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Abstract

We explain why integral curves to vector fields exist if the vector fields are continuous and are
unique if the vector fields are locally Lipshitz.

Let ~v : U → Rn be a vector field defined on an open set U ⊂ Rn. A integral curve of ~v is a
differentiable function γ : I → U for some interval I ⊂ R such that γ′(t) = ~v(γ(t)) for all t ∈ I.
The Peano existence theorem says that if ~v is continuous, then these exist with any specified initial
point:

Theorem A (Peano existence theorem). Let ~v : U → Rn be a continuous vector field on an open
set U ⊂ Rn and let p0 ∈ U . Then for some ε > 0 there exists an integral curve γ : [0, ε) → U of ~v
such that γ(0) = p0.

Remark 0.1. One might also want an integral curve γ : (−ε, ε) → U with γ(0) = p0. This can be
obtained by applying Theorem A to obtain integral curves γ1 : [0, ε1)→ U for ~v and γ2 : [0, ε2)→ U
for −~v with γ1(0) = γ2(0) = p0. Setting ε = min{ε1, ε2}, the desired integral curve γ : (−ε, ε)→ U
can then be defined via the formula

γ(t) =
{
γ1(t) if 0 ≤ t < ε,

γ2(−t) if −ε < t ≤ 0.

Such integral curves need not be unique; indeed, consider the follow example:
Example 0.2. Let ~v : R1 → R1 be the vector field ~v(x) =

√
|x|. We then have two integral curves

to ~v starting at 0:

• The constant curve γ : [0,∞)→ R1 defined by γ(x) = 0.
• The curve γ : [0,∞)→ R1 defined by γ(x) = x2/4.

However, the Picard–Lindelöf theorem says that integral curves are unique if ~v is smooth. In fact,
even weaker conditions on ~v are sufficient. Say that ~v : U → Rn is locally Lipshitz if for all p0 ∈ U ,
there exists some L > 0 and some neighborhood U ′ ⊂ U of p0 such that the restriction of ~v to U ′

is L-Lipshitz, i.e. such that

‖~v(x)− ~v(y)‖ ≤ L‖x− y‖ (x, y ∈ U ′).

Clearly smooth vector fields are locally Lipshitz, and we have the following:

Theorem B (Picard–Lindelöf theorem). Let ~v : U → Rn be a locally Lipshitz vector field on an
open set U ⊂ Rn and let γ1, γ2 : [0, ε) → U be two integral curves of ~v with γ1(0) = γ2(0). Then
γ1 = γ2.
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In most textbooks, existence and uniqueness of integral curves to locally Lipshitz vector fields are
proved simultaneously by recasting the problem as a solution to an integral (rather than differential)
equation and then showing that the solution to the integral equation is a fixed point for a contracting
map on a space of functions. This has the following downsides:

• It doesn’t give the most general existence theorem.
• The solution is indirect and not very geometric.

In this note, we explain how to directly prove Theorems A and B. The proof of existence we
give shows that integral curves can be constructed as limits of perhaps the most naive possible
approximation (in the numerical analysis literature, the approximation scheme we use is called the
forward Euler method).

Proof of Theorem A. Let ~v : U → Rn be a continuous vector field on an open set U ⊂ Rn and let
p0 ∈ U . Our goal is to find an integral curve of ~v starting at p0. To simplify our notation, we start
by making several transformations to this data:

• Translating everything, we can assume that p0 = 0.
• Shrinking U , we can assume that U is an open disc around 0 and that ~v extends to the closure
D that disc.
• Composing everything with a dilatation, we can assume that in fact D is the disc of radius 1.
• Finally, multiplying ~v by an appropriate positive constant we can assume that ‖~v(x)‖ ≤ 1 for
all x ∈ D. We remark that this global rescaling merely rescales the time parameter in our
integral curves.

Having done all this, what we will prove is that there exists an integral curve γ : [0, 1] → D for ~v
with γ(0) = 0.

We will construct γ as a limit of curves γn : [0, 1]→ D as follows. Consider some n ≥ 1. Define γn
to be the following piecewise-linear curve. Divide the interval [0, 1] into n intervals [k/n, (k+ 1)/n]
for 0 ≤ k < n. The curve γn starts at 0, then on [0/n, 1/n] follows the straight line in the direction
of ~v(0), then on [1/n, 2/n] follows the straight line in the direction of ~v(γn(1/n)), etc. In formulas,
γn is defined via γn(0) = 0 and

γn(t) = γn(k/n) + (t− k/n)~v(γn(k/n)) for 0 ≤ k < n and t ∈ [k/n, (k + 1)/n].

The fact that ‖~v(x)‖ ≤ 1 for all x ∈ D implies that γn(t) ∈ D for all t ∈ [0, 1]. It also implies
that the γn are equicontinuous, so by the Arzela–Ascoli Theorem we can pass to a subsequence and
ensure that the γn converge uniformly to a continuous function γ : [0, 1]→ D.

We want to prove that γ is an integral curve to ~v. One mildly confusing thing here is that the
approximations γn are only piecewise differentiable, and in fact as n increases the points where γn
is not differentiable become dense in [0, 1]. However, the following claim shows that in some sense
the lack of differentiability at those points becomes milder and milder.

Claim 1. For all ε > 0, there exists some δ > 0 and some N ≥ 1 such that for s, t ∈ [0, 1] with
0 < |s− t| < δ and for n ≥ N we have

‖γn(s)− γn(t)
s− t

− ~v(γn(t))‖ < ε.
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Proof. Let us first contemplate the quantity we must bound. Fix some n ≥ 1 and some t, s ∈ [0, 1].
Set u0 = min{t, s}, and after doing this swap s and t if necessary to ensure that t ≤ s. This swap
does not change the indicated difference quotient, and what we want to do is to find some δ > 0
and N ≥ 1 such that if n ≥ N and 0 < |s− t| < δ then

‖γn(s)− γn(t)
s− t

− ~v(γn(u0))‖ < ε.

Since γn is a piecewise-smooth curve, we have

γn(s)− γn(t)
s− t

= 1
s− t

∫ s

t
γ′
n(u) du .

This is precisely the average value of the vector γ′
n(u) as u ranges over [t, s]. We want this average

value to be within distance ε of ~v(γn(u0)). By construction, for u ∈ [t, s] we have γ′
n(u) ∈ ~v(γn([t−

1/n, s])). Since ~v(γn(u0)) ∈ ~v(γn([t−1/n, s])) and the average of a vector-valued function must lie in
the convex hull of its image, we see that what we really want is for the diameter of ~v(γn([t−1/n, s]))
to be at most ε.

Since ‖~v(x)‖ ≤ 1 for all x ∈ D, the curve γn travels at most at unit speed. It follows that the
diameter of γn([t− 1/n, s]) ⊂ D is at most s− t+ 1/n. We deduce that it is enough to prove that
there exists some δ > 0 and some N ≥ 1 such that for n ≥ N and x, y ∈ D with ‖x− y| < δ+ 1/n,
we have ‖~v(x) − ~v(y)| < ε. This is immediate from the fact that ~v is uniformly continuous on the
closed unit disc D. Indeed, uniform continuity implies that there exists some ∆ > 0 such that for
x, y ∈ D with ‖x − y‖ < ∆, we have ‖~v(x) − ~v(y)| < ε. We can then simply take δ = ∆/2 and N
large enough such that 1/N < ∆/2.

We now prove that γn is an integral curve for ~v. Consider some t ∈ [0, 1] and some ε > 0. We must
prove that there exists some δ > 0 such that for s ∈ [0, 1] with 0 < |s− t| < δ, we have

‖γ(s)− γ(t)
s− t

− ~v(γ(t))‖ < ε.

For all n ≥ 1, we have

‖γ(s)− γ(t)
s− t

− ~v(γ(t))‖ ≤ ‖γn(s)− γn(t)
s− t

− ~v(γn(t))‖ (0.1)

+ ‖γn(s)− γ(s)
s− t

‖+ ‖γn(t)− γ(t)
s− t

‖+ ‖~v(γn(t))− ~v(γ(t))‖

Claim 1 implies that we can find some δ > 0 and some N ≥ 1 such that for n ≥ N and s ∈ [0, 1]
with 0 < |s− t| < δ, we have

‖γn(s)− γn(t)
s− t

− ~v(γn(t))‖ < ε

4 . (0.2)

Now fix some s ∈ [0, 1] with 0 < |s − t| < δ. Since the γn converge uniformly to γ and ~v is
continuous, we can find some M ≥ 1 such that for n ≥M we have

‖γn(s)− γ(s)
s− t

‖ < ε

4 and ‖γn(t)− γ(t)
s− t

‖ < ε

4 and ‖~v(γn(t))− ~v(γ(t))‖ < ε

4 . (0.3)
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Choosing some n ≥ N,M , we can plug (0.2) and (0.3) into (0.1) and deduce that

‖γ(s)− γ(t)
s− t

− ~v(γ(t))‖ < ε

4 + ε

4 + ε

4 + ε

4 = ε,

as desired.

Proof of Theorem B. Let ~v : U → Rn be a locally Lipshitz vector field on an open set U ⊂ Rn and
let γ1, γ2 : [0, ε) → U be two integral curves of ~v with γ1(0) = γ2(0). Our goal is to prove that
γ1 = γ2. Assume otherwise. Letting

S = sup{s ∈ [0, ε) | γ1 and γ2 are equal on [0, s]},

the γi are equal on [0, S] ( [0, ε). Replacing γi with the result of reparameterizing the curve
γi|[S,ε) : [S, ε)→ U so that it is defined on [0, ε−S), we can assume that γ1(0) = γ2(0) but that the
γi do not agree on any positive-length interval [0, ε′].

Set p0 = γ1(0) = γ2(0). Let L > 0 and let U ′ ⊂ U be a neighborhood of p0 such that ~v is L-Lipshitz
on U ′. Decreasing ε if necessary, we can assume that the images of the γi lie in U ′, that the γi
extend to the closed interval [0, ε], and that εL < 1. Define

R = max{‖γ1(t)− γ2(t)‖ | t ∈ [0, ε]},

and let t0 ∈ [0, ε] be such that ‖γ1(t0)− γ2(t0)‖ = R.

It follows from the fundamental theorem of calculus that for all t ∈ [0, ε), we have

γi(t) = p0 +
∫ t

0
γ′
i(s) ds = p0 +

∫ t

0
~v(γi(s)) ds .

We thus have

R = ‖γ1(t0)− γ2(t0)‖ = ‖
∫ t0

0

(
~v (γ1 (s))− ~v (γ2 (s))

)
ds ‖

≤
∫ t0

0
‖~v (γ1 (s))− ~v (γ2 (s)) ‖ ds

≤ L
∫ t0

0
‖γ1(s)− γ2(s)‖ ds

≤ t0LR.

Since t0L ≤ εL < 1, this implies that R = 0, so the γi agree on [0, ε], contrary to our assumption.
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