The isoperimetric inequality in the plane

Andrew Putman

Let γ be a simple closed curve in \mathbb{R}^{2}. Choose a parameterization $f:[0,1] \rightarrow$ \mathbb{R}^{2} of γ and define

$$
\begin{equation*}
\operatorname{length}(\gamma)=\sup _{0=t_{0}<t_{1}<\cdots<t_{k}=1} \sum_{i=1}^{k} d_{\mathbb{R}^{2}}\left(f\left(t_{i-1}\right), f\left(t_{i}\right)\right) \in \mathbb{R} \cup\{\infty\} ; \tag{0.1}
\end{equation*}
$$

here the supremum is taken over all partitions of $[0,1]$. This does not depend on the choice of parameterization. By the Jordan curve theorem, the simple closed curve γ encloses a bounded region in \mathbb{R}^{2}; define area (γ) to be the Lebesgue measure of this bounded region. The classical isoperimetric inequality is as follows.

Isoperimetric Inequality. If γ is a simple closed curve in \mathbb{R}^{2}, then area $(\gamma) \leq$ $\frac{1}{4 \pi}$ length $(\gamma)^{2}$ with equality if and only if γ is a round circle.

This inequality was stated by Greeks but was first rigorously proved by Weierstrass in the $19^{\text {th }}$ century. In this note, we will give a simple and elementary proof based on geometric ideas of Steiner. For a discussion of the history of the isoperimetric inequality and a sample of the enormous number of known proofs of it, see [1] and [3].

Our proof will require three lemmas. The first is a sort of "discrete" version of the isoperimetric inequality. A polygon in \mathbb{R}^{2} is cyclic if it can be inscribed in a circle.

Lemma 1. Let P be a noncyclic polygon in \mathbb{R}^{2}. Then there exists a cyclic polygon P^{\prime} in \mathbb{R}^{2} with the same cyclically ordered side lengths as P satisfying $\operatorname{area}(P)<\operatorname{area}\left(P^{\prime}\right)$.

Proof. All triangles are cyclic, so P has at least 4 sides. The set of all polygons in \mathbb{R}^{2} with the same cyclically ordered side lengths as P and with one vertex at the origin is compact. It follows that there exists a polygon P^{\prime} in \mathbb{R}^{2} with the same cyclically ordered side lengths as P whose area is maximal among all such polygons. We will prove that P^{\prime} is cyclic. It is clear that P^{\prime} is convex. There are now two cases.

Case 1. The polygon P has 4 sides.
We remark that this case could be deduced immediately from Bretschneider's formula for the area of a convex quadrilateral (see [2]), but we will give a self-contained proof.

Let a, b, c, and d be the side lengths of P (cyclically ordered). Consider a convex polygon Q with the same cyclically ordered side lengths as P. Let

Figure 1: The quadrilateral Q in Step 1 of the proof of Lemma 1.
q_{1}, \ldots, q_{4} be the vertices and let θ_{1} and θ_{2} be the angles labeled in Figure 1. Since any three non-colinear points determine a circle, there are circles containing $\left\{q_{1}, q_{2}, q_{4}\right\}$ and $\left\{q_{2}, q_{3}, q_{4}\right\}$. These circles will be the same (and hence Q will be cyclic) exactly when $\theta_{1}+\theta_{2}=\pi$.

It is clear that the isometry class of Q is determined by θ_{1} and θ_{2}. However, not all pairs of angles are possible; indeed, computing the length of the diagonal from q_{2} to q_{4} using the law of cosines in two ways, we see that

$$
\begin{equation*}
a^{2}+b^{2}-2 a b \cos \left(\theta_{1}\right)=c^{2}+d^{2}-2 c d \cos \left(\theta_{2}\right) . \tag{0.2}
\end{equation*}
$$

Conversely, any angles θ_{1} and θ_{2} satisfying (0.2) and $0 \leq \theta_{1}, \theta_{2} \leq \pi$ can be realized by some convex polygon as above. The area of Q is $\frac{1}{2} a b \sin \left(\theta_{1}\right)+$ $\frac{1}{2} c d \sin \left(\theta_{2}\right)$. Letting $f\left(\theta_{1}, \theta_{2}\right)=a b \sin \left(\theta_{1}\right)+c d \sin \left(\theta_{2}\right)$ and $g\left(\theta_{1}, \theta_{2}\right)=a^{2}+b^{2}-$ $2 a b \cos \left(\theta_{1}\right)-c^{2}-d^{2}+2 c d \cos \left(\theta_{2}\right)$, our goal therefore is to show that among all angles satisfying $0 \leq \theta_{1}, \theta_{2} \leq \pi$ and $g\left(\theta_{1}, \theta_{2}\right)=0$, the function $f\left(\theta_{1}, \theta_{2}\right)$ is maximized when $\theta_{1}+\theta_{2}=\pi$.

It is clear that this maximum will occur when $0<\theta_{1}, \theta_{2}<\pi$, so using Lagrange multipliers we see that at this maximum, there will exist some $\lambda \in \mathbb{R}$ such that $\nabla f=\lambda \nabla g$, i.e. such that

$$
a b \cos \left(\theta_{1}\right)=2 a b \lambda \sin \left(\theta_{1}\right) \quad \text { and } \quad c d \cos \left(\theta_{2}\right)=-2 c d \lambda \sin \left(\theta_{2}\right) .
$$

Since $0<\theta_{1}, \theta_{2}<\pi$, we have $\sin \left(\theta_{1}\right) \neq 0$ and $\sin \left(\theta_{2}\right) \neq 0$, so we can manipulate the above formulas and see that $\cot \left(\theta_{1}\right)=-\cot \left(\theta_{2}\right)$. This implies that $\theta_{1}+\theta_{2}=$ π, as desired.
Case 2. The polygon P has more than 4 sides.
Assume that P^{\prime} is not cyclic. This implies that there exist four vertices q_{1}, \ldots, q_{4} of P^{\prime} that do not lie on a circle. Let Q be the quadrilateral with these four vertices. Using Case 1, there exist a cyclic quadrilateral Q^{\prime} with the same side lengths as Q but with area $(Q)<\operatorname{area}\left(Q^{\prime}\right)$. Let X_{1}, \ldots, X_{4} be the components of $P^{\prime} \backslash Q$ adjacent to the four sides of of Q (possibly some of the X_{i} are empty), so area $\left(P^{\prime}\right)=\operatorname{area}(Q)+\operatorname{area}\left(X_{1}\right)+\cdots+\operatorname{area}\left(X_{4}\right)$. As is shown in Figure 2, we can attach the X_{i} to Q^{\prime} to form a polygon $P^{\prime \prime}$ whose cyclically ordered side lengths are the same as those of P^{\prime} but whose area equals $\operatorname{area}\left(Q^{\prime}\right)+\operatorname{area}\left(X_{1}\right)+\cdots+\operatorname{area}\left(X_{4}\right)$. But this implies that area $\left(P^{\prime \prime}\right)>\operatorname{area}\left(P^{\prime}\right)$, contradicting the maximality of the area of P^{\prime}.

Figure 2: Changing the quadrilateral Q in P to Q^{\prime} (without changing the side lengths of P) increases the area since area $(Q)<\operatorname{area}\left(Q^{\prime}\right)$ but the four pieces X_{1}, \ldots, X_{4} making up the rest of P just are rotated without their area changing.

For the second lemma, say that a simple closed curve in \mathbb{R}^{2} is convex if it encloses a convex region.
Lemma 2. Let γ be a simple closed curve in \mathbb{R}^{2} and let γ^{\prime} be the boundary of the convex hull of the closed region enclosed by γ. Then γ^{\prime} is a convex simple closed curve satisfying length $\left(\gamma^{\prime}\right) \leq$ length (γ).
Proof. Parameterize γ as $f:[0,1] \rightarrow \mathbb{R}^{2}$ and define $\Lambda=f^{-1}\left(\gamma \cap \gamma^{\prime}\right)$. Choose f such that $f(0) \in \gamma^{\prime}$, and hence $0,1 \in \Lambda$. The set Λ is nonempty and closed, so its complement consists of at most countably many disjoint open intervals $\left\{I_{\alpha}\right\}_{\alpha \in A}$. For $\alpha \in A$, write $\partial I_{\alpha}=\left\{x_{\alpha}, y_{\alpha}\right\} \subset \Lambda$ with $x_{\alpha}<y_{\alpha}$. Define $f^{\prime}:[0,1] \rightarrow \mathbb{R}^{2}$ to equal f on Λ and to parameterize a straight line from $f\left(x_{\alpha}\right)$ to $f\left(y_{\alpha}\right)$ on I_{α} for all $\alpha \in A$. The function f is then a parameterization of γ^{\prime}. Let \mathcal{P} be the set of all partitions of $[0,1]$. For $P \in \mathcal{P}$ written as $0=t_{0}<t_{1}<\cdots<t_{k}=1$, define

$$
\ell(f, P)=\sum_{i=1}^{k} d_{\mathbb{R}^{2}}\left(f\left(t_{i-1}\right), f\left(t_{i}\right)\right) \quad \text { and } \quad \ell\left(f^{\prime}, P\right)=\sum_{i=1}^{k} d_{\mathbb{R}^{2}}\left(f^{\prime}\left(t_{i-1}\right), f^{\prime}\left(t_{i}\right)\right)
$$

Our goal is to show that $\sup _{P \in \mathcal{P}} \ell\left(f^{\prime}, P\right) \leq \sup _{P \in \mathcal{P}} \ell(f, P)$.
Define \mathcal{P}_{1} to be the set of partitions P of $[0,1]$ such that if a point of I_{α} appears in P for some $\alpha \in A$, then both x_{α} and y_{α} appear in P. Since every partition can be refined to a partition in \mathcal{P}_{1}, we have

$$
\begin{equation*}
\sup _{P \in \mathcal{P}} \ell\left(f^{\prime}, P\right)=\sup _{P \in \mathcal{P}_{1}} \ell\left(f^{\prime}, P\right) . \tag{0.3}
\end{equation*}
$$

Next, define \mathcal{P}_{2} to be the set of partitions P of $[0,1]$ that contain no points of I_{α} for any $\alpha \in A$. For $P \in \mathcal{P}_{1}$, define $\widehat{P} \in \mathcal{P}_{2}$ to be the result of deleting all points that lie in I_{α} for some $\alpha \in A$. The key observation is that

$$
\ell\left(f^{\prime}, P\right)=\ell\left(f^{\prime}, \widehat{P}\right)=\ell(f, \widehat{P}) \quad\left(P \in \mathcal{P}_{1}\right)
$$

This implies that

$$
\begin{equation*}
\sup _{P \in \mathcal{P}_{1}} \ell\left(f^{\prime}, P\right)=\sup _{P \in \mathcal{P}_{2}} \ell\left(f^{\prime}, P\right)=\sup _{P \in \mathcal{P}_{2}} \ell(f, P) \leq \sup _{P \in \mathcal{P}} \ell(f, P) \tag{0.4}
\end{equation*}
$$

Combining (0.3) and (0.4), the lemma follows.
Lemma 3. Let γ be a convex simple closed curve in \mathbb{R}^{2}. Then for all $\epsilon>0$, there exists a polygon P inscribed in γ satisfying $\operatorname{area}(P)>\operatorname{area}(\gamma)-\epsilon$.

Proof. Translating γ, we can assume that 0 lies in its interior. For $0<\delta<1$, define $\gamma_{\delta}=\{\delta \cdot x \mid x \in \gamma\}$. Then γ_{δ} is a convex simple closed curve contained in the interior of the region bounded by γ satisfying

$$
\operatorname{area}\left(\gamma_{\delta}\right)=\delta^{2} \cdot \operatorname{area}(\gamma)
$$

Choose δ sufficiently close to 1 such that area $\left(\gamma_{\delta}\right)>\operatorname{area}(\gamma)-\epsilon$. We can then find a polygon P inscribed in γ such that γ_{δ} lies in the interior of P, and hence $\operatorname{area}(P)>\operatorname{area}\left(\gamma_{\delta}\right)>\operatorname{area}(\gamma)-\epsilon$.

Proof of the isoperimetric inequality. The theorem is trivial if length $(\gamma)=\infty$, so assume without loss of generality that length $(\gamma)<\infty$. Assume first that γ is not convex. Let γ^{\prime} be the boundary of the convex hull of the region bounded by γ. Lemma 2 says that length $\left(\gamma^{\prime}\right) \leq \operatorname{length}(\gamma)$, and it is clear that $\operatorname{area}\left(\gamma^{\prime}\right)>\operatorname{area}(\gamma)$. It is therefore enough to prove the theorem for γ^{\prime}. Replacing γ with γ^{\prime}, we can therefore assume that γ is convex.

Fix some $\epsilon>0$. Use Lemma 3 to find a polygon P inscribed in γ such that area $(P)>\operatorname{area}(\gamma)-\epsilon$. Since P is inscribed in γ, we have length $(P) \leq$ length (γ). Lemma 1 ensures that there exists a cyclic polygon P^{\prime} with the same cyclically ordered side lengths as P satisfying area $\left(P^{\prime}\right) \geq \operatorname{area}(P)$. Let C be the circle in which P^{\prime} is inscribed. Since P^{\prime} is inscribed in C, we have $\operatorname{area}\left(P^{\prime}\right)<\operatorname{area}(C)$. Adding more vertices to P, we can ensure that length $\left(P^{\prime}\right)>$ length $(C)-\epsilon$. We now combine all of the our estimates to deduce that

$$
\begin{aligned}
\operatorname{area}(\gamma) & <\operatorname{area}(P)+\epsilon \leq \operatorname{area}\left(P^{\prime}\right)+\epsilon<\operatorname{area}(C)+\epsilon \\
& =\frac{1}{4 \pi} \operatorname{length}(C)^{2}+\epsilon<\frac{1}{4 \pi}\left(\operatorname{length}\left(P^{\prime}\right)+\epsilon\right)^{2}+\epsilon \\
& =\frac{1}{4 \pi}(\operatorname{length}(P)+\epsilon)^{2}+\epsilon \leq \frac{1}{4 \pi}(\operatorname{length}(\gamma)+\epsilon)^{2}+\epsilon
\end{aligned}
$$

Since area $(\gamma)<\frac{1}{4 \pi}(\text { length }(\gamma)+\epsilon)^{2}+\epsilon$ for all $\epsilon>0$, we conclude that area $(\gamma) \leq$ $\frac{1}{4 \pi}$ length (γ), as desired.

To finish the proof, we must show that $\operatorname{area}(\gamma)<\frac{1}{4 \pi}$ length (γ) when γ (still assumed to be convex) is not a round circle. Since γ is not a round circle, we can find four points $q_{1}, \ldots, q_{4} \in \gamma$ that do not lie on a circle. Let Q be the quadrilateral inscribed in γ with the vertices q_{1}, \ldots, q_{4}. By Lemma 1 , we can find a cyclic quadrilateral Q^{\prime} with the same side lengths as Q but with

Figure 3: Just like in the second step of the proof of Lemma 1, we change Q to Q^{\prime} without changing the length of γ; each of the four shaded regions is merely rotated and glued onto Q^{\prime}.
$\operatorname{area}\left(Q^{\prime}\right)>\operatorname{area}(Q)$. Just like in Case 2 of the proof of Lemma 1, we can use Q^{\prime} to find a simple closed curve γ^{\prime} with length $\left(\gamma^{\prime}\right)=\operatorname{length}(\gamma)$ but with $\operatorname{area}\left(\gamma^{\prime}\right)>\operatorname{area}(\gamma)$ (see Figure 3). This implies that

$$
\operatorname{area}(\gamma)<\operatorname{area}\left(\gamma^{\prime}\right) \leq \frac{1}{4 \pi} \operatorname{length}\left(\gamma^{\prime}\right)^{2}=\frac{1}{4} \text { length }(\gamma)^{2}
$$

as desired.

References

[1] V. Blåsjö, The isoperimetric problem, Amer. Math. Monthly 112 (2005), no. 6, 526-566.
[2] J. L. Coolidge, Questions, Discussions, and Notes: A Historically Interesting Formula for the Area of a Quadrilateral, Amer. Math. Monthly 46 (1939), no. 6, 345-347.
[3] A. Treibergs, Inequalities that imply the isoperimetric inequality, notes available at http://www.math.utah.edu/~treiberg/isoperim/isop.pdf.

Andrew Putman
Department of Mathematics Rice University, MS 136
6100 Main St.
Houston, TX 77005
andyp@math.rice.edu

