Math 444/539: Geometric Topology Problem Set 7

Everyone should do all the problems.

Problems :

1. Let $\Sigma_{g, n}$ be an oriented genus g surface with n boundary components. Assume that $g \geq 2$ and that $n \geq 1$. Prove that $\pi_{1}\left(\Sigma_{g, n}\right)$ is a free group on $2 g+n-1$ generators.
2. Let Σ_{g} be an oriented genus g surface. Assume that $g \geq 2$. Prove that $\pi_{1}\left(\Sigma_{g}\right)$ is not abelian. Hint : find a surjective homomorphism from $\pi_{1}\left(\Sigma_{g}\right)$ to the dihedral group of order 8 .
3. Prove that the fundamental group of the following noncompact surface is free on infinitely many generators.

4. Consider the quotient space of a cube $I \times I \times I$ obtained by identifying each square face with the opposite square face via the right-handed screw motion consisting of a translation by one unit in the direction perpendicular to the face combined with a onequarter twist of the face about its center point. Show this quotient space X is a cell complex with two 0 cells, four 1 cells, three 2 cells, and one 3 cell. Using this structure, show that $\pi_{1}(X)$ is the quaternion group $\{ \pm 1, \pm i, \pm j, \pm k\}$ of order 8 .
5. Let $f: T^{2} \rightarrow T^{2}$ be a map satisfying $f(p)=p$ for some point p. Since $\pi_{1}\left(T^{2}, p\right) \cong \mathbb{Z}^{2}$, we get an induced map $f_{*}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$; ie a 2×2 integer matrix. Define M_{f} to be $T^{2} \times I$ modulo the equivalence relation that identifies $(x, 1)$ with $(f(x), 0)$ (this is called the mapping torus of f). Compute $\pi_{1}\left(M_{f}\right)$ in terms of the above matrix.
6. Prove that the abelianization of the fundamental group of the complement of any tame knot is \mathbb{Z}.
7. (a) Computer a presentation for the fundamental group of the complement of the following knot.

(b) Show that this fundamental group also has a presentation with 2 generators and 1 relation.
8. (Challenge problem/extra credit). Let $f: I \rightarrow \mathbb{R}^{3}$ be a smooth simple closed curve. By this, I mean that f satisfies the following properties.

- f is differentiable and $f^{\prime}(x) \neq 0$ for all x.
- $f(0)=f(1)$ and $f(x) \neq f(y)$ for $x, y \in(0,1)$ distinct.
- $f^{\prime}(0)=f^{\prime}(1)$.

Consider the map $g: I \rightarrow S^{1}$ defined by $g(x)=\frac{f^{\prime}(x)}{\left\|f^{\prime}(x)\right\|}$. Prove that g is a generator for $\pi_{1}\left(S^{1}, g(0)\right)$.

