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Abstract
We prove the Jacobson density theorem concerning simple modules over rings. This

implies, for instance, that if G is a group and V is a finite-dimensional irreducible
complex representation of G, then the natural map C[G]→ EndC(V ) is surjective.

Let R be a ring, not necessarily commutative. For a simple left R-module M , Schur’s
Lemma implies that D = EndR(M) is a division ring. In this note, we prove the following
theorem, which is known as the Jacobson Density Theorem [1].

Theorem A. Let R be a ring and let M be a simple left R-module. Set D = EndR(M).
Let x1, . . . , xn ∈ M be linearly independent over D. Then for all y1, . . . , yn ∈ M , there
exists some r ∈ R such that r · xi = yi for all 1 ≤ i ≤ n.

Here is an instructive special case. Assume that G is a group and that V is an n-
dimensional irreducible representation of G over C. Thus V is a simple left C[G]-module,
and Schur’s Lemma implies that EndC[G](V ) = C. Fixing a basis {~v1, . . . , ~vn} for V as a
complex vector space, the elements ~v1, . . . , ~vn are linearly independent over EndC[G](V ), so
Theorem A says that for all ~w1, . . . , ~wn ∈ V , there exists some ω ∈ C[G] such that ω ·~vi = ~wi
for all 1 ≤ i ≤ n. In other words, the natural map

C[G] −→ EndC(V ) ∼= Matn(C)

is surjective.

Remark. For G finite, this follows from the Wedderburn Structure Theorem, which says
that in that case C[G] is a product of matrix rings over C. For G infinite, however, no such
structure theorem is available.

Proof of Theorem A. The proof will be by induction on n. For the base case n = 1, we
have x1 6= 0 since x1 itself is linearly independent over D. Since M is simple, the R-orbit
of x1 must therefore be M , and in particular we can find some r ∈ R such that r · x1 = y1.

Assume now that n > 1 and that the theorem is true for all smaller n. Below we will
prove the following:
(†) There exist λ1, . . . , λn ∈ R such that λi · xi 6= 0 for all 1 ≤ i ≤ n and λi · xj = 0 for

all distinct 1 ≤ i, j ≤ n.
Before we do this, we explain why it implies the theorem. By the base case n = 1, for
1 ≤ i ≤ n we can find some ri ∈ R such that riλi · xi = yi. Setting

r = r1λ1 + · · ·+ rnλn ∈ R,

for 1 ≤ i ≤ n we then have

r · xi = (r1λ1 + · · ·+ rnλn) · xi = riλi · xi = yi,

as desired.
It remains to prove (†). To keep the notation from getting out of hand, we will show

how to construct λn. Assume to the contrary that the desired λn does not exist. What this
means is that
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(††) if λ ∈ R satisfies λ · xi = 0 for 1 ≤ i ≤ n− 1, then λ · xn = 0.
We now define an R-linear map φ : Mn−1 →M as follows. Consider (z1, . . . , zn−1) ∈Mn−1.
By our inductive hypothesis, there exists some a ∈ R such that a ·xi = zi for 1 ≤ i ≤ n− 1.
We then define

φ(z1, . . . , zn−1) = a · xn.

Of course, this depends a priori on the choice of a, but if a′ ∈ R also satisfies a′ · xi = zi for
1 ≤ i ≤ n− 1, then (a− a′) · xi = 0 for 1 ≤ i ≤ n− 1, so (††) implies that (a− a′) · xn = 0,
and thus a · xn = a′ · xn. It follows that φ is well-defined.

For 1 ≤ i ≤ n− 1, define ζi ∈ EndR(M) to be the composition

M ↪→Mn−1 φ→M,

where the first inclusion is the inclusion into the ith factor. For z1, . . . , zn−1 ∈ M , we thus
have

φ(z1, . . . , zn−1) = ζ1 · z1 + · · ·+ ζn−1 · zn−1.

In particular, we have

xn = 1 · xn = φ(x1, . . . , xn−1) = ζ1 · x1 + · · ·+ ζn−1 · zn−1.

This contradicts the fact that the xi are linearly independent over D = EndR(M). It follows
that our assumption that λn does not exist is false, so it exists.
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