
Math 444/539 : Geometric Topology
Problem Set 2

Everyone has to do problems 1-6. People enrolled in MATH 444 can do either 7 or 8, while
people enrolled in MATH 539 (ie mathematics grad students) must do both 7 and 8.

1. Fix a ∈ R, and let f : Rn → R be a continuously differentiable function. Set X =
{p ∈ Rn | f(p) = a}. Assume that for all p ∈ X, there exists some 1 ≤ i ≤ n such that
∂f
∂xi

is nonzero at p. Prove that X is a manifold. Hint : implicit function theorem. Of
course, this generalizes the fact that the (n− 1)-sphere in Rn is a manifold...

2. Call Int(D2) × S1 an open solid torus. Prove that there exists a torus T embedded in
S3 such that S3 \ T is the disjoint union of 2 open solid tori (hint : think of S3 as the
set of all points (x, y, z, w) ∈ R4 such that x2 + y2 + z2 + w2 = 1. How can you find a
copy of S1 × S1 in this?).

3. Prove that RPn is an n-manifold.

4. What surface is obtained by identifying the sides of a 10-gon as shown in the following
picture?

5. It was known to the ancient Greeks that there are only five regular polyhedra, namely
the regular tetrahedron, cube, octahedron, dodecahedron, and icosahedron. Prove this
by considering subdivisions of the sphere into n-gons (n fixed) such that exactly m
edges meet at each vertex (M fixed, m,n ≥ 3). Hint : Euler characteristic.

6. Prove that it is not possible to subdivide the surface of a sphere into regions, each of
which has 6 sides and such that distinct regions have no more than one side in common.

7. Let X be a surface obtained by gluing Euclidean polygons together. More precisely, as-
sume that there is a finite set {t1, . . . , tn} of disjoint polygons in R2. Let (s1, s

′
1), . . . , (sk, s

′
k)

be ordered pairs with the following properties.

• Each si and s′i is a side of one of the tj .
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• The list s1, s
′
1, . . . , sk, s

′
k contains each side of each polyhedron in {t1, . . . , tn} ex-

actly once.

• For all 1 ≤ i ≤ k, the sides si and s′i have the same length and a linear homeo-
morphism φi : si → s′i has been chosen.

Then X is the quotient of t1t· · ·ttn by the relation that identifies x ∈ si with φi(x) ∈ s′i
for all 1 ≤ i ≤ k.

(a) Prove that X is a compact topological surface.

(b) For each vertex v of X, let κ(v) equal 2π minus the sum of the angles of the corners
of the polygons abutting v (this is often known as the “curvature” at v). Prove
the following formula, which is a discrete analogue of the famous Gauss–Bonnet
theorem. ∑

v∈X(0)

κ(v) = 2πχ(X).

8. The Jordan curve theorem is as follows.

Theorem. Let f : [0, 1] → R2 be a continuous map such that f(0) = f(1) and such
that f |(0,1) is injective. Then R2 \ Im(f) has exactly 2 connected components.

This is not an easy theorem to prove; however, in this problem you will prove a special
case of it. Say that a function f : [0, 1] → R2 is piecewise linear if there exist 0 = a1 <
a2 < · · · < ak = 1 such that f |[ai,ai+1] is linear (ie there exist constants c, c′, d, d′ ∈ R
such that for x ∈ [ai, ai+1] we have f(x) = (cx + d, c′x + d′)).

Now let f : [0, 1] → R2 be a continuous piecewise linear map such that f(0) = f(1) and
such that f |(0,1) is injective. Let 0 = a1 < a2 < · · · < ak = 1 be the subdivision coming
from the piecewise linearity of f .

(a) Prove that R2 \ Im(f) has at most 2 path components.

(b) Prove that R2 \ Im(f) has at least 2 path components. Here’s an outline. It is
enough to find disjoint open sets U and V such that R2 \ Im(f) = U ∪V . Consider
p ∈ R2 \ Im(f). Say that a ray emanating from p is generic if it intersects Im(f)
in finitely many places and does not intersect f(ai) for any 1 ≤ i ≤ k. Prove first
that every p ∈ R2 \ Im(f) has generic rays emanating from it. Let r be a generic
ray emanating from p. Say that p is even if r intersects Im(f) in an even number
of points and odd otherwise. Prove next that this is independent of r. Now define
U = {q ∈ R2 \ Im(f) | q is even} and V = {q ∈ R2 \ Im(f) | q is odd}. Prove that
U and V are disjoint open sets whose union is R2 \ Im(f).
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