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Abstract

We develop a theory of equivariant group presentations and relate them to the second
homology group of a group. Our main application says that the second homology group
of the Torelli subgroup of the mapping class group is finitely generated as a Z[Sp2g(Z)]-
module.

1 Introduction

If G is a finitely presentable group, then H2(G) is a finitely generated abelian group. Recent
work on representation stability has focused on groups that do not satisfy finiteness condi-
tions like finite presentability, but where the lack of finiteness is explained by the action of
a larger group. In this spirit, for a group G acted upon by a group Γ, we introduce “finite
Γ-equivariant presentations” for G and show that in many situations, having such a pre-
sentation implies that H2(G) is finitely generated as a Z[Γ]-module. As an application, we
prove a conjecture of Church–Farb about the second homology group of the Torelli group.

Torelli group. Let Σb
g be a compact oriented genus g surface with b boundary components

and let Modbg be its mapping class group, i.e. the group of isotopy classes of orientation-
preserving diffeomorphisms f of Σb

g with f |∂Σb
g

= id. For b ∈ {0, 1}, Poincaré duality implies
that the algebraic intersection form on H1(Σb

g;Z) is a Modbg-invariant symplectic form. The
Modbg-action on H1(Σb

g;Z) thus gives a representation Modbg → Sp2g(Z) whose kernel Ibg is
the Torelli group. This is summarized in the short exact sequence

1 −→ Ibg −→ Modbg −→ Sp2g(Z) −→ 1.

See [J1, FMa, Pu5] for surveys about the mapping class group and Torelli group.1

Combinatorial group theory. The group Modbg has strong finiteness properties. For
instance, it is finitely presentable [McCo] and all of its homology groups are finitely gener-
ated [Har]. Since Ibg is an infinite-index subgroup of Modbg, there is no formal reason for it
to inherit any of these finiteness properties. Indeed, McCullough–Miller [McCuMi] proved
that Ib2 is not even finitely generated. Mess [Me] strengthened this by showing that I2 is
∗Supported in part by NSF grant DMS-1601406
†Supported in part by NSF grants DMS-1737434 and DMS-1811322.
1Defining the Torelli group on a surface with multiple boundary components is subtle and there are several

possibilities; see [Pu1]. We will thus restrict ourselves to surfaces with at most 1 boundary component.
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an infinite rank free group. However, a remarkable theorem of Johnson [J2] says that Ibg
is finitely generated for g ≥ 3. This has been strengthened in various ways; for instance,
more efficient generating sets can be found in [Pu4] and generation results for deeper sub-
groups can be found in [CPu, CEPu, EHe]. However, it is not known whether Ibg is finitely
presentable for g ≥ 3.

Homology. Even the easier question of whether H2(Ibg) is finitely generated is open (though
large pieces of it have been calculated by Hain [Hai] and by Brendle–Farb [BrF]), so it
is natural to study weaker finiteness properties. The conjugation action of Modbg on Ibg
descends to an action of Sp2g(Z) on Hk(Ibg). Church–Farb [CF] made a series of conjectures
about this action which assert that it exhibits various forms of “representation stability”.
Precisely stating all of their conjectures would take us too far afield, so we will only do so
for the one that we prove.

The group H1(Ibg) was calculated by Johnson [J3], and this calculation shows that all
of Church–Farb’s conjectures hold for it. All subsequent work has focused on H2(Ibg).
Boldsen–Dollerup [BolDo] proved that H2(I1

g;Q) satisfies a regularity condition introduced
by Church–Farb called “surjective representation stability”. Miller–Patzt–Wilson [MiPaW]
strengthened this by showing that H2(I1

g;Q) is “centrally stable” in the sense of [PuSa]
(which generalizes to groups like Sp2g(Z) ideas from [Pu6] concerning the symmetric group).

Church–Farb also conjectured that Hk(Ibg) is finitely generated as a Z[Sp2g(Z)]-module for
g � 0. In other words, there exists a finite set S ⊂ Hk(Ibg) such that the Sp2g(Z)-orbit of S
spans Hk(Ibg). Our first main theorem verifies this for k = 2.

Theorem A. H2(Ibg) is finitely generated as a Z[Sp2g(Z)]-module for g ≥ 3 and b ∈ {0, 1}.

Remark 1.1. Day–Putman [DaPu] proved an analogue of Theorem A for the Torelli subgroup
of Aut(Fn). Our proof of Theorem A shares some features with [DaPu]; for instance,
both start with infinite presentations for the groups in question. However, the proofs are
fundamentally different. For instance, [DaPu] identifies an explicit generating set for H2,
while our proof of Theorem A is inherently non-constructive.

Equivariant presentations. For a group G, the group H2(G) is connected to the relations
in a presentation for G. We derive Theorem A from a special kind of presentation for Ibg
that incorporates the action of Modbg. For a set S, let F (S) be the free group on S.

Definition 1.2. Let G and Γ be groups such that Γ acts on G. A finite Γ-equivariant
presentation for G consists of a pair (S0, R0) as follows:
• S0 ⊂ G is a finite set whose orbits S := Γ · S0 generate G.
• R0 ⊂ F (S) is a finite set of relations for G whose orbits R := Γ ·R0 form a complete

set of relations for G. Here Γ acts on F (S) via its action on S.

Example 1.3. Let
G =

⊕
n∈N

Z/2

and let Γ be the symmetric group on the set N. The group Γ acts on G via its action on
N. For n ∈ N, let sn ∈ G be the generator of the nth summand. Then G has a finite
Γ-equivariant presentation (S0, R0) with S0 = {s1} and R0 = {s2

1, [s1, s2]}.
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Example 1.4. For some n ≥ 3, let Sn+1 be the symmetric group on (n+1) letters {1, . . . , n+
1} and let Γ ⊂ Sn+1 be any subgroup acting 3-transitively on {1, . . . , n} and fixing n +
1. The group Γ acts on Sn+1 by conjugation. For 1 ≤ i ≤ n, let si ∈ Sn+1 be the
transposition (i, n + 1). Then Sn+1 has a finite Γ-equivariant presentation (S0, R0) with
S0 = {s1} and R0 = {s2

1, (s1s2)3, (s1s2s3)4}. Indeed, unpacking the definition of a Γ-
equivariant presentation, we see that this corresponds to the ordinary group presentation

〈s1, . . . , sn | s2
i , (sisj)3, (sisjsk)4〉.

Here distinct indices represent distinct numbers. This presentation of Sn+1 is a small
variant on a presentation of Burnside [Bu, p. 464] and Miller [Mi, p. 366]; see [GKasKanL,
§2.2] for more details.
Remark 1.5. Finite Γ-equivariant presentations are related to but different from the L-
presentations defined by Bartholdi [Ba] and used to study the Torelli subgroup of Aut(Fn)
by Day–Putman [DaPu].

We prove that subject to some technical conditions, a group G with a finite Γ-equivariant
presentation has H2(G) finitely generated as a Z[Γ]-module. A group Γ is of type FPn if
the trivial Z[Γ]-module Z has a length n partial resolution by finitely generated projective
modules. This holds, for instance, if Γ has a K(Γ, 1) whose n-skeleton is compact.
Theorem B. Let G and Γ be groups such that Γ acts on G. Assume the following:
• G has a finite Γ-equivariant presentation (S0, R0).
• H1(G) is finitely generated as an abelian group.
• Γ is of type FP2.
• The Γ-stabilizers of all elements of S0 are finitely generated.

Then H2(G) is finitely generated as a Z[Γ]-module.
Remark 1.6. If Γ is of type FPn for n > 2 and the Γ-stabilizers of all elements of S0 are of
type FPn−1, then our proof of Theorem B almost proves that H2(G) is a Z[Γ]-module of
type FPn. The only thing that goes wrong is Claim 2.4 from the proof, which would require
some kind of higher regularity for the relations that seems hard to verify in practice.

Back to Torelli. The group Modbg acts on Ibg by conjugation, and we prove the following.

Theorem C. Ibg has a finite Modbg-equivariant presentation for g ≥ 3 and b ∈ {0, 1}.
Given this, we can apply Theorem B to deduce Theorem A. Indeed, the other conditions of
Theorem B are satisfied:
• Johnson [J2] proved that Ibg is finitely generated, so H1(Ibg) is a finitely generated

abelian group. Johnson later calculated H1(Ibg) in [J3].
• Harer [Har] proved that Modbg is of type FP∞, so it certainly is of type FP2.
• Let (S0, R0) be the finite Modbg-equivariant presentation for Ibg given by Theorem C.
The Modbg-stabilizers of elements of S0 are same as the Modbg-centralizers of these
elements, and Rafi–Selinger–Yampolsky [RSeY] proved that the Modbg-centralizers of
all elements of Modbg are finitely generated. We remark that since elements of Ibg
are “pure”, this could be deduced for elements of S0 using much earlier results of
Ivanov–McCarthy [IMcCa].2

2Indeed, it is not hard to work these centralizers out explicitly and verify directly that they are finitely
generated. The only moderately difficult case is that of simply intersecting pair maps.
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Figure 1: A separating twist Tx, a bounding map TyT
−1
z , and a simply intersecting pair map

[Ta, Tb].

Theorem B then implies that H2(Ibg) is a finitely generated Z[Modbg]-module. Since the
action of Modbg on H2(Ibg) factors through Sp2g(Z), this implies that H2(Ibg) is a finitely
generated Z[Sp2g(Z)]-module, as desired.

Generators. A presentation for Ibg close to the one claimed by Theorem C was constructed
by Putman [Pu2]. To explain what remains to be done, we discuss Putman’s presentation.
We begin with the following (see Figure 1):
• A separating twist is a Dehn twist Tx with x a separating simple closed curve.
• A bounding pair map is a product TyT−1

z , with y and z disjoint simple closed curves
whose union separates Σb

g (note that we do not require that y and z be nonseparating).
• A simply intersecting pair map is a commutator [Ta, Tb], where a and b are simple
closed curves that intersect twice with opposite signs (again, note that we do not
require that a or b be nonseparating).

These all lie in Ibg. Building on work of Birman [Bir], Powell [Po] proved that Ibg is generated
by separating twists and bounding pair maps. See [Pu1, HatMa] for modern proofs.

Putman’s generating set S(I) consists of all separating twists, all bounding pair maps, and
all simply intersecting pair maps. All of these can be embedded into the surface in various
ways, but the change of coordinates principle from [FMa, §1.3] shows that up to the action
of Modbg, there are only finitely many ways to embed each into the surface. In other words,
the conjugation action of Modbg on Ibg restricts to a Modbg-action on S(I) with finitely many
orbits. Let S0(I) ⊂ S(I) contain a single representative of each of these orbits, so S0(I) is
a finite set whose Modbg-orbit is the generating set S(I).

Relations. Let R(I) be Putman’s set of relations. The element of R(I) fall into a number
of families: there are 8 “formal relations” along with the “lantern relations”, the “crossed
lantern relations”, the “Witt–Hall relations”, and the “commutator shuffle relations”. For
example, the lantern and crossed lantern relations are depicted in Figure 2. Almost all of
these relations correspond to a finite list of pictures that can be embedded in the surface
in various ways, and again the change of coordinates principle says that up to the action of
Modbg there are only finitely many ways of embedding each into the surface.

This might lead one to think that the action of Modbg on R(I) has finitely many orbits. If
this were the case, then letting R0(I) be a set containing a single representative of each of
these orbits, the pair (S0(I), R0(I)) would be a finite Modbg-equivariant presentation for Ibg.

Trouble. However, there is an issue: three of the formal relations are not of this form. In
the notation of [Pu2], these are the relations (F.6), (F.7), and (F.8). They can be stated as
follows. Consider M ∈ S(I).
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Figure 2: On the left is the lantern relation Tx = (TaT
−1
b )(TcT

−1
d )(TeT

−1
f ), where Tx is a separating

twist and the other three terms are bounding pair maps. On the right is the crossed lantern relation
(TaT

−1
b )(TcT

−1
d ) = TeT

−1
f ; all three terms are bounding pair maps.

• Relation (F.6) says that if Tx is a separating twist, then

MTxM
−1 = TM(x).

• Relation (F.7) says that if TyT−1
z is a bounding pair map, then

MTxT
−1
y M−1 = TM(x)T

−1
M(y).

• Relation (F.8) says that if [Ta, Tb] is a simply intersecting pair map, then

M [Ta, Tb]M−1 = [TM(a), TM(b)].
Since there is no bound on how the curves making up M intersect Tx or TyT−1

z or [Ta, Tb],
even up to the action of Modbg these relations fall into infinitely many families.

Weakly-finite equivariant presentations. In summary, what Putman constructed in
[Pu2] is the following kind of equivariant presentation (a priori weaker than a finite one):

Definition 1.7. Let Γ be a group and let GCΓ, so Γ acts on G by conjugation. For γ ∈ Γ
and g ∈ G, write γg = γgγ−1. A weakly-finite Γ-equivariant presentation for G consists of
a pair (S0, R0) as follows:
• S0 ⊂ G is a finite set whose orbits

S := Γ · S0 = {γs | γ ∈ Γ, s ∈ S} ⊂ G

generate G.
• R0 ⊂ F (S) is a finite set of relations for G with the following property. Let R ⊂ F (S)

be Γ ·R0, and define
Rconj = {sts−1 (st)−1 | s, t ∈ S}.

See Remark 1.8 below for more explanation of the form of these relations. Then
R ∪Rconj is a complete set of relations for G.

Remark 1.8. The relations in Rconj might seem a bit puzzling. To unpack them, observe first
that by its very definition S ⊂ G is closed under conjugation by Γ. Since S ⊂ G ⊂ Γ, this
implies that S is closed under conjugation by elements of S, i.e. for s, t ∈ S we have st ∈ S.
The elements s and t and st are all elements of S ⊂ G that a priori have no relationship in
the free group F (S). The relations in Rconj (which hold trivially in G) force s ∈ F (S) to
conjugate t ∈ F (S) to st ∈ F (S).
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To fix this problem, we will show that in favorable situations a weakly-finite Γ-equivariant
presentation can be converted into a finite Γ-equivariant presentation:

Theorem D. Let Γ be a group and let GC Γ. Assume the following holds:
• There exists a weakly-finite Γ-equivariant presentation for G.
• Both Γ and G are finitely generated.

Then there exists a finite Γ-equivariant presentation for G.

Since Modbg is finitely generated for all g and b (a theorem due essentially to Dehn; see
[FMa]) and Ibg is finitely generated for g ≥ 3 and b ∈ {0, 1} (a theorem of Johnson [J2]),
we can combine Theorem D with Putman’s result from [Pu2] to deduce Theorem C, which
asserts that Ibg has a finite Modbg-equivariant presentation for g ≥ 3 and b ∈ {0, 1}. As we
discussed above, this implies Theorem A.
Remark 1.9. Putman’s construction of a weakly-finite Modbg-equivariant presentation for Ibg
used the main result of [Pu3], which explains how to find presentations for groups acting
on simplicial complexes without identifying a fundamental domain for the action. This
machine inherently gives weakly-finite equivariant presentations; indeed, the relations Rconj
in the above definition are precisely the “conjugation relations” from [Pu3]. Because of this,
we expect that Theorem D will prove useful in other applications of combinatorial group
theory to representation stability.

Outline. The two results we must prove are Theorems B and D. The proof of Theorem
B is in §2 and the proof of Theorem D is in §3. Here are brief descriptions of how those
proofs go:
• For Theorem B, the main idea is to embed H2(G) into the five-term exact sequence

in group homology and study the finiteness properties of the various terms of this
sequence as Z[Γ]-modules.
• For Theorem D, the main idea is to show that all the conjugation relations can be

deduced from those that show how to express the conjugate of a G-generator by a
Γ-generator in terms of the finite generating set for G.

Acknowledgments. We would like to thank Benjamin Steinberg for his help with the
proof of Lemma 2.6.

2 The second homology group of normal subgroups

This section contains the proof of Theorem B. We begin with some preliminary results in
§2.1 and then give the proof in §2.2.

2.1 Preliminaries on finiteness conditions

All our rings have a unit, and unless otherwise specified all modules are left modules. We
start with the following definition.
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Definition 2.1. Let R be a ring and let M be an R-module. We say that M is of type
FPn if there exists a length n partial resolution

Pn −→ Pn−1 −→ · · · −→ P0 −→M −→ 0

of M by finitely generated projective R-modules.

Remark 2.2. Being of type FP0 is equivalent to being finitely generated and being of type
FP1 is equivalent to being finitely presentable.

The following lemma implies among other things that if M has type FPn for all n, then M
has an infinite length resolution by finitely generated projective R-modules.

Lemma 2.3 ([Bie]). Let R be a ring and let M be an R-module. Then M is of type FPn
if and only if M is finitely generated and for all partial resolutions

Pn′ −→ Pn′−1 −→ · · · −→ P0 −→M −→ 0

of M by finitely generated projective R-modules of length n′ < n, the kernel of the map
Pn′ → Pn′−1 is finitely generated.

The following lemma describes how our finiteness conditions behave under extensions.

Lemma 2.4 ([Bie]). Let R be a ring and let

0 −→M ′ −→M −→M ′′ −→ 0

be a short exact sequence of R-modules. The following hold.
1. If M is of type FPn and M ′′ is of type FPm for some n ≥ 0 and m ≥ 1, then M ′ is

of type FPr for r = min(n,m− 1).
2. If M ′ is of type FPn and M ′′ is of type FPm for some n,m ≥ 0, then M is of type

FPr for r = min(n,m).
3. If M ′ is of type FPn and M is of type FPm for some n,m ≥ 0, then M ′′ is of type

FPr for r = min(n+ 1,m).

We now turn to groups.

Definition 2.5. A group G is of type FPn if the trivial Z[G]-module Z is of type FPn.

For a group G of type FPn, the following lemma give a large supply of Z[G]-modules of type
FPn. We expect that this lemma is known to the experts, but we do not know a reference.

Lemma 2.6. Let G be a group of type FPn and let M be a Z[G]-module that is finitely
generated as an abelian group. Then M is of type FPn.

Proof. Let Mtor be the torsion subgroup of M , so M/Mtor is free abelian and

0 −→Mtor −→M −→M/Mtor −→ 0

is a short exact sequence of Z[G]-modules. Lemma 2.4 says that it is enough to prove that
Mtor and M/Mtor are of type FPn, so we are reduced to proving the following two special
cases of the lemma.
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Case. M is a finite abelian group.

In this case, the kernel G′ of the map G → Aut(M) is a finite-index subgroup of G. Since
a partial resolution of Z by finitely generated projective Z[G]-modules restricts to a partial
resolution of Z by finitely generated projective Z[G′]-modules, the group G′ is of type FPn.
We claim thatM is of type FPn as a Z[G′]-module. Indeed, there exists a finitely generated
free abelian group M̃ and a surjection f : M̃ →M . Endow M̃ with the trivial Z[G′]-module
structure. We then have a short exact sequence

0 −→ ker(f) −→ M̃
f−→M −→ 0

of Z[G′]-modules (all trivial!). Both M̃ and ker(f) are direct sums of the trivial Z[G′]-
module Z. Since G′ is of type FPn, so are the Z[G′]-modules M̃ and ker(f). Lemma 2.4
thus implies that M is also of type FPn as a Z[G′]-module, as claimed.

Now consider some n′ < n and a length n′ partial resolution

Pn′ −→ Pn′−1 −→ · · · −→ P0 −→M −→ 0 (2.1)

of M by finitely generated projective Z[G]-modules. By Lemma 2.3, to prove that M is of
type FPn as a Z[G]-module, it is enough to prove that the kernel of the map Pn′ → Pn′−1 is
a finitely generated Z[G]-module. Since G′ is a finite-index subgroup of G, the restriction of
(2.1) to Z[G′] is a length n′ partial resolution of M by finitely generated projective Z[G′]-
modules. Since M is of type FPn as a Z[G′]-module, Lemma 2.3 implies that the kernel of
the map Pn′ → Pn′−1 is a finitely generated Z[G′]-module. This clearly implies that it is
also a finitely generated Z[G]-module, as desired.

Case. M is a finitely generated free abelian group.

We learned the argument in this case from Steinberg [St]. Recall that if R is a ring, then a
free R-bimodule is a direct sum of copies of the R-bimodule R⊗ZR. Since G is of type FPn,
a theorem of Pride [Pr, Theorem 2] shows that there exists a length n partial resolution

Qn −→ Qn−1 −→ · · · −→ Q0 −→ Z[G] −→ 0

of Z[G] by finitely generated free Z[G]-bimodules. We claim that

Qn ⊗Z[G] M −→ · · · −→ Q0 ⊗Z[G] M −→ Z[G]⊗Z[G] M = M −→ 0 (2.2)

is a length n partial resolution of M by finitely generated free Z[G]-modules. This requires
checking two things:
• The chain complex (2.2) is exact. To see this, observe that each free Z[G]-bimodule
Qk is a free right Z[G]-module (not necessarily finitely generated). This means that
the chain complex (2.2) computes TorZ[G](Z[G],M), which vanishes since Z[G] is free.
• Each Qk ⊗Z[G] M is a finitely generated free Z[G]-module. This follows from the fact

that Qk is a finite direct sum of copies of Z[G]⊗Z Z[G] together with the observation
that

(Z[G]⊗Z Z[G])⊗Z[G] M ∼= Z[G]⊗Z M ∼= (Z[G])⊕ rank(M) .
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2.2 From equivariant presentations to finiteness

We now prove Theorem B.

Proof of Theorem B. We first recall the setup. Let G and Γ be groups such that Γ acts on
G. Assume that the following hold:
• G has a finite Γ-equivariant presentation (S0, R0).
• H1(G) is finitely generated as an abelian group.
• Γ is of type FP2.
• The Γ-stabilizers of all elements of S0 are finitely generated.

We must prove that H2(G) is finitely generated as a Z[Γ]-module, i.e. that H2(G) is a
Z[Γ]-module of type FP0.

Let S = Γ · S0, let R = Γ · R0, and let ⟪R⟫ be the normal closure of R in F (S). We thus
have a short exact sequence

1 −→ ⟪R⟫ −→ F (S) −→ G −→ 1.

Since H2(F (S)) = 0, the five-term exact sequence in group cohomology associated to this
short exact sequence is of the form

0 −→ H2 (G) −→ (H1 (⟪R⟫))G
φ−→ H1 (F (S)) ψ−→ H1 (G) −→ 0.

By construction, this is an exact sequence of Z[Γ]-modules. The following five claims eluci-
date the finiteness properties of various terms of this exact sequence. The theorem itself is
the fifth one.

Claim 2.1. H1(G) is a Z[Γ]-module of type FP2.

This follows from Lemma 2.6, which we can apply since Γ is a group of type FP2 and H1(G)
is a finitely generated abelian group.

Claim 2.2. H1(F (S)) is a Z[Γ]-module of type FP1.

By construction, we have
H1(F (S)) ∼=

⊕
s∈S0

Z[Γ/Γs],

where Γs denotes the Γ-stabilizer of s ∈ S0. Fixing some s ∈ S0, it is thus enough to prove
that Z[Γ/Γs] is a Z[Γ]-module of type FP1. By assumption, Γs is finitely generated; let X
be a finite generating set for it. We then have a finite presentation⊕

x∈X
Z[Γ] ι−→ Z[Γ] −→ Z[Γ/Γs] −→ 0,

where the map ι is of the form ι = ⊕x∈Xιx with ιx : Z[Γ] → Z[Γ] the map taking ω ∈ Z[Γ]
to ω(x− 1) ∈ Z[Γ]. The claim follows.

Claim 2.3. ker(ψ) = Im(φ) is a Z[Γ]-module of type FP1.

This follows from Claims 2.1 and 2.2 together with Lemma 2.4.

Claim 2.4. (H1 (⟪R⟫))G is a Z[Γ]-module of type FP0.
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Since R0 is finite, it is enough to show that the evident map⊕
r∈R0

Z[Γ] −→ (H1 (⟪R⟫))G

is a surjection. The image of this map equals the image of the map

H1(R) −→ (H1 (⟪R⟫))G .
But this map is surjective since we are taking G-coinvariants, which causes all G-conjugates
of an element r ∈ R to collapse to a single element of (H1 (⟪R⟫))G.
Claim 2.5. ker(φ) = H2(G) is a Z[Γ]-module of type FP0.

This follows from Claims 2.3 and 2.4 together with Lemma 2.4.

3 Upgrading weakly-finite equivariant presentations

We conclude the paper by proving Theorem D.

Proof of Theorem D. We begin by recalling the setup. Let Γ be a group and let G be a
normal subgroup of Γ. Assume that both G and Γ are finitely generated, and let (S0, R0)
be a weakly-finite Γ-equivariant presentation for G. Our goal is to construct a finite Γ-
equivariant presentation for G.

For γ ∈ Γ and g ∈ G, write γg for the image of g under the action of γ. As in the definition
of a weakly-finite Γ-equivariant presentation, let S = Γ · S0, let R = Γ ·R0, and let

Rconj = {sts−1 (st)−1 | s, t ∈ S}.

By definition, R ∪ Rconj is a complete set of relations for G. To prove the theorem, it is
enough to construct a further finite set R′0 ⊂ F (S) with the following property:

(†) Let R′ = Γ ·R′0. Then each relation in Rconj is a consequence of the relations in R′.

Since G is finitely generated and S generates G, there exists a finite subset X of S that
generates G. Define R′′0 to be the following finite subset of Rconj:

R′′0 = {sxs−1 (sx)−1 | s ∈ S0, x ∈ X}.

Now let Y be a finite generating set for Γ that is symmetric in the sense that if y ∈ Y ,
then y−1 ∈ Y . For y ∈ Y and x ∈ X, we can find some wy,x ∈ F (X) ⊂ F (S) that maps to
yx ∈ S ⊂ G under the composition F (X) ↪→ F (S)→ G. Define

R′′′0 = {(yx) (wy,x)−1 | y ∈ Y , x ∈ X} ⊂ F (S)

and R′0 = R′′0 ∪R′′′0 .

We claim that R′0 satisfies (†). To see this, let R′ = Γ ·R′0. The claim (†) is the third of the
following claims. For words h, k ∈ F (S), write h ≡ k if h equals k modulo R′.
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Claim 3.1. For all u ∈ S, there is some word w ∈ F (X) such that u ≡ w.

There exists some u0 ∈ S0 and γ ∈ Γ such that

u = γu0.

The proof of the claim will be by induction on the length of the shortest word in the
generating set Y for Γ needed to write γ. The base case where that word has length 0 is
trivial, so assume that it has positive length. Using the fact that Y is symmetric, we can
write γ = yγ′, where y ∈ Y and γ′ can be written as a shorter word than γ. Our inductive
hypothesis say that there exists some w′ ∈ F (X) such that

γ′u0 ≡ w′.

Since the relations in R′ are closed under the action of Γ, this implies that

u = yγ′u0 ≡ y
w′.

Now write w = xe1
1 · · ·xen

n with xi ∈ X and ei ∈ {±1}. We then have
y
w′ = (yx1)e1 (yx2)e2 · · · (yxn)en .

Using the relations in R′′′0 ⊂ R′, we see that each term on the right hand side of the previous
equation is equivalent modulo the relations in R′ to a word in F (X). The claim follows.

Claim 3.2. For all s0 ∈ S0 and u ∈ S, we have

s0us
−1
0 ≡ s0u. (3.1)

Using Claim 3.1, we can find a word w ∈ F (X) such that

u ≡ w. (3.2)

Since the relations in R′ are closed under the action of Γ, this implies that
s0u ≡ s0w. (3.3)

Write w = xe1
1 · · ·xen

n with xi ∈ X and ei ∈ {±1}. The equation (3.1) can then be deduced
as follows:

s0us
−1
0 ≡ s0 (xe1

1 x
e2
2 · · ·x

en
n ) s−1

0

=
(
s0x1s

−1
0

)e1 (
s0x2s

−1
0

)e2 · · ·
(
s0xns

−1
0

)en

≡ (s0x1)e1 (s0x2)e2 · · · (s0xn)en

= s0 (xe1
1 x

e2
2 · · ·x

en
n )

= s0w

≡ s0u.

Here the first ≡ is (3.2), the second ≡ uses the relations in R′′0 ⊂ R, and the third ≡ is
(3.3).

Claim 3.3. For all s, t ∈ S, we have

sts−1 ≡ st. (3.4)
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We can write s = γs0 for some γ ∈ Γ and s0 ∈ S0. Define u = γ−1
t. Claim 3.2 implies that

s0us
−1
0 ≡ s0u (3.5)

The relations in R′ are closed under the action of Γ, so we can apply γ to both sides of
(3.5) and deduce that

γ (
s0us

−1
0

)
≡ γs0u. (3.6)

The left hand side of (3.6) is
γ (
s0us

−1
0

)
= (γs0)

(
γγ−1

t
)

(γs0)−1 = sts−1, (3.7)

while the right hand side of (3.6) is

γs0u = γs0γ−1
t = st; (3.8)

here we are using the fact that Γ acts on G by conjugation, so

γs0γ
−1 = γs0 = s

in G. Since (3.7) and (3.8) are also the left and right hand sides of (3.4), we conclude that
(3.4) holds, as desired.

Claim 3.3 was precisely (†) above, which as we noted implies that (S0, R0 ∪ R′0) is a finite
Γ-equivariant presentation of G. The theorem follows.
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