# Representation theory without character theory 

Andrew Putman


#### Abstract

We give short, direct proofs that if $G$ is a finite group, then the group ring $\mathbb{C}[G]$ decomposes as a direct sum of $\operatorname{dim}(V)$ copies of every irreducible representation $V$ of $G$ and that the number of irreducible representations of $G$ is the same as the number of conjugacy classes of $G$.


Let $G$ be a finite group. In this note, a representation of $G$ means a finite-dimensional complex vector space $V$ upon which $G$ acts linearly. The following results are two of the early highlights of a basic treatment of representation theory:

Theorem 0.1. The group ring $\mathbb{C}[G]$ decomposes into a direct sum of $\operatorname{dim}(V)$ copies of every irreducible representation $V$ of $G$.

Theorem 0.2. The number of irreducible representations of $G$ equals the number of conjugacy classes in $G$.

Perhaps influenced by Serre's book $[\mathrm{S}]$, most treatments of the subject derive these results from character theory. While character theory is an essential part of the subject, I find this unsatisfying: basic theorems about the representation theory of $G$ should be able to be proved using actual representations! The purpose of this note is to explain short and direct proof of the above two theorems. Though I have not seen these proofs elsewhere, I am sure they must be known to the experts.

The only two results I will need are Maschke's theorem and Schur's lemma. To assure the reader that I am not slipping anything past them, I will start with proofs of these results.

Theorem 0.3 (Maschke's Theorem). Every representation of $G$ decomposes into a direct sum of irreducible representations.

Proof. Let $V$ be a representation of $G$ and let $W$ be a subrepresentation of $V$. It is enough to find another subrepresentation $W^{\prime}$ of $V$ such that $V=W \oplus W^{\prime}$. We can find a $G$ invariant Hermitian inner product on $V$ by averaging an arbitrary one. Once we have done this, for $W^{\prime}$ we can simply take the orthogonal complement of $W$.

Lemma 0.4 (Schur's Lemma). Let $V$ and $W$ be irreducible representations of $G$. Then

$$
\operatorname{Hom}_{G}(V, W)= \begin{cases}0 & \text { if } V \text { is not isomorphic to } W \\ \mathbb{C} & \text { if } V \cong W .\end{cases}
$$

Proof. The kernel of an element of $\operatorname{Hom}_{G}(V, W)$ is a subrepresentation of $V$, and thus by irreducibility must either be 0 or $V$. Similarly, the cokernel of an element of $\operatorname{Hom}_{G}(V, W)$ must either be 0 or $W$. We deduce that every nonzero element of $\operatorname{Hom}_{G}(V, W)$ must be an isomorphism. This implies that $\operatorname{Hom}_{G}(V, W)=0$ if $V$ is not isomorphic to $W$. To deal with the other case, we must prove that $\operatorname{Hom}_{G}(V, V) \cong \mathbb{C}$. Consider $f \in \operatorname{Hom}_{G}(V, V)$. The linear map $f$ must have an eigenvalue $\lambda \in \mathbb{C}$. Since $f-\lambda \in \operatorname{Hom}_{G}(V, V)$ has a nontrivial kernel (namely, an eigenvector), it must be 0 , so $f=\lambda$.

Schur's Lemma has the following consequence.
Lemma 0.5. Let $V$ and $W$ be representations of $G$. Assume that $W$ is irreducible and that $V=V_{1} \oplus \cdots \oplus V_{k}$ with each $V_{i}$ irreducible. Then the dimension of $\operatorname{Hom}_{G}(V, W)$ equals the number of $V_{i}$ factors that are isomorphic to $W$.

Proof. An element of $\operatorname{Hom}_{G}(V, W)$ is determined by its restriction to each $V_{i}$, and Schur's Lemma implies that

$$
\operatorname{Hom}_{G}\left(V_{i}, W\right)= \begin{cases}\mathbb{C} & \text { if } V_{i} \cong W \\ 0 & \text { otherwise }\end{cases}
$$

We now prove Theorem 0.1.
Proof of Theorem 0.1. Let $V$ be an irreducible representation of $G$. Letting $e \in G$ be the identity, a $G$-equivariant map $\phi: \mathbb{C}[G] \rightarrow V$ is completely determined by $\phi(e) \in V$, and any vector in $V$ occurs as $\phi(e)$ for some $G$-equivariant map $\phi: \mathbb{C}[G] \rightarrow V$. It follows that $\operatorname{Hom}_{G}(\mathbb{C}[G], V)$ is $\operatorname{dim}(V)$-dimensional. The theorem now follows from Lemma 0.5.

We now turn to counting irreducible representations of $G$. This requires the following lemma. Let $\operatorname{Mat}_{k}(\mathbb{C})$ be algebra of $k \times k$ complex matrices.

Lemma 0.6. Let $V$ be a representation of $G$. Write

$$
V=V_{1}^{\oplus k_{1}} \oplus \cdots \oplus V_{n}^{\oplus k_{n}}
$$

where the $V_{i}$ are mutually nonisomorphic irreducible representations of $G$. Then we have an isomorphism

$$
\operatorname{End}_{G}(V)=\operatorname{Mat}_{k_{1}}(\mathbb{C}) \oplus \cdots \oplus \operatorname{Mat}_{k_{n}}(\mathbb{C})
$$

of algebras.
Proof. Schur's lemma implies that

$$
\operatorname{End}_{G}(V)=\operatorname{End}_{G}\left(V_{1}^{\oplus k_{1}}\right) \oplus \cdots \oplus \operatorname{End}_{G}\left(V_{n}^{\oplus k_{n}}\right),
$$

so it is enough to prove that $\operatorname{End}_{G}\left(V_{i}^{\oplus k_{i}}\right) \cong \operatorname{Mat}_{k_{i}}(\mathbb{C})$ for all $1 \leq i \leq n$. For this, observe that

$$
\operatorname{End}_{G}\left(V_{i}^{\oplus k_{i}}\right) \cong \operatorname{Mat}_{k_{i}}\left(\operatorname{End}_{G}\left(V_{i}\right)\right),
$$

where the the isomorphism takes $\phi \in \operatorname{End}_{G}\left(V_{i}^{\oplus k_{i}}\right)$ to the matrix whose $(p, q)$-entry is the composition

$$
V_{i} \hookrightarrow V_{i}^{\oplus k_{i}} \xrightarrow{\phi} V_{i}^{\oplus k_{i}} \longrightarrow V_{i} .
$$

Here the first arrow is the inclusion of the $q^{\text {th }}$ factor and the third arrow is the projection onto the $p^{\text {th }}$ factor. Schur's lemma says that $\operatorname{End}_{G}\left(V_{i}\right) \cong \mathbb{C}$, and the lemma follows.

Proof of Theorem 0.2. Let $m$ be the number of conjugacy classes of $G$ and let $n$ be the number of irreducible $G$-representations. We will prove that both $m$ and $n$ equal the dimension of the center $Z(\mathbb{C}[G])$ :

- The center $Z(\mathbb{C}[G])$ consists of linear combinations of elements of $G$ whose coefficients are constant on conjugacy classes of $G$. In particular, $Z(\mathbb{C}[G])$ is $m$-dimensional.
- By Theorem 0.1, we can write

$$
\begin{equation*}
\mathbb{C}[G]=V_{1}^{\oplus k_{1}} \oplus \cdots \oplus V_{n}^{\oplus k_{n}} \tag{0.1}
\end{equation*}
$$

where $V_{1}, \ldots, V_{n}$ are all the irreducible $G$-representations and $k_{i}=\operatorname{dim}\left(V_{i}\right)$ for $1 \leq$ $i \leq n$. Using Lemma 0.6 , it follows that

$$
\begin{equation*}
\operatorname{End}_{G}(\mathbb{C}[G]) \cong \operatorname{Mat}_{k_{1}}(\mathbb{C}) \times \cdots \times \operatorname{Mat}_{k_{n}}(\mathbb{C}) \tag{0.2}
\end{equation*}
$$

Now define an algebra homomorphism $\psi: \mathbb{C}[G] \rightarrow \operatorname{End}_{G}(\mathbb{C}[G])$ via the formula

$$
\Psi(g)(z)=z g^{-1} \quad(g \in G, z \in \mathbb{C}[G])
$$

We must multiply $z$ on the right so that $\Psi(g)$ is equivariant with respect to the left $G$-action on $\mathbb{C}[G]$. It is clear that $\Psi$ is injective. Moreover, ( 0.1 ) implies that $\mathbb{C}[G]$ is $k_{1}^{2}+\cdots+k_{n}^{2}$ dimensional and (0.2) implies that $\operatorname{End}_{G}(\mathbb{C}[G])$ is $k_{1}^{2}+\cdots+k_{n}^{2}$ dimensional. We conclude that $\Psi$ is an isomorphism. Now, the center of the algebra of $k \times k$ complex matrices is precisely the 1 -dimensional set of scalar matrices. It follows that

$$
\begin{aligned}
\operatorname{dim} Z(\mathbb{C}[G]) & =\operatorname{dim}\left(Z\left(\operatorname{End}_{G}(\mathbb{C}[G])\right)\right) \\
& =\operatorname{dim}\left(Z\left(\operatorname{Mat}_{k_{1}}(\mathbb{C})\right)\right)+\cdots+\operatorname{dim}\left(Z\left(\operatorname{Mat}_{k_{n}}(\mathbb{C})\right)\right) \\
& =1+\cdots+1 \\
& =n
\end{aligned}
$$

as desired.

Acknowledgments. I want to thank Matt Schoenbauer for some corrections.

## References

[S] J.-P. Serre, Linear representations of finite groups, translated from the second French edition by Leonard L. Scott, Springer-Verlag, New York, 1977.

Andrew Putman<br>Department of Mathematics University of Notre Dame 255 Hurley Hall Notre Dame, IN 46556<br>andyp@nd.edu

