Math 444/539 : Geometric Topology Problem Set 1

1. This problem concerns the following theorem which was proven in the first lecture.

Theorem. Let X be a space and let $\mathcal{I} \subset \mathcal{P}(X)$. There then exists a unique space Y and a continuous map $\pi: X \rightarrow Y$ such that $\left.\pi\right|_{I}$ is a constant function for all $I \in \mathcal{I}$ and such that the following holds. If $\phi: X \rightarrow Z$ is such that $\left.\phi\right|_{I}$ is a constant function for all $I \in \mathcal{I}$, then there exists a unique $\phi^{\prime}: Y \rightarrow Z$ such that $\phi=\phi^{\prime} \circ \pi$.
(a) Prove that Y and $\pi: X \rightarrow Y$ are unique. Hints: Assume that Y^{\prime} and $\pi^{\prime}: X \rightarrow Y^{\prime}$ also satisfy the universal mapping property. Use the universal mapping property to construct maps $f: Y \rightarrow Y^{\prime}$ and $g: Y \rightarrow Y^{\prime}$, and then use the universal mapping property again to show that $f \circ g$ and $g \circ f$ are the identity. Conclude that Y and Y^{\prime} are homeomorphic.
Remark. This proof will appear in different guises several times in this course.
(b) Recall that in the proof of the above theorem, we defined

$$
\begin{aligned}
E_{p}=\left\{p^{\prime} \in X \mid\right. & \text { exists } q_{1}, \ldots, q_{n} \in X \text { and } I_{1}, \ldots, I_{n-1} \in \mathcal{I} \\
& \text { such that } p=q_{1}, p^{\prime}=q_{n}, \text { and }\left\{q_{i}, q_{i+1}\right\} \subset I_{i} \\
& \text { for } 1 \leq i<n\}
\end{aligned}
$$

for $p \in X$. Prove that for $p, p^{\prime} \in X$, either $E_{p}=E_{p^{\prime}}$ or $E_{p} \cap E_{p^{\prime}}=\emptyset$.
(c) Recall that in the proof of the above theorem, we defined

$$
Y=\left\{E_{p} \mid p \in X\right\}
$$

and

$$
\mathcal{U}=\left\{U \subset Y \mid \cup_{E \in U} E \subset X \text { is open }\right\}
$$

Prove that \mathcal{U} is a topology on Y.
2. Let X be an n-dimensional CW complex. Let the interiors of the n-cells of X be U_{1}, \ldots, U_{n}, and let $p_{i} \in U_{i}$ be arbitrary. Prove that there is a retract

$$
\pi: X \backslash\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow X^{(n-1)}
$$

Recall that a retract of a space A onto a subspace B is a continuous map $f: A \rightarrow B$ such that $\left.f\right|_{B}$ is the identity map.
3. (a) For $a \in \mathbb{R}$, define

$$
I_{a}=\left\{(x, y) \mid x+y^{2}=a\right\} \subset \mathbb{R}^{2}
$$

and

$$
\mathcal{I}=\left\{I_{a} \mid a \in \mathbb{R}\right\} \subset \mathcal{P}\left(\mathbb{R}^{2}\right)
$$

Let Y be the quotient of \mathbb{R}^{2} by \mathcal{I}. The space Y is a familar space : what is it?
(b) Repeat part a for

$$
I_{a}=\left\{(x, y) \mid x^{2}+y^{2}=a\right\} \subset \mathbb{R}^{2}
$$

and

$$
\mathcal{I}=\left\{I_{a} \mid a \in \mathbb{R}, a \geq 0\right\} \subset \mathcal{P}\left(\mathbb{R}^{2}\right)
$$

