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Let γ be a simple closed curve in R2. Choose a parameterization f : [0, 1] →
R2 of γ and define

length(γ) = sup
0=t0<t1<···<tk=1

k∑
i=1

dR2(f(ti−1), f(ti)) ∈ R ∪ {∞}; (0.1)

here the supremum is taken over all partitions of [0, 1]. This does not depend on
the choice of parameterization. By the Jordan curve theorem, the simple closed
curve γ encloses a bounded region in R2; define area(γ) to be the Lebesgue
measure of this bounded region. The classical isoperimetric inequality is as
follows.

Isoperimetric Inequality. If γ is a simple closed curve in R2, then area(γ) ≤
1

4π
length(γ)2 with equality if and only if γ is a round circle.

This inequality was stated by Greeks but was first rigorously proved by Weier-
strass in the 19th century. In this note, we will give a simple and elementary
proof based on geometric ideas of Steiner. For a discussion of the history of
the isoperimetric inequality and a sample of the enormous number of known
proofs of it, see [1] and [3].

Our proof will require three lemmas. The first is a sort of “discrete” version
of the isoperimetric inequality. A polygon in R2 is cyclic if it can be inscribed
in a circle.

Lemma 1. Let P be a noncyclic polygon in R2. Then there exists a cyclic
polygon P ′ in R2 with the same cyclically ordered side lengths as P satisfying
area(P ) < area(P ′).

Proof. All triangles are cyclic, so P has at least 4 sides. The set of all polygons
in R2 with the same cyclically ordered side lengths as P and with one vertex
at the origin is compact. It follows that there exists a polygon P ′ in R2 with
the same cyclically ordered side lengths as P whose area is maximal among
all such polygons. We will prove that P ′ is cyclic. It is clear that P ′ is convex.
There are now two cases.

Case 1. The polygon P has 4 sides.

We remark that this case could be deduced immediately from Bretschnei-
der’s formula for the area of a convex quadrilateral (see [2]), but we will give
a self-contained proof.

Let a, b, c, and d be the side lengths of P (cyclically ordered). Consider
a convex polygon Q with the same cyclically ordered side lengths as P . Let
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Figure 1: The quadrilateral Q in Step 1 of the proof of Lemma 1.

q1, . . . , q4 be the vertices and let θ1 and θ2 be the angles labeled in Figure
1. Since any three non-colinear points determine a circle, there are circles
containing {q1, q2, q4} and {q2, q3, q4}. These circles will be the same (and
hence Q will be cyclic) exactly when θ1 + θ2 = π.

It is clear that the isometry class of Q is determined by θ1 and θ2. However,
not all pairs of angles are possible; indeed, computing the length of the diagonal
from q2 to q4 using the law of cosines in two ways, we see that

a2 + b2 − 2ab cos(θ1) = c2 + d2 − 2cd cos(θ2). (0.2)

Conversely, any angles θ1 and θ2 satisfying (0.2) and 0 ≤ θ1, θ2 ≤ π can be
realized by some convex polygon as above. The area of Q is 1

2ab sin(θ1) +
1
2cd sin(θ2). Letting f(θ1, θ2) = ab sin(θ1) + cd sin(θ2) and g(θ1, θ2) = a2 + b2 −
2ab cos(θ1) − c2 − d2 + 2cd cos(θ2), our goal therefore is to show that among
all angles satisfying 0 ≤ θ1, θ2 ≤ π and g(θ1, θ2) = 0, the function f(θ1, θ2) is
maximized when θ1 + θ2 = π.

It is clear that this maximum will occur when 0 < θ1, θ2 < π, so using
Lagrange multipliers we see that at this maximum, there will exist some λ ∈ R
such that ∇f = λ∇g, i.e. such that

ab cos(θ1) = 2abλ sin(θ1) and cd cos(θ2) = −2cdλ sin(θ2).

Since 0 < θ1, θ2 < π, we have sin(θ1) ̸= 0 and sin(θ2) ̸= 0, so we can manipulate
the above formulas and see that cot(θ1) = − cot(θ2). This implies that θ1+θ2 =
π, as desired.

Case 2. The polygon P has more than 4 sides.

Assume that P ′ is not cyclic. This implies that there exist four vertices
q1, . . . , q4 of P ′ that do not lie on a circle. Let Q be the quadrilateral with
these four vertices. Using Case 1, there exist a cyclic quadrilateral Q′ with
the same side lengths as Q but with area(Q) < area(Q′). Let X1, . . . , X4 be
the components of P ′ \ Q adjacent to the four sides of of Q (possibly some of
the Xi are empty), so area(P ′) = area(Q) + area(X1) + · · · + area(X4). As is
shown in Figure 2, we can attach the Xi to Q′ to form a polygon P ′′ whose
cyclically ordered side lengths are the same as those of P ′ but whose area equals
area(Q′)+area(X1)+· · ·+area(X4). But this implies that area(P ′′) > area(P ′),
contradicting the maximality of the area of P ′.
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Figure 2: Changing the quadrilateral Q in P to Q′ (without changing the side
lengths of P ) increases the area since area(Q) < area(Q′) but the four pieces
X1, . . . , X4 making up the rest of P just are rotated without their area changing.

For the second lemma, say that a simple closed curve in R2 is convex if it
encloses a convex region.

Lemma 2. Let γ be a simple closed curve in R2 and let γ′ be the boundary of
the convex hull of the closed region enclosed by γ. Then γ′ is a convex simple
closed curve satisfying length(γ′) ≤ length(γ).

Proof. Parameterize γ as f : [0, 1] → R2 and define Λ = f−1(γ ∩ γ′). Choose
f such that f(0) ∈ γ′, and hence 0, 1 ∈ Λ. The set Λ is nonempty and
closed, so its complement consists of at most countably many disjoint open
intervals {Iα}α∈A. For α ∈ A, write ∂Iα = {xα, yα} ⊂ Λ with xα < yα. Define
f ′ : [0, 1] → R2 to equal f on Λ and to parameterize a straight line from
f(xα) to f(yα) on Iα for all α ∈ A. The function f is then a parameterization
of γ′. Let P be the set of all partitions of [0, 1]. For P ∈ P written as
0 = t0 < t1 < · · · < tk = 1, define

ℓ(f, P ) =
k∑

i=1
dR2(f(ti−1), f(ti)) and ℓ(f ′, P ) =

k∑
i=1

dR2(f ′(ti−1), f ′(ti)).

Our goal is to show that supP ∈P ℓ(f ′, P ) ≤ supP ∈P ℓ(f, P ).
Define P1 to be the set of partitions P of [0, 1] such that if a point of Iα

appears in P for some α ∈ A, then both xα and yα appear in P . Since every
partition can be refined to a partition in P1, we have

sup
P ∈P

ℓ(f ′, P ) = sup
P ∈P1

ℓ(f ′, P ). (0.3)

Next, define P2 to be the set of partitions P of [0, 1] that contain no points of
Iα for any α ∈ A. For P ∈ P1, define P̂ ∈ P2 to be the result of deleting all
points that lie in Iα for some α ∈ A. The key observation is that

ℓ(f ′, P ) = ℓ(f ′, P̂ ) = ℓ(f, P̂ ) (P ∈ P1).
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This implies that

sup
P ∈P1

ℓ(f ′, P ) = sup
P ∈P2

ℓ(f ′, P ) = sup
P ∈P2

ℓ(f, P ) ≤ sup
P ∈P

ℓ(f, P ). (0.4)

Combining (0.3) and (0.4), the lemma follows.

Lemma 3. Let γ be a convex simple closed curve in R2. Then for all ϵ > 0,
there exists a polygon P inscribed in γ satisfying area(P ) > area(γ) − ϵ.

Proof. Translating γ, we can assume that 0 lies in its interior. For 0 < δ < 1,
define γδ = {δ · x | x ∈ γ}. Then γδ is a convex simple closed curve contained
in the interior of the region bounded by γ satisfying

area(γδ) = δ2 · area(γ).

Choose δ sufficiently close to 1 such that area(γδ) > area(γ) − ϵ. We can then
find a polygon P inscribed in γ such that γδ lies in the interior of P , and hence
area(P ) > area(γδ) > area(γ) − ϵ.

Proof of the isoperimetric inequality. The theorem is trivial if length(γ) = ∞,
so assume without loss of generality that length(γ) < ∞. Assume first that
γ is not convex. Let γ′ be the boundary of the convex hull of the region
bounded by γ. Lemma 2 says that length(γ′) ≤ length(γ), and it is clear
that area(γ′) > area(γ). It is therefore enough to prove the theorem for γ′.
Replacing γ with γ′, we can therefore assume that γ is convex.

Fix some ϵ > 0. Use Lemma 3 to find a polygon P inscribed in γ such
that area(P ) > area(γ) − ϵ. Since P is inscribed in γ, we have length(P ) ≤
length(γ). Lemma 1 ensures that there exists a cyclic polygon P ′ with the
same cyclically ordered side lengths as P satisfying area(P ′) ≥ area(P ). Let
C be the circle in which P ′ is inscribed. Since P ′ is inscribed in C, we
have area(P ′) < area(C). Adding more vertices to P , we can ensure that
length(P ′) > length(C) − ϵ. We now combine all of the our estimates to
deduce that

area(γ) < area(P ) + ϵ ≤ area(P ′) + ϵ < area(C) + ϵ

= 1
4π

length(C)2 + ϵ <
1

4π
(length(P ′) + ϵ)2 + ϵ

= 1
4π

(length(P ) + ϵ)2 + ϵ ≤ 1
4π

(length(γ) + ϵ)2 + ϵ.

Since area(γ) < 1
4π

(length(γ)+ϵ)2 +ϵ for all ϵ > 0, we conclude that area(γ) ≤
1

4π
length(γ), as desired.
To finish the proof, we must show that area(γ) < 1

4π
length(γ) when γ

(still assumed to be convex) is not a round circle. Since γ is not a round circle,
we can find four points q1, . . . , q4 ∈ γ that do not lie on a circle. Let Q be
the quadrilateral inscribed in γ with the vertices q1, . . . , q4. By Lemma 1, we
can find a cyclic quadrilateral Q′ with the same side lengths as Q but with
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Q'

Figure 3: Just like in the second step of the proof of Lemma 1, we change Q to Q′

without changing the length of γ; each of the four shaded regions is merely rotated
and glued onto Q′.

area(Q′) > area(Q). Just like in Case 2 of the proof of Lemma 1, we can
use Q′ to find a simple closed curve γ′ with length(γ′) = length(γ) but with
area(γ′) > area(γ) (see Figure 3). This implies that

area(γ) < area(γ′) ≤ 1
4π

length(γ′)2 = 1
4

length(γ)2,

as desired.
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