Hopf's theorem via geometry

Andrew Putman

Abstract

We show that elementary ideas about bordism allow a simple and natural proof of Hopf's theorem in group homology.

Let G be a group. Recall that the homology groups of G are defined to be those of an Eilenberg-MacLane space for G. The following theorem of Hopf is perhaps the first nontrivial theorem about group homology. Write $G=F / R$, where F is a free group.
Theorem 0.1 (Hopf, $[\mathrm{H}]) . \mathrm{H}_{2}(G) \cong \frac{R \cap[F, F]}{[F, R]}$.
There are now many proofs of this theorem, perhaps the most efficient of which derives it from the five-term exact sequence in group homology associated to the short exact sequence

$$
1 \longrightarrow R \longrightarrow F \longrightarrow G \longrightarrow 1,
$$

which itself is probably most naturally derived from the Hochschild-Serre spectral sequence. See [B] for more details. The purpose of this note is to explain a proof of Theorem 0.1 using elementary ideas about bordism which is longer than these more abstract proofs, but that I think sheds light on its geometric meaning.

Constructing a homomorphism, I. We begin by constructing a homomorphism

$$
\phi: R \cap[F, F] \longrightarrow \mathrm{H}_{2}(G)
$$

Let $B G$ be a fixed Eilenberg-MacLane space for G. For $w \in F$, let $\bar{w} \in G$ be the associated element of G. Consider $r \in R \cap[F, F]$. Since $r \in[F, F]$, we can write

$$
\begin{equation*}
r=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right] \quad\left(a_{1}, b_{1}, \ldots, a_{g}, b_{g} \in F\right) . \tag{0.1}
\end{equation*}
$$

The element r is a relation for G, so

$$
\left[\bar{a}_{1}, \bar{b}_{1}\right] \cdots\left[\bar{a}_{g}, \bar{b}_{g}\right]=1
$$

In other words, we have a surface relation inside G. Let Σ_{g} denote a closed oriented genus g surface and let $\left\{\alpha_{1}, \beta_{1}, \ldots, \alpha_{g}, \beta_{g}\right\}$ denote the usual generators for $\pi_{1}\left(\Sigma_{g}\right)$, so

$$
\left[\alpha_{1}, \beta_{1}\right] \cdots\left[\alpha_{g}, \beta_{g}\right]=1
$$

We thus have a homomorphism $\pi_{1}\left(\Sigma_{g}\right) \rightarrow G$ taking α_{i} and β_{i} to \bar{a}_{i} and \bar{b}_{i}. Since Σ_{g} is itself an Eilenberg-MacLane space, this homomorphism is induced by a based map $f: \Sigma_{g} \rightarrow B G$ that is unique up to based homotopy. The surface Σ_{g} has a fundamental class $\left[\Sigma_{g}\right] \in$ $\mathrm{H}_{2}\left(\Sigma_{g}\right) \cong \mathbb{Z}$, and we define $\phi(r)=f\left(\left[\Sigma_{g}\right]\right) \in \mathrm{H}_{2}(G)$. Of course, this appears to depend on the choice of expression (0.1) for r. However, we have the following claim:

Claim 1. $\phi(r)$ does not depend on the choice of expression (0.1) and the map $\phi: F \cap$ $[R, R] \rightarrow \mathrm{H}_{2}(G)$ is a homomorphism.

Figure 1: There is g genus to the right of the curve and g^{\prime} genus to the left. The indicated curve maps to the element $\bar{r}=1$ of $\pi_{1}(B G)=G$, so it extends to a map of a disc. We can thus extend it over a disc and separate the two parts into maps from Σ_{g} and $\Sigma_{g^{\prime}}$ to $B G$, showing that the map from the left hand side surface $\Sigma_{g+g^{\prime}}$ takes the fundamental class to the sum of the images of the fundamental classes of the Σ_{g} and $\Sigma_{g^{\prime}}$ on the right hand side.

Proof of claim. For the moment, just regard ϕ as a function taking an expression like (0.1) to an element of $\mathrm{H}_{2}(G)$ and write

$$
\phi\left(r=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\right) \in \mathrm{H}_{2}(G) .
$$

If

$$
r=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right] \quad \text { and } \quad r^{\prime}=\left[a_{1}^{\prime}, b_{1}^{\prime}\right] \cdots\left[a_{g^{\prime}}^{\prime}, b_{g^{\prime}}^{\prime}\right]
$$

are expressions for elements $r, r^{\prime} \in R \cap[F, F]$, then as shown in Figure 1 we have

$$
\begin{aligned}
& \phi\left(r r^{\prime}=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\left[a_{1}^{\prime}, b_{1}^{\prime}\right] \cdots\left[a_{g^{\prime}}^{\prime}, b_{g^{\prime}}^{\prime}\right]\right) \\
& \quad=\phi\left(r=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\right)+\phi\left(r^{\prime}=\left[a_{1}^{\prime}, b_{1}^{\prime}\right] \cdots\left[a_{g^{\prime}}^{\prime}, b_{g^{\prime}}^{\prime}\right]\right) .
\end{aligned}
$$

The fact that ϕ is a homomorphism will thus follow once we know that ϕ is well-defined. Now consider two different expressions

$$
r=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right] \quad \text { and } \quad r=\left[a_{1}^{\prime}, b_{1}^{\prime}\right] \cdots\left[a_{g^{\prime}}^{\prime}, b_{g^{\prime}}^{\prime}\right]
$$

for the same element $r \in R \cap[F, F]$. We thus have an identity

$$
\begin{equation*}
1=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\left[b_{g^{\prime}}^{\prime}, a_{g^{\prime}}^{\prime}\right] \cdots\left[b_{1}^{\prime}, a_{1}^{\prime}\right] \tag{0.2}
\end{equation*}
$$

in the free group F. The map $\Sigma_{g+g^{\prime}} \rightarrow B G$ associated to (0.2) factors through $B F$, and since $\mathrm{H}_{2}(B F)=0$ we deduce that

$$
\phi\left(1=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\left[b_{g^{\prime}}^{\prime}, a_{g^{\prime}}^{\prime}\right] \cdots\left[b_{1}^{\prime}, a_{1}^{\prime}\right]\right)=0 \in \mathrm{H}_{2}(B G) .
$$

Since this expression also equals

$$
\begin{aligned}
\phi(r & \left.=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\right)+\phi\left(r^{-1}=\left[b_{g^{\prime}}^{\prime}, a_{g^{\prime}}^{\prime}\right] \cdots\left[b_{1}^{\prime}, a_{1}^{\prime}\right]\right) \\
& =\phi\left(r=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\right)-\phi\left(r=\left[a_{1}^{\prime}, b_{1}^{\prime}\right] \cdots\left[b_{g^{\prime}}^{\prime}, a_{g^{\prime}}^{\prime}\right]\right),
\end{aligned}
$$

we conclude that

$$
\phi\left(r=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\right)=\phi\left(r=\left[a_{1}^{\prime}, b_{1}^{\prime}\right] \cdots\left[b_{g^{\prime}}^{\prime}, a_{g^{\prime}}^{\prime}\right]\right),
$$

as desired.

Figure 2: The curve α_{1} is drawn on the right. The $f: \Sigma_{1} \rightarrow B G$ extends over a disc as shown, so we can fill it in and then separate it to form a 2-sphere mapping into $B G$.

Constructing the homomorphism, II. Define

$$
\mathcal{H}(F, R)=\frac{R \cap[F, F]}{[F, R]} .
$$

Our next goal is to prove the following:
Claim 2. $\phi: R \cap[F, F] \rightarrow \mathrm{H}_{2}(G)$ factors through a homomorphism $\psi: \mathcal{H}(F, R) \rightarrow \mathrm{H}_{2}(G)$.
Proof of claim. Consider $r \in R$ and $w \in F$, so $[r, w]$ is a generator for $[F, R]$. We must show that $\phi(r)=0$. The map $f: \Sigma_{1} \rightarrow B G$ associated to r takes $\alpha_{1}, \beta_{1} \in \pi_{1}\left(\Sigma_{1}\right)$ to $\bar{r}=1 \in G$ and $\bar{w} \in G$. As is shown in Figure 2, we can extend f over a disc bounding α_{1} and get a map from a 2 -sphere to $B G$, which is nullhomotopic since $B G$ is aspherical. This implies that f extends over a solid torus, and thus that $\phi(r)=f\left(\left[\Sigma_{1}\right]\right)=0$.

Notation 0.2. For $r \in R \cap[F, F]$, we will write $[r]$ for the associated element of $\mathcal{H}(F, R)$. The set $\mathcal{H}(F, R)$ is an abelian group since the relations $[F, R]$ include $[R, R]$, which forces all elements of $R \cap[F, F]$ to commute with one another.

Maps of surfaces I: fixed genus. The rest of this note will be devoted to a proof that $\psi: \mathcal{H}(F, R) \rightarrow \mathrm{H}_{2}(G)$ is an isomorphism. Define

$$
\operatorname{Surf}_{g}(G)=\left\{f \mid f: \Sigma_{g} \rightarrow B G \text { homotopy class }\right\} .
$$

We then have the following.
Claim 3. For all $g \geq 0$, there exists a set map $\zeta_{g}: \operatorname{Surf}_{g}(G) \rightarrow \mathcal{H}(F, R)$ such that the composition

$$
\operatorname{Surf}_{g}(G) \xrightarrow{\zeta_{g}} \mathcal{H}(F, R) \xrightarrow{\psi} \mathrm{H}_{2}(G)
$$

takes $f: \Sigma_{g} \rightarrow B G$ to $f\left(\left[\Sigma_{g}\right]\right)$.
Proof of claim. For $g=0$, we define $\zeta_{g}(f)=0$. Assume now that $g \geq 1$. Consider an element $f: \Sigma_{g} \rightarrow B G$ of $\operatorname{Surf}_{g}(G)$. Homotoping f, we can assume that it is a based map. Letting $\bar{a}_{1}, \bar{b}_{1}, \ldots, \bar{a}_{g}, \bar{b}_{g} \in G$ be the images under f of the usual generators for $\pi_{1}\left(\Sigma_{g}\right)$, we have

$$
\left[\bar{a}_{1}, \bar{b}_{1}\right] \cdots\left[\bar{a}_{g}, \bar{b}_{g}\right]=1
$$

Pick lifts $a_{1}, b_{1}, \ldots, a_{g}, b_{g} \in F$ of $\bar{a}_{1}, \bar{b}_{1}, \ldots, \bar{a}_{g}, \bar{b}_{g} \in G$ and set $r=\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]$. We then have $r \in R \cap[F, F]$ and $\psi([r])=h$. Define $\zeta_{g}(f)=[r]$.

Of course, this definition depends on several choices, but once we have shown it is independent of those choices it will clearly define a map as in the claim. Those choices are as follows:

1. The choice of lifts $a_{1}, b_{1}, \ldots, a_{g}, b_{g} \in F$ of $\bar{a}_{1}, \bar{b}_{1}, \ldots, \bar{a}_{g}, \bar{b}_{g} \in G$. Any other such lift will be of the form $a_{1} s_{1}, b_{1} t_{1}, \ldots, a_{g} s_{g}, b_{g} t_{g}$ for some $s_{1}, t_{1}, \ldots, s_{g}, t_{g} \in R$. Set $r^{\prime}=\left[a_{1} s_{1}, b_{1} t_{1}\right] \cdots\left[a_{g} s_{g}, b_{g} t_{g}\right]$. Write \equiv to denote equality modulo $[F, R]$. For each i, we have

$$
\left[a_{i} s_{i}, b_{i} t_{i}\right]=a_{i} s_{i} b_{i} t_{i} s_{i}^{-1} a_{i}^{-1} t_{i}^{-1} b_{i}^{-1} \equiv a_{i} b_{i} a_{i}^{-1} b_{i}^{-1} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1} \equiv\left[a_{i}, b_{i}\right] .
$$

This implies that r and r^{\prime} are equal modulo $[F, R]$, so $[r]=\left[r^{\prime}\right]$, as desired.
2. The choice of a based map homotopic to f. A different choice will conjugate the elements $\bar{a}_{1}, \bar{b}_{1}, \ldots, \bar{a}_{g}, \bar{b}_{g} \in G$ by an element of G. The lifts of these elements to F can then be chosen to be conjugate by an element of F. Modulo $[F, R]$, the resulting r will be the same.

Maps of surfaces II: general. Now define
$\operatorname{Surf}(G)=\{f \mid f: S \rightarrow B G$ homotopy class with S a compact oriented surface $\}$.
The surfaces S here are not required to be connected. The disjoint union of surfaces makes $\operatorname{Surf}(G)$ into a commutative monoid. Our next goal is to prove the following:

Claim 4. There exists a surjective map of commutative monoids $\zeta: \operatorname{Surf}(G) \rightarrow \mathcal{H}(F, R)$ such that the composition

$$
\operatorname{Surf}(G) \xrightarrow{\zeta} \mathcal{H}(F, R) \xrightarrow{\psi} \mathrm{H}_{2}(G)
$$

takes $f: S \rightarrow B G$ to $f([S])$.
Proof of claim. Using the monoid structure on $\operatorname{Surf}(G)$, it is enough to define ζ on elements $f: S \rightarrow B G$ with S connected. Choose an orientation-preserving diffeomorphism $\Sigma_{g} \cong S$ and let $\widehat{f}: \Sigma_{g} \rightarrow B G$ be the composition of this diffeomorphism with f. We then define $\zeta(f)=\zeta_{g}(\hat{f})$. Of course, this depends on the choice of diffeomorphism $\Sigma_{g} \cong S$, so we must prove that it is independent of this choice; once this has been done, the surjectivity of ζ will be clear. To do this, it is enough to prove that $\zeta_{g}(\widehat{f})=\zeta_{g}(\widehat{f} \circ \rho)$ for an arbitrary orientation-preserving diffeomorphism $\rho: \Sigma_{g} \rightarrow \Sigma_{g}$.

What we have to prove is trivial for $g=0$, so assume that $g \geq 1$. Since Σ_{g} is aspherical, we can take Σ_{g} as our model for $B \pi_{1}\left(\Sigma_{g}\right)$. The map \widehat{f} then induces a set map $\operatorname{Surf}_{g}\left(\pi_{1}\left(\Sigma_{g}\right)\right) \rightarrow \operatorname{Surf}_{g}(G)$ taking the identity to \widehat{f}. Write $\pi_{1}\left(\Sigma_{g}\right)=F\left(\Sigma_{g}\right) / R\left(\Sigma_{g}\right)$, where $F\left(\Sigma_{g}\right)$ is the free group on $\left\{\alpha_{1}, \beta_{1}, \ldots, \alpha_{g}, \beta_{g}\right\}$ and $R\left(\Sigma_{g}\right)$ is the normal closure of the surface relation $r=\left[\alpha_{1}, \beta_{1}\right] \cdots\left[\alpha_{g}, \beta_{g}\right]$. We then have a commutative diagram

the composition of whose first row takes both elements id, $\rho \in \operatorname{Surf}_{g}\left(\pi_{1}\left(\Sigma_{g}\right)\right)$ to the generator of $\mathrm{H}_{2}\left(\pi_{1}\left(\Sigma_{g}\right)\right) \cong \mathbb{Z}$. To prove that $\zeta_{g}(\widehat{f})=\zeta_{g}(\widehat{f} \circ \rho)$, it is thus enough to prove that the map

$$
\psi: \mathcal{H}\left(F\left(\Sigma_{g}\right), R\left(\Sigma_{g}\right)\right) \rightarrow \mathrm{H}_{2}\left(\pi_{1}\left(\Sigma_{g}\right)\right) \cong \mathbb{Z}
$$

Figure 3: An elementary bordism
is an isomorphism (an important special case of Hopf's theorem!).
We now prove this. Since ψ is surjective (we have not yet proved this in general, but we already observed it for surface groups in the previous paragraph!), it is enough to prove that $\mathcal{H}\left(F\left(\Sigma_{g}\right), R\left(\Sigma_{g}\right)\right)$ is cyclic. Since $R\left(\Sigma_{g}\right) \subset\left[F\left(\Sigma_{g}\right), F\left(\Sigma_{g}\right)\right]$, the definition of $\mathcal{H}\left(F\left(\Sigma_{g}\right), R\left(\Sigma_{g}\right)\right)$ reduces to

$$
\mathcal{H}\left(F\left(\Sigma_{g}\right), R\left(\Sigma_{g}\right)\right)=\frac{R\left(\Sigma_{g}\right)}{\left[F\left(\Sigma_{g}\right), R\left(\Sigma_{g}\right)\right]} .
$$

The group $R\left(\Sigma_{g}\right)$ is the normal closure of r, and the relations $\left[F\left(\Sigma_{g}\right), R\left(\Sigma_{g}\right)\right]$ force all the $F\left(\Sigma_{g}\right)$-conjugates of r to represent the same element of $\mathcal{H}\left(F\left(\Sigma_{g}\right), R\left(\Sigma_{g}\right)\right)$. It follows that $\mathcal{H}\left(F\left(\Sigma_{g}\right), R\left(\Sigma_{g}\right)\right)$ is the cyclic group generated by $[r]$, as desired.

The kernel bounds. We now characterize elements of the kernel of $\psi: \mathcal{H}(F, R) \rightarrow \mathrm{H}_{2}(G)$.
Claim 5. Let $f: S \rightarrow B G$ be an element of $\operatorname{Surf}(G)$. Assume that $\psi(\zeta(f))=0$. Then there exists a compact oriented 3 -manifold M^{3} with $\partial M^{3}=S$ and an extension $F: M^{3} \rightarrow B G$ of f.

Proof of claim. Since $\psi(\zeta(f))=f([S])=0$, the 2-cycle $f([S])$ is the boundary of a singular 3 -chain. Assembling the various singular 3 -simplices together, we obtain a 3 -dimensional simplicial complex T mapping into $B G$. If T were an oriented 3 -manifold, then it would be the desired M^{3}. Unfortunately, T is not necessarily a manifold. From its construction, it is clear that T is a 3 -manifold in a neighborhood of each point except the vertices. Thickening up the "boundary" S of T, we can assume that the only problematic points are the interior vertices v of T. The neighborhood of such a vertex is homeomorphic to a cone $C(S)$ on a closed oriented connected surface S. If S is not a sphere, then T is not a manifold at v. To fix this, let $H(S)$ be the handlebody whose boundary is S. There is a continuous map $H(S) \rightarrow C(S)$ that is a homeomorphism away from the core of $H(S)$ and takes the core of $H(S)$ to the cone point. We can now resolve the singularity v by removing the cone neighborhood and gluing in $H(S)$. Let M^{3} be the result of doing this to all the interior vertices of T. The space \widehat{T} is an oriented 3-manifold, and the maps $H(S) \rightarrow C(S)$ piece together to give a map $M^{3} \rightarrow T$. The composition $M^{3} \rightarrow T \rightarrow B G$ is the desired extension of f.

Endgame. We finally prove that $\psi: \mathcal{H}(F, R) \rightarrow \mathrm{H}_{2}(G)$ is an isomorphism.
Claim 6. The map $\psi: \mathcal{H}(F, R) \rightarrow \mathrm{H}_{2}(G)$ is surjective.
Proof of claim. Consider $h \in \mathrm{H}_{2}(G)$. Assembling the singular 2-simplices making up a a 2-chain representing h, we obtain a compact oriented surface S and a map $f: S \rightarrow B G$. We then have $\psi(\zeta(f))=h$.

Claim 7. The map $\psi: \mathcal{H}(F, R) \rightarrow \mathrm{H}_{2}(G)$ is injective.
Proof of claim. Consider $[r] \in \operatorname{ker}(\psi)$. Write $[r]=\zeta(f)$ for some $f: S \rightarrow B G$. By Claim 5, there exists a compact oriented 3-manifold M^{3} with $\partial M^{3}=S$ and an extension $F: M^{3} \rightarrow$ $B G$ of f. Choosing an appropriate Morse function on M^{3}, we see that we can convert f into a map $\emptyset \rightarrow B G$ via a sequence of the following moves and their inverses:

- Deleting an S^{2}-component from S.
- Letting γ be a simple closed curves on S such that $\left.f\right|_{\gamma}$ extends over a disc, cut S along γ, glue discs to the two resulting boundary components (see Figure 3), and map the resulting surface to $B G$ in evident way.
Neither of these moves changes the homology class represented by f. The first clearly does not change $[r]=\zeta(f)$. As for the second, it clearly does not change $[r]=\zeta(f)$ if γ is a separating curve, and using the relations $[F, R]$ in $\mathcal{H}(F, R)$ like we did in Claim 2 (cf. Figure 2), we see that it does not change it for nonseparating curves either. We conclude that $[r]=\zeta(\emptyset \rightarrow B G)=0$, as desired.

References

[B] K. S. Brown, Cohomology of groups, corrected reprint of the 1982 original, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994.
[H] H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257-309.

Andrew Putman
Department of Mathematics
University of Notre Dame
279 Hurley Hall
Notre Dame, IN 46556
andyp@nd.edu

