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Abstract

We give short, direct proofs that if G is a finite group, then the group ring C[G]
decomposes as a direct sum of dim(V ) copies of every irreducible representation V of
G and that the number of irreducible representations of G is the same as the number
of conjugacy classes of G.

Let G be a finite group. In this note, a representation of G means a finite-dimensional
complex vector space V upon which G acts linearly. The following results are two of the
early highlights of a basic treatment of representation theory:

Theorem 0.1. The group ring C[G] decomposes into a direct sum of dim(V ) copies of
every irreducible representation V of G.

Theorem 0.2. The number of irreducible representations of G equals the number of con-
jugacy classes in G.

Perhaps influenced by Serre’s book [S], most treatments of the subject derive these results
from character theory. While character theory is an essential part of the subject, I find
this unsatisfying: basic theorems about the representation theory of G should be able to be
proved using actual representations! The purpose of this note is to explain short and direct
proof of the above two theorems. Though I have not seen these proofs elsewhere, I am sure
they must be known to the experts.

The only two results I will need are Maschke’s theorem and Schur’s lemma. To assure
the reader that I am not slipping anything past them, I will start with proofs of these
results.

Theorem 0.3 (Maschke’s Theorem). Every representation of G decomposes into a direct
sum of irreducible representations.

Proof. Let V be a representation of G and let W be a subrepresentation of V . It is enough
to find another subrepresentation W ′ of V such that V = W ⊕ W ′. We can find a G-
invariant Hermitian inner product on V by averaging an arbitrary one. Once we have done
this, for W ′ we can simply take the orthogonal complement of W .

Lemma 0.4 (Schur’s Lemma). Let V and W be irreducible representations of G. Then

HomG(V,W ) =
{

0 if V is not isomorphic to W,

C if V ∼= W.

Proof. The kernel of an element of HomG(V,W ) is a subrepresentation of V , and thus by
irreducibility must either be 0 or V . Similarly, the cokernel of an element of HomG(V,W )
must either be 0 or W . We deduce that every nonzero element of HomG(V,W ) must be
an isomorphism. This implies that HomG(V,W ) = 0 if V is not isomorphic to W . To deal
with the other case, we must prove that HomG(V, V ) ∼= C. Consider f ∈ HomG(V, V ). The
linear map f must have an eigenvalue λ ∈ C. Since f − λ ∈ HomG(V, V ) has a nontrivial
kernel (namely, an eigenvector), it must be 0, so f = λ.
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Schur’s Lemma has the following consequence.

Lemma 0.5. Let V and W be representations of G. Assume that W is irreducible and that
V = V1 ⊕ · · · ⊕ Vk with each Vi irreducible. Then the dimension of HomG(V,W ) equals the
number of Vi factors that are isomorphic to W .

Proof. An element of HomG(V,W ) is determined by its restriction to each Vi, and Schur’s
Lemma implies that

HomG(Vi,W ) =
{
C if Vi ∼= W,

0 otherwise.

We now prove Theorem 0.1.

Proof of Theorem 0.1. Let V be an irreducible representation of G. Letting e ∈ G be the
identity, a G-equivariant map φ : C[G] → V is completely determined by φ(e) ∈ V , and
any vector in V occurs as φ(e) for some G-equivariant map φ : C[G] → V . It follows that
HomG(C[G], V ) is dim(V )-dimensional. The theorem now follows from Lemma 0.5.

We now turn to counting irreducible representations of G. This requires the following
lemma. Let Matk(C) be algebra of k × k complex matrices.

Lemma 0.6. Let V be a representation of G. Write

V = V ⊕k1
1 ⊕ · · · ⊕ V ⊕kn

n ,

where the Vi are mutually nonisomorphic irreducible representations of G. Then we have
an isomorphism

EndG(V ) = Matk1(C)⊕ · · · ⊕Matkn(C)

of algebras.

Proof. Schur’s lemma implies that

EndG(V ) = EndG(V ⊕k1
1 )⊕ · · · ⊕ EndG(V ⊕kn

n ),

so it is enough to prove that EndG(V ⊕ki
i ) ∼= Matki

(C) for all 1 ≤ i ≤ n. For this, observe
that

EndG(V ⊕ki
i ) ∼= Matki

(EndG(Vi)),

where the the isomorphism takes φ ∈ EndG(V ⊕ki
i ) to the matrix whose (p, q)-entry is the

composition
Vi ↪→ V ⊕ki

i
φ−→ V ⊕ki

i −→ Vi.

Here the first arrow is the inclusion of the qth factor and the third arrow is the projection
onto the pth factor. Schur’s lemma says that EndG(Vi) ∼= C, and the lemma follows.

Proof of Theorem 0.2. Let m be the number of conjugacy classes of G and let n be the
number of irreducible G-representations. We will prove that both m and n equal the
dimension of the center Z(C[G]):

• The center Z(C[G]) consists of linear combinations of elements of G whose coefficients
are constant on conjugacy classes of G. In particular, Z(C[G]) is m-dimensional.
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• By Theorem 0.1, we can write

C[G] = V ⊕k1
1 ⊕ · · · ⊕ V ⊕kn

n , (0.1)

where V1, . . . , Vn are all the irreducible G-representations and ki = dim(Vi) for 1 ≤
i ≤ n. Using Lemma 0.6, it follows that

EndG(C[G]) ∼= Matk1(C)× · · · ×Matkn(C). (0.2)

Now define an algebra homomorphism ψ : C[G]→ EndG(C[G]) via the formula

Ψ(g)(z) = zg−1 (g ∈ G, z ∈ C[G]).

We must multiply z on the right so that Ψ(g) is equivariant with respect to the
left G-action on C[G]. It is clear that Ψ is injective. Moreover, (0.1) implies that
C[G] is k2

1 + · · ·+ k2
n dimensional and (0.2) implies that EndG(C[G]) is k2

1 + · · ·+ k2
n

dimensional. We conclude that Ψ is an isomorphism. Now, the center of the algebra
of k × k complex matrices is precisely the 1-dimensional set of scalar matrices. It
follows that

dimZ (C[G]) = dim (Z (EndG (C[G])))
= dim (Z (Matk1(C))) + · · ·+ dim (Z (Matkn(C)))
= 1 + · · ·+ 1
= n,

as desired.
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