limit

colim
n→∞

Ωn+2Th(Vn) =: Ω∞CP∞
−1 .

Lemma 3.3. For any smooth manifold X there is a natural bijection from the set
of homotopy classes [X,Ω∞CP∞

−1] to the set of concordance classes of mock surface
bundles on X.

Outline of proof (one direction only). A map fromX to Ω∞CP∞
−1 factors through

Ωn+2Th(Vn) for some n. Let f be the adjoint, a based map from the (n+ 2)–fold
suspension of X+ to Th(Vn). It is convenient to identify the complement of the
base point in Σn+2X+ with X × Rn+2. We can assume that f is transverse to the
zero section of Vn. Let

M ⊂ X × Rn+2

be the inverse image of the zero section under f . Let q :M → X be the projection.
By construction of M there is an isomorphism

TM ⊕ (f |M)∗Vn ∼= q∗TX × Rn+2

of vector bundles on M . Adding (f |M)∗Pn on the left hand side and noting that
TM ⊕ (f |M)∗Vn⊕ (f |M)∗Pn is identified with TM ×Rn+2, we get a vector bundle
surjection

δq :TM × Rn+2 −→ q∗TX × Rn+2

with ker(δq) ∼= (f |M)∗Pn , which implies an orientation on ker(δq). Now q :M → X
and δq with the orientation on ker(δq) constitute a mock surface bundle whose
concordance class is independent of all the choices we made in the construction. �

Finally we construct Mumford–Morita–Miller classes for mock surface bundles.
Let q :M → X be a mock surface bundle, with δq : TM → q∗TX. The oriented
2–dimensional vector bundle ker(δq) on M has an Euler class e ∈ H2(M ; Z). Our
hypotheses on q imply that q induces a transfer map in cohomology,

H∗+2(M ; Z) −→ H∗(X; Z).

This is obtained essentially by conjugating an induced map in homology with
Poincaré duality. (The correct version of homology for this purpose is locally finite
homology with Z–coefficients twisted by the orientation character.) We now define
κi(q, δq) ∈ H2i(X; Z) to be the image of ei+1 ∈ H2i+2(M ; Z) under the transfer.
The classes κi are concordance invariants and behave naturally under (transverse)
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pullback of mock surface bundles. They can therefore be regarded as classes in the
cohomology of the classifying space for mock surface bundles:

κi ∈ H2i(Ω∞CP∞
−1; Z) .

It is not difficult to see that certain mild modifications of definition 3.1 do not
change the concordance classification. In particular, a convenient modification of
that sort consists in allowing q :M → X with δq etc. where M has a boundary
∂M , the restriction q|∂M is a trivialized bundle with fibers ∼= −S1 t S1 and δq
agrees with the differential dq on ∂M . If we now regard Ω∞CP∞

−1 as a classifying
space for these modified mock surface bundles, then we obtain a comparison map
of classifying spaces ∐

g

BΓg,1+1 −→ Ω∞CP∞
−1

(Indeed, the left–hand side is a classifying space for honest bundles whose fibers
are connected oriented smooth surfaces with prescribed boundary ∼= −S1 t S1.)
Furthermore, the map commutes with concatenation and its target is a group–like
space. By the universal property of the group completion, the map just constructed
extends in an essentially unique way to a map

α∞ : Z×BΓ+
∞,1+1 −→ Ω∞CP∞

−1

(where we are using proposition 2.1). One of us (I.M.) conjectured the following,
now a theorem [20]:

Theorem 3.4. The map α∞ is a homotopy equivalence.

As a conjecture this is stated in [19], and supported by the splitting theorem
mentioned earlier. In the same article, it is shown that α∞ is a map of infinite
loop spaces, with Tillmann’s infinite loop space structure on Z×BΓ+

∞,1+1, and the
obvious infinite loop structure on

Ω∞CP∞
−1 = colim

n→∞
Ωn+2Th(Vn).

It is easy to show that the rational cohomology of any connected component of
Ω∞CP∞

−1 is a polynomial ring Q[x1, x2, x3, . . . ] where deg(xi) = 2i; moreover the
xi can be taken as the κi classes for i > 0. The cohomology with finite field
coefficients

H∗(Ω∞CP∞
−1; Fp)

is much more difficult to determine. Nevertheless this has been done in the mean-
time by Galatius [13].

Remark on notation. The strange abbreviation Ω∞CP∞
−1 for the direct limit

colimn Ωn+2Th(Vn) can be justified as follows. Let CPn ⊂ Gr2(R2n+2) be the
Grassmannian of one–dimensional C–linear subspaces in Cn+1 ∼= R2n+2, alias com-
plex projective space of complex dimension n. Let Ln be the tautological line bundle
on CPn and L⊥n its canonical complement, a complex vector bundle of dimension
n. The inclusion

colim
n→∞

Ω2n+2Th(L⊥n ) −→ colim
2n→∞

Ω2n+2Th(V2n)



10 IB MADSEN AND MICHAEL WEISS

is a homotopy equivalence. Now Thom spaces of certain vector bundles on (com-
plex) projective spaces can be viewed as “stunted” projective spaces

CP ik = CP i/CP k−1

where i ≥ k. Namely, CP ik is identified with the Thom space of the Whitney sum
of k copies of the tautological line bundle on CP i−k. Allowing k = −1, stable
homotopy theorists therefore like to write

Th(L⊥n ) = Σ2n+2Th(−Ln) = Σ2n+2CPn−1
−1 .

In addition they use the reasonable abbreviation

colim
n→∞

Ωn+2Σ2n+2CPn−1
−1 =: Ω∞CP∞

−1.

4. First desingularization

In the remaining sections, some key ideas from the proof of theorem 3.4 in [20]
will be sketched. The proof proceeds from the target of α∞ to the source. That is,
it starts from the original (co)bordism–theoretic description of Ω∞CP∞

−1 and goes
through a number of steps to obtain alternative descriptions which are more and
more bundle theoretic. Each step can also be viewed as a step towards the goal of
“desingularizing” mock surface bundles. The first step in this sequence is a little
surprising.

Let q :M → X together with δq : TM → q∗TX be a mock surface bundle. We
form E = M × R and get (p, f) :E → X × R where p(z, t) = q(z) and f(z, t) = t
for (z, t) ∈M × R = E. There is a formal (surjective, stable) differential

δp :TE → p∗TX ,

obtained by composing the projection TE → TM with δq. There is also the honest
differential of f , which we regard as a vector bundle surjection

δf = df : ker(δp)→ f∗(TR).

All in all, we have made a conversion

(q, δq) ; (p, f, δp, δf).

Here (p, f) :E → X × R is smooth and proper, δp is a formal (stable, surjective)
differential for p with a 3–dimensional oriented kernel bundle, and δf is a surjective
vector bundle map from ker(δp) to f∗(TR) (which agrees with df).
We are going to “sacrifice” the equation δf = df in order to “obtain” an equation
δp = dp. It turns out that this can always be achieved by a continuous deformation

((ps, fs, δps, δfs))s∈[0,1]

of the quadruple (p, f, δp, δf), on the understanding that each (ps, fs) :E → X ×R
is smooth and proper, each δps is a formal (stable, surjective) differential for ps
with a 3–dimensional oriented kernel bundle, and each δfs : ker(δps) → f∗s (TR) is
a surjective vector bundle map. (For s = 0 we want (ps, fs, δps, δfs) = (p, f, δp, δf)
and for s = 1 we want δps = dps, so that p1 is a submersion.)

The proof is easy modulo submersion theory [28], [14], especially if X is closed
which we assume for simplicity. Firstly, obstruction theory [33] shows that δp ,
although assumed to be a stable vector bundle surjection, can be deformed (through
stable vector bundle surjections) to an honest vector bundle surjection δup from TE
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to p∗TX. Secondly, the manifold E has no compact component, so that the main
theorem of submersion theory applies to E and the pair (p, δup). The combined
conclusion is that (p, δp) can be deformed through similar pairs (ps, δps) to an
integrable pair (p1, δp1), so that δp1 = dp1 and consequently p1 is a submersion.
We set fs = f for all s ∈ [0, 1]. Finally, since ker(δps) ∼= ker(δp) for each s, there
is no problem in defining δfs : ker(δps) → f∗s (TR) somehow, for all s ∈ [0, 1] as
a surjective vector bundle map depending continuously on s. Note that the maps
(ps, fs) :E → X × R are automatically proper since each fs = f is proper.

These observations amount to an outline of more than half the proof of the
following proposition.

Proposition 4.1. The classifying space for mock surface bundles, Ω∞CP∞
−1 , is

also a classifying space for families of oriented smooth 3–manifolds Ex equipped
with a proper map fx :Ex → R and a vector bundle surjection δfx :TEx → f∗x(TR).

Details. The “families” in proposition 4.1 are submersions π :E → X with fibers
Ex for x ∈ X. They are not assumed to be bundles. The parameter space X can
be any smooth manifold without boundary (and in some situations it is convenient
to allow a nonempty boundary). The maps fx :Ex → R are supposed to make up
a smooth map f :E → R. Similarly the δfx make up a vector bundle surjection
δf from the vertical tangent bundle of E to f∗(TR). The properness condition,
correctly stated, means that (π, f) :E → X × R is proper.
Although these families are submersions rather than bundles, they can be pulled
back just like bundles. The classification is up to concordance. A concordance
between two families on X (of the sort under discussion) is another family (of
the sort under discussion) on X × R, restricting to the prescribed families on the
submanifolds X × {0} and X × {1}.

Outline of remainder of proof of proposition 4.1. We have seen how a mock surface
bundle on X can be converted to a family as in proposition 4.1. Going in the other
direction is easier: namely, given a family π :E → X with f :E → R etc., as in
proposition 4.1, choose a regular value c ∈ R for f and let M = f−1(c) ⊂ E. Then
q = π|M etc. is a mock surface bundle on X.
In showing that these two procedures are inverses of one another, we have to verify
in particular the following. Given a family π :E → X with f :E → R etc., as in
proposition 4.1, and a regular value c ∈ R for f with M = f−1(c), there exists a
concordance from the original family to another family with total space ∼= M ×R.
This is particularly easy to see when X is compact (i.e., closed). In that case we can
choose a small open interval U about c ∈ R containing no critical values of f , and an
orientation preserving diffeomorphism h :U → R. Let E′ = f−1(U) ∼= M ×R. Now
π|E′ together with h◦f |E′ and dh◦δf constitute a new family which is concordant
to the old one. (To make the concordance, use an isotopy from id: R→ R to h−1.)
Yes, the concordance relation is very coarse. �

5. A zoo of generalized surfaces

The advantage of the new characterization of Ω∞CP∞
−1 given in proposition 4.1

is that it paves the way for a number of useful variations on the Madsen conjecture
alias theorem 3.4. We are going to formulate these as statements about classifying
spaces for families of certain generalized (“thickened”) surfaces. Following is a list
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of the types of generalized or thickened surface which we need, with labels. (They
are all defined as 3–manifolds with additional structure; but see the comments
below.)

V oriented smooth 3–manifold Ex with
proper smooth nonsingular fx :Ex → R

W oriented smooth 3–manifold Ex with proper
smooth Morse function fx :Ex → R

Wloc
oriented smooth 3–manifold Ex with smooth Morse function fx :Ex → R
whose restriction to the critical point set crit(fx) is proper

hV oriented smooth 3–manifold Ex with proper fx :Ex → R
and vector bundle surjection δfx :TEx → f∗x(TR)

hW oriented smooth 3–manifold Ex with proper fx :Ex → R
and δfx :TEx → f∗x(TR) of Morse type (details below)

hWloc

oriented smooth 3–manifold Ex with fx :Ex → R
and δfx :TEx → f∗x(TR) of Morse type; restriction
of fx to crit(δfx) is proper (details below)

Details. The map δf of “Morse type” in the definition of types hW and hWloc

is a map TEx → f∗x(TR) over E, but is not required to be a vector bundle homo-
morphism. It is required to be the sum of a linear term ` and a quadratic term k,
subject to the condition that kz is nondegenerate whenever `z = 0, for z ∈ Ex. Its
formal critical point set crit(δfx) is the the set of z ∈ Ex such that `z = 0.

Comments. The conditions “proper” and “nonsingular” in the definition of type
V imply that fx :Ex → R is a proper submersion, hence a bundle of closed surfaces
on R. From a classification point of view, this carries the same information as
the closed surface f−1

x (0). Similarly, in the definitions of type W and Wloc, the
focus is mainly on f−1

x (0), which in both cases is a surface with finitely many very
“moderate” singularities. (It is compact in the W case, but can be noncompact in
the Wloc case).
The x superscripts have been kept mainly for consistency with the formulation of
proposition 4.1. They do indicate, correctly, that we are interested in families of
such generalized surfaces.

Let |V|, |W|, |Wloc|, |hV|, |hW| and |hWloc| be the classifying spaces for families
of generalized surfaces of type V, W, Wloc, hV, hW and hWloc, respectively. We
have seen the details in the case of hV; they are similar in the other cases. In
particular, family with parameter manifold X should always be interpreted as sub-
mersion with target X. (The existence of the six classifying spaces can be deduced
from a general statement known as Brown’s representation theorem [6], but more
explicit constructions are available. In the V case, the families alias submersions
are automatically bundles with fibers Ex ∼= Fx × R, where Fx is a closed surface.)
We obtain a commutative diagram of classifying spaces

|V| −−−−→ |W| −−−−→ |Wloc|y y y
|hV| −−−−→ |hW| −−−−→ |hWloc|

(∗)
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where the vertical arrows are obtained essentially by viewing honest derivatives as
“formal” derivatives. One of the six spaces, |V|, is a little provisional because it
classifies all bundles of closed surfaces (whereas we should be interested in connected
surfaces of high genus). The other five, however, are in final form. We saw that
|hV| ' Ω∞CP∞

−1. Modulo a plus construction and small corrections in the definition
of |V|, the left–hand vertical arrow in the diagram is α∞.

Proposition 5.1. The lower row of diagram (∗) is a homotopy fiber sequence.

Lemma 5.2. The right–hand vertical arrow in (∗) is a homotopy equivalence.

About the proofs. The proof of proposition 5.1 is a matter of stable homotopy theory
and specifically bordism theory. The spaces |hW| and |hWloc| have alternative
bordism–theoretic descriptions similar to the equivalence

|hV| ' colim
n→∞

Ωn+2Th(Vn)

of proposition 4.1. In particular, let GrW(Rn+3) be the Grassmannian of 3–
dimensional oriented linear subspaces of Rn+3 equipped with a function ` + k of
Morse type (where ` is a linear form and k is a quadratic form). Let Wn be the
canonical n–dimensional vector bundle on GrW(Rn+3). Then

|hW| ' colim
n→∞

Ωn+2Th(Wn) .

From the bordism–theoretic descriptions, it follows easily that the lower row of (∗)
is a homotopy fiber sequence.
The proof of lemma 5.2 is easy. Apart from the fact that |hWloc| is well understood
in bordism–theoretic terms, the main reason for that is as follows: A generalized
surface (Ex, fx) of of type Wloc is determined, up to a canonical concordance, by
its germ about the critical point set of fx. This carries over to families of surfaces
of type Wloc.

Theorem 5.3. The middle vertical arrow in (∗) is a homotopy equivalence.

This is a distant corollary of a hard theorem due to Vassiliev [36], [37]. Follow-
ing are some definitions and abbreviations which are useful in the formulation of
Vassiliev’s theorem.
Let M be a smooth manifold without boundary, z ∈ M . A k–jet from M to Rn
at z is an equivalence class of smooth map germs f : (M, z)→ Rn, where two such
germs are considered equivalent if they agree to k–th order at z. Let Jk(M,Rn)z
be the set of equivalence classes and let

Jk(M,Rn) =
⋃
z

Jk(M,Rn)z.

The projection Jk(M,Rn)→M has a canonical structure of smooth vector bundle.
Every smooth function f : M → Rn determines a smooth section jkf of the jet
bundle Jk(M,Rn) → M , the k–jet prolongation of f . The value of jkf at z ∈ M
is the k–jet of f at z. Note that jkf determines f .
Now let A be a closed semialgebraic subset [3] of the vector space Jk(Rm,Rn)
where m = dim(M). Suppose that A is invariant under the right action of the
group of diffeomorphisms Rm → Rm, and of codimension ≥ m+ 2 in Jk(Rm,Rn).
Let A(M) ⊂ Jk(M,Rn) consist of the jets which, in local coordinates about their
source, belong to A. Let Γ¬A(Jk(M,Rn)) be the space of smooth sections of the
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vector bundle Jk(M,Rn) → M which avoid A(M). Let map¬A(M,Rn) be the
space of smooth maps f :M → Rn whose jet prolongations avoid A(M). Both are
to be equipped with the Whitney C∞ topology.

Theorem 5.4. [36], [37]. Suppose that M is closed. Then with the above hypotheses
on A, the jet prolongation map

map¬A(M,Rn) −→ Γ¬A(Jk(M,Rn))
induces an isomorphism in cohomology with coefficients Z. A corresponding state-
ment holds for compact M with boundary, with the convention that all smooth maps
M → Rn and all sections of Jk(M,Rn) in sight must agree near ∂M with a pre-
scribed ϕ :M → Rn which has no A–singularities near ∂M .

For an idea of how theorem 5.3 can be deduced from theorem 5.4, take m = 3,
n = 1 and k = 2. Let A ⊂ J2(R3,R) be the set of 2–jets represented by germs

f : (R3, z)→ R
which either have a nonzero value f(z), or a nonzero first derivative at z, or a
nondegenerate critical point at z. The codimension of A is exactly 3 + 2, the
minimum of what is allowed in Vassiliev’s theorem.
Change the definition of the “generalized surfaces” of typeW given earlier by asking
only that critical points of fx with critical value 0 be nondegenerate. In other
words, require only that fx :Ex → R be Morse on a neighborhood of the compact
set f−1

x (0). Change the definition of type hW generalized surfaces accordingly.
These changes do not affect the homotopy types of |W| and |hW|, by a shrinking
argument similar to that given at the end of chapter 5. Note also that δfx in the
definition of type hW ought to have been more correctly described as a section of
the jet bundle J2(Ex,R)→ Ex. (After a choice of a Riemannian metric on Ex, an
element of Jk(Ex,R) with source z ∈ Ex can be viewed as a polynomial function
of degree ≤ k on the tangent space of Ex at z.) With these specifications and
changes, theorem 5.3 begins to look like a special case of Vassiliev’s theorem. It
should however be seen as a generalization of a special case due to the fact that
families of noncompact manifolds Ex depending on a parameter x ∈ X are involved.
Vassiliev’s theorem as stated above is about a “constant” compact manifold.

Remarks concerning the proof of Vassiliev’s theorem. It is a complicated proof
and the interested reader should, if possible, consult [36] as well as [37]. One of
us (M.W.) has attempted to give an overview in [39], but this is already obsolete
because of the following.
Vassiliev’s proof uses a spectral sequence converging to the cohomology of the sec-
tion space Γ¬A(Jk(M,Rn)), and elaborate transversality and interpolation argu-
ments to show that it converges to the cohomology of map¬A(M,Rn), too. The
spectral sequence is well hidden in the final paragraphs of the proof and looks as
if it might depend on a number of obscure choices. But Elmer Rees informed us
recently, naming Vassiliev as the source of this information, that the spectral se-
quence, from the second page onwards, does not depend on obscure choices and
agrees with a spectral sequence of “generalized Eilenberg–Moore type”, discovered
already in 1972 by D.Anderson [2]. Anderson intended it as a spectral sequence
converging to the (co)homology of a space of maps X → Y . Here X is a finite
dimensional CW–space and Y is a dim(X)–connected space. (There is a version
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for based spaces, too; the case where X = S1 and all maps are based is the standard
Eilenberg–Moore spectral sequence [12], [30].) Vassiliev needs a variation where the
space of maps is replaced by a space of sections of a certain bundle on M whose
fibers are dim(M)–connected. The bundle is, of course, Γ¬A(Jk(M,Rn))→M .
In conclusion, anybody wanting to understand Vassiliev’s proof really well should
try to understand the Anderson–Eilenberg–Moore spectral sequence for mapping
spaces first. Anderson’s article [2] is an announcement, but detailed proofs can be
found in [4].

6. Stratifications and homotopy colimit decompositions

The developments in the previous section essentially reduce the proof of theo-
rem 3.4 to the assertion that the homotopy fiber of the inclusion map |W| → |Wloc|
in diagram (∗) is homotopy equivalent to Z×BΓ+

∞,1+1. The proof of that assertion
in [20] takes up many pages and relies mainly on compatible decompositions of |W|
and |Wloc| into manageable pieces. There is no point in repeating the details here.
But there is a point in providing some motivation for the decompositions. The mo-
tivation which we propose here (very much “a posteriori”) is almost perpendicular
to the hard work involved in establishing the decompositions, and so does not over-
lap very much with anything in [20]. As a motivation for the motivation, we shall
begin by describing the decompositions (without, of course, constructing them).

Definition 6.1. [31]. Let F be a covariant functor from a small category C to
spaces. The transport category C∫ F is the topological category where the objects
are the pairs (c, x) with c ∈ ob(C) and x ∈ F(c), and where a morphism from
(c, x) to (d, y) is a morphism g : c→ d in C such that F(g) : F(c)→ F(d) takes x to
y. Thus ob( C∫ F) is the space

∐
c F(c) and the morphism space mor( C∫ F) is the

pullback of
ob(C∫ F) −−−−→ ob(C) source←−−−−− mor(C) .

The homotopy colimit of F is the classifying space of the topological category C∫ F.
Notation: hocolim F , hocolim

C
F , hocolim

c in C
F(c).

Remarks 6.2. If C has only one object, then C is a monoid, F amounts to a space
with an action of the monoid, and hocolim F is the Borel construction.
The variance of F is not important; if F is a contravariant functor from C to spaces,
replace C by Cop in the above definition. In that situation it is still customary to
write hocolimCF for the homotopy colimit.

Definition 6.3. Let K be the discrete category defined as follows. An object of K
is a finite set S with a map to {0, 1, 2, 3}. A morphism from S to T in K consists
of an injection f :S → T over {0, 1, 2, 3}, and a map ε from T r f(S) to {−1,+1}.
The composition of (f1, ε1) :S → T with (f2, ε2) :R→ S is (f1f2, ε3) :R→ T where
ε3(t) = ε1(t) if t /∈ f1(S) and ε3f1(s) = ε2(s) if s /∈ f2(R).

The category K arises very naturally in the taxonomy of generalized surfaces of
type W and Wloc. Let (Ex, fx) be a generalized surface of type W or Wloc. Then
the set crit0(fx) = crit(fx) ∩ f−1

x (0) is a finite set with a map to {0, 1, 2, 3} given
by the Morse index. In other words it is an object of K. In view of this, we expand
our earlier list of generalized surface types by adding the following sub–types WS

and Wloc,S of types W and Wloc, respectively, for a fixed object S of K.
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WS
oriented smooth 3–manifold Ex with proper smooth Morse
function fx :Ex → R and an isomorphism S → crit0(fx) in K

Wloc,S

oriented smooth 3–manifold Ex with smooth Morse
function fx :Ex → R such that fx|crit(fx) is proper,
and an isomorphism S → crit0(fx) in K

The classifying spaces for the corresponding families (which are, as usual, sub-
mersions) are denoted |WS | and |Wloc,S |, respectively. The promised decomposi-
tions of |W| and |Wloc| can now be described loosely as follows.

Theorem 6.4. |W| ' hocolim
S in K

|WS | and |Wloc| ' hocolim
S in K

|Wloc,S |.

Implicit in these formulae is the claim that |WS | and |Wloc,S | are contravariant
functors of the variable S in K. A rigorous verification would take up much space,
and does take up much space in [20], but the true reasons for this functoriality are
not hard to understand.
Fix a morphism (g, ε) :S → T in K. Let (Ex, fx) be a generalized surface of type
WT or Wloc,T , so that crit0(fx) is identified with T . Choose a smooth function
ψ :Ex → R with support in a small neighborhood of crit0(fx) such that ψ equals ε
near points of crit0(fx) ∼= T not in g(S), and equals 0 near the remaining points of
crit0(fx). Then for all sufficiently small c > 0, the function fx + cψ is Morse and
has exactly the same critical points as fx. But the values of fx + cψ on the critical
points differ from those of fx, with the result that (Ex, fx + cψ) is a generalized
surface of type WS or Wloc,S as appropriate. The procedure generalizes to families
and so induces maps

|WT | −→ |WS | , |Wloc,T | −→ |Wloc,S | .

Theorem 6.4 in its present raw state can be deduced from a recognition principle
for homotopy colimits over certain categories. In the special case when the category
is a group G, the recognition principle is well known and states the following.

Suppose that Y is the total space of a fibration p :Y → BG.
Then Y ' XhG for some G–space X such that X ' p−1(?).

(See remark 6.2, and for the proof let X be the pullback along p of the universal
cover of BG.) In the general setting, the indexing category is an EI–category, that
is, a category in which every Endomorphism is an Isomorphism. The category K is
an example of an EI–category. Groupoids and posets are also extreme examples of
EI–categories. The opposite category of any EI–category is an EI–category. EI–
categories have something to do with stratified spaces, which justifies the following
excursion.

Definition 6.5. A stratification of a space Z is a locally finite partition of Z into
locally closed subsets, the strata, such that the closure of each stratum in Z is a
union of strata.

Example 6.6. Let C be a small EI–category. For each isomorphism class [C] of
objects in C, we define a locally closed subset BC[C] of the classifying space BC, as
follows. A point x ∈ BC is in BC[C] if the unique cell of BC containing x corresponds
to a diagram

C0 ← C1 ← · · · ← Ck
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without identity arrows, where C0 is isomorphic to C. (Remember that BC is a
CW–space, with one cell for each diagram C0 ← C1 ← · · · ← Ck as above.) Then
BC is stratified, with one stratum BC[C] for each isomorphism class [C]. The closure
of the stratum BC[C] is the union of all strata BC[D] for objects D which admit a
morphism D → C.
To be even more specific, we can take C = Kop. The isomorphism types of objects
in Kop correspond to quadruples (n0, n1, n2, n3) of non–negative integers. The
stratum of BKop corresponding to such a quadruple turns out to have a normal
vector bundle in BKop, of fiber dimension n0 +n1 +n2 +n3; hence the stratum can
be said to have codimension n0 +n1 +n2 +n3. Its closure is the union of all strata
corresponding to quadruples (m0,m1,m2,m3) where mi ≥ ni. There is a unique
open stratum, corresponding to the object ∅ of Kop or the quadruple (0, 0, 0, 0).

Digression. The stratification of BKop just described can be used to determine
the homotopy type of BKop, roughly as follows. Let f :X → BKop be a map,
where X is a smooth manifold. Up to a homotopy, f is “transverse” to the strata
of codimension > 0. Then the union of the inverse images of these codimension
> 0 strata is the image of a proper smooth codimension 1 immersion M → X
with trivialized normal line bundle, with transverse self–intersections, and with a
map M → {0, 1, 2, 3}. The construction can be reversed, i.e., such an immersion
determines a homotopy class of maps X → BKop. In this sense, BKop classifies
(up to concordance) proper smooth codimension one immersions with trivialized
normal bundle and with a map from the source M to {0, 1, 2, 3}. It follows that

BKop ' QS1 ×QS1 ×QS1 ×QS1

because QS1 = Ω∞Σ∞S1 is known to classify proper smooth codimension 1 immer-
sions with trivialized normal bundle [38].

Definition 6.7. Let Z be a stratified space. A path γ : [0, 1]→ Z is nonincreasing
if, for each t ∈ [0, 1], the set γ[0, t] is contained in the closure of the stratum which
contains γ(t). A homotopy of maps (ht :X → Z)t∈[0,1], where X is some space, is
nonincreasing if, for each x ∈ X, the path t 7→ ht(x) is nonincreasing.

Remark. For a nonincreasing path γ, the depth, complexity, etc. of the stratum
containing γ(t) is a nonincreasing function of t.

Definition 6.8. Let p : Y → Z be a map, where Z is stratified. Say that p is a
downward fibration if it has the homotopy lifting property for nonincreasing ho-
motopies. That is, given a nonincreasing homotopy (ht :X → Z)t∈[0,1] and a map
g0 :X → Y such that pg0 = h0, there exists a homotopy (gt :X → Y )t∈[0,1] such
that pgt = ht for all t ∈ [0, 1].

Pre-theorem 6.9. Let C be an EI–category. Stratify BC as in example 6.6. Let
Y be a space and let p :Y → BC be a downward fibration. Then

Y ' hocolim
c in C

F(c)

where F is a covariant functor from C to spaces such that F(c) ' p−1(c) for all
objects c of C, alias vertices of BC.

This is the recognition principle (no proof offered for lack of time and space).
It has an obvious weakness: the functor F is not sufficiently determined by the
conditions F(c) ' p−1(c). But then it is meant as a principle, a rule of thumb.
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In any case we should apply it with Y = |W| or Y = |Wloc| and C = Kop, the
opposite of K. There is a problem with that plan. Explicit descriptions of |W|
and |Wloc| have not yet been given (in this paper). Instead, we have highfalutin
characterizations of |W| and |Wloc| as classifying spaces for certain families. The
modified plan is, therefore, to move BC = BKop to the same highfalutin level, and
to verify the hypothesis of pretheorem 6.9 at that level.
This leads us to the interesting question: What does the classifying space of a
category C classify ? There is no doubt that the question has many correct answers.
One such answer is given in [20, 4.1.2]. This is essentially identical with an answer
known to tom Dieck (but possibly attributed to G. Segal) in the early 70’s, according
to unpublished lecture notes for which we are indebted to R. Vogt. Moerdijk [23]
has a more streamlined answer, and many generalizations of the question, too. The
following proposal is inspired by a passage in Moerdijk’s book, but is apparently
not identical with (a special case of) his answer and if it should fail badly the
responsibility is ours.
Terminology. A C–set is a functor from Cop to sets. The category of C–sets shares
many good properties with the category of sets. (It is a topos.) In particular,
we can talk about sheaves of C–sets on a space. A C–set is representable if it is
isomorphic to one of the form c 7→ morC(c, c0) for a fixed object c0 in C.

Pre-theorem 6.10. The classifying space BC classifies sheaves of C–sets whose
stalks are representable.

Remark. Traditionally there are two equivalent definitions of the notion “sheaf”
on a space X. According to one of them, a sheaf is a contravariant functor from
the poset of open sets of X to sets, subject to a gluing condition. According to the
other, a sheaf on X is an étale map to X. While the first point of view is better for
processing most of the interesting examples, the second one is better for showing
that sheaves behave contravariantly (can be “pulled back”). This carries over to
sheaves of C–sets.
The classification of the sheaves in pretheorem 6.10 is up to concordance. Two
sheaves G0, G1 on X as in the pretheorem are concordant if there exists a sheaf on
X×[0, 1], as in the pretheorem, whose restrictions to X×{0} ∼= X and X×{1} ∼= X
are isomorphic to G0 and G1, respectively. The claim is that, for “most” spaces X,
there is a natural bijection from the set of homotopy classes [X,BC] to the set of
concordance classes of sheaves of C–sets with representable stalks on X.

Example 6.11. Let (π, f) be a family of generalized surfaces of type W on a
smooth X. That is, π :E → X is a smooth submersion with oriented 3–dimensional
fibers, f :E → R is a smooth map such that (π, f) :E → X × R is proper, and the
restrictions fx = f |Ex of f to the fibers of π are Morse functions. With these data,
we can associate a sheaf I(π,f) of Kop–sets on X. Namely, for an open subset U of
X and an object S of K, let I(π,f)(U)(S) be the subset of∏

x∈U
morK(crit0(fx), S)

consisting of the elements for which the adjoint map from
⋃
x∈U crit0(fx) ⊂ E to S

is continuous, and the resulting sign function from a subset of U×S to {±1} is also
continuous. Then I(π,f)(U)(S) is a covariant functor of S in K = (Kop)op and a
contravariant functor of the variable U , as it should be. The stalk at x ∈ X is easily
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identified with the functor S 7→ morK(crit0(fx), S). It is obviously representable as
a functor on Kop.

The construction of I(π,f) in example 6.11 works equally well for a family of
generalized surfaces of type Wloc.

Now theorem 6.4 can be understood as a special case of (something analogous to)
the recognition principle, pretheorem 6.9. Take C = Kop and Y = |W| or Y = |Wloc|
in pretheorem 6.9. There are no explicit maps |W| → BKop

or |Wloc| → BKop
to

work with. But there is instead the procedure of example 6.11 which from every
family (π, f) of the sort classified by |W| or |Wloc| constructs a sheaf I(π,f) of the
sort classified by BKop

. The “downward fibration” condition in pretheorem 6.9 can
be stated and proved in this setting.
In more detail, for the case of |W|, fix a smooth manifold X and a sheaf H of
Kop–sets on X × [0, 1] with representable stalks. Assume that H is nonincreasing.
This means simply that, for every x ∈ X, the function which to t ∈ [0, 1] assigns
the cardinality of the representing object for the stalk at (x, t) is nonincreasing.
Assume further that the restriction of H to X × {0} is identified with I(π,f) for a
family (π, f) on X × {0}, as in example 6.11. Then we can extend that family to
a family (ψ, g) on X × [0, 1], and the isomorphism of sheaves to an isomorphism of
I(ψ,g) with H. The verification is left to the reader.

7. Final touches

The guiding idea for this chapter is that, because of theorem 6.4, we should be
able to understand the homotopy fiber(s) of |W| → |Wloc| by understanding the
homotopy fibers of |WS | → |Wloc,S | for each object S in K. The underpinning for
this strategy is the following general fact. (Notation: “hofiberz(f)” is short for the
homotopy fiber over a point z in the target of a map f .)

Proposition 7.1. Let C be a small category and let F1, F2 be functors from C to
the category of spaces. Let u : F1 → F2 be a natural transformation. Suppose that,
for every object morphism g : c→ d and every z ∈ F2(c), the map

hofiberz (F1(c)→ F2(c))
g∗−−−−→ hofiberu∗(z) (F1(d)→ F2(d))

induced is a homotopy equivalence (resp., induces an isomorphism in integral ho-
mology). Then, for any object c in C and z ∈ F2(c), the inclusion

hofiberz (F1(c)→ F2(c)) −→ hofiberz (hocolim F1 → hocolim F2)

is a homotopy equivalence (resp., induces an isomorphism in integral homology).

We now have to ask whether the hypotheses of this proposition are satisfied or
“nearly satisfied” in the case where C is (equivalent to) Kop and u :F1 → F2 is given
by the inclusions |WS | → |Wloc,S | for S in Kop.

Lemma 7.2. The space |Wloc,S | is a classifying space for oriented 3–dimensional
Riemannian vector bundles V on S equipped with the following extra structure: an
orthogonal splitting V ∼= V (+)⊕V (−), where the fiber dimension function of V (−)
agrees with the structure map S → {0, 1, 2, 3}.
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Idea of proof. A generalized surface (Ex, fx) of type Wloc,S is canonically concor-
dant to (V, fx|V ) for any open neighborhood V of crit0(fx) ∼= S. Take V to be
a standard tubular neighborhood of S, so that the retraction V → S comes with
a vector bundle structure. By Morse theory, there is no substantial loss of infor-
mation in replacing fx|V by the “total Hessian” of fx , which is a nondegenerate
symmetric form on V . A choice of an orthogonal splitting of V into a positive
definite part and a negative definite part for the Hessian can be added, because
that is a contractible choice. By changing the sign of the Hessian on the negative
definite summand, we obtain a Riemannian structure on V . �

Lemma 7.3. The space |WS | is a classifying space for bundles of smooth closed
oriented surfaces, where each fiber F is equipped with “surgery data” as follows:

• a 3–dimensional vector bundle V on S, etc., as in lemma 7.2;
• a smooth orientation preserving embedding e of D(V (+))×S S(V (−)) in F ,

where D(. . . ) and S(. . . ) denotes unit disk and unit sphere bundles.

Idea of proof. In the definition of a generalized surface (Ex, fx) of type WS , add
the condition crit0(fx) = crit(fx), so that critical values other than 0 are forbid-
den. A shrinking argument similar to all the previous shrinking arguments in this
paper shows that this change does not affect the homotopy type of the classifying
space |WS |. With the new condition crit0(fx) = crit(fx), however, a generalized
surface (Ex, fx) of type WS can be described as the (long) trace of |S| simultane-
ous surgeries on the genuine smooth oriented surface f−1

x (c) for fixed c < 0. The
simultaneous surgeries are in the usual way determined by disjoint embeddings of
certain thickened spheres (labelled by the elements of S) in the surface f−1

x (c). �

Corollary 7.4. The homotopy fiber of |WS | → |Wloc,S | over any point z in |Wloc,S |
is a classifying space for bundles of compact smooth oriented surfaces with a pre-
scribed (oriented) boundary depending on S and z.

Outline of proof. The choice of z amounts to a choice of a Riemannian vector bundle
V on S with splitting etc., as in lemma 7.2. To obtain a correct description of the
homotopy fiber, simply fix V etc. in the re–definition of |WS | given in lemma 7.3.
This fixes the source of the codimension zero embedding e. Hence the information
carried by the surface F and the embedding e is carried by the closure of F r im(e),
and the identification of its boundary with S(V (+))×S S(V (−)). �

It is obvious how the homotopy fibers in corollary 7.4 depend on z alias V .
The dependence on S is more interesting because we can vary by morphisms in K

which are not isomorphisms. It suffices to describe the dependence in the case of a
morphism (g, ε) :R→ S in K where g is an inclusion and SrR has a single element
s. Let z ∈ |Wloc,S | correspond to a vector bundle V on S, etc., as in 7.2. Then the
image y ∈ |Wloc,R| of z under (g, ε)∗ corresponds to V |R = V r Vs.

Lemma 7.5. The map induced by (g, ε) from the homotopy fiber of |WS | → |Wloc,S |
over z to the homotopy fiber of |WR| → |Wloc,R| over y is given by a gluing con-
struction t∂LL, applied to the surfaces featuring in corollary 7.4, where

L =
{

D(Vs(+))× S(Vs(−)) if ε(s) = +1
S(Vs(+))× D(Vs(−)) if ε(s) = −1.
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The transition maps described in this lemma do not induce homology isomor-
phisms in general (i.e., do not satisfy the conditions of proposition 7.1), but in a
sense they come close to that. Indeed they are maps of the type considered in the
Harer–Ivanov stability theorem 1.5. The remaining difficulty, from this point of
view, is therefore that the surfaces featuring in corollary 7.4 need not be connected
and of large genus. Fortunately it is possible to make some changes in the decom-
position |W| ' hocolimS |WS | so that corollary 7.4 comes out “right”, i.e., with
something resembling the phrase connected and of large genus in it. (A welcome
side–effect of these changes is that |W∅| metamorphoses into Z×BΓ∞,1+1.) These
adjustments occupy the final chapters of [20].
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