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In this note we prove the well-known “half lives, half dies” theorem,
and as an application prove that the signatures of boundaries are 0.
Throughout, we fix a field k of characteristic not equal to 2.

0.1. Easy example. Consider a closed genus g surface Σg embedded
in R3 in the usual way:

α1 α2 α3

The surface Σg forms the boundary of a genus g handlebody Hg em-
bedded in R3. The kernel L of the map H1(Σg;k) → H1(Hg;k) satis-
fies L ∼= kg with basis the curves {α1, . . . , αg} indicated above. The
subspace L is a half-dimensional subspace on which the algebraic in-
tersection pairing vanishes. The general half lives, half dies theorem
generalizes this to boundaries of arbitrary odd-dimensional manifolds.

0.2. Nondegenerate forms. Its statement requires some preliminaries.
Let V be a finite-dimensional vector space over k. In this note, a form on
V is a bilinear form ω(−,−) that is either symmetric or antisymmetric.
Such an ω induces a map V → V ∗ taking ~v ∈ V to the map ω(~v,−)
from V to k, and we say that ω is nondegenerate if this map V → V ∗

is an isomorphism.

Example 0.1. If M2n is a closed oriented 2n-dimensional manifold, then
by Poincaré duality the algebraic intersection pairing on V = Hn(M2n;k)
is a nondegenerate form. �

0.3. Lagrangians. Let V be a finite-dimensional vector space over k
equipped with a nondegenerate form ω. For a subspace W of V , define

W⊥ = {~v ∈ V | ω(~w,~v) = 0 for all ~w ∈ W} .
We say that W is a Lagrangian in V if W⊥ = W . We have the following
lemma:
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Lemma 0.2. Let V be a finite-dimensional vector space over k equipped
with a nondegenerate form ω. Let L be a Lagrangian in V . Then there

is a basis {~a1,~b1, . . . ,~ag,~bg} for V with the following properties:

(i) {~a1, . . . ,~ag} is a basis for L.
(ii) For all 1 ≤ i, j ≤ g, we have

ω(~ai,~aj) = ω(~bi,~bj) = 0 and ω(~ai,~bj) = δij.

Proof. Pick a basis {~a1, . . . ,~ag} for L. Since ω is nondegenerate, we

can find some ~b1 ∈ V with ω(~ai,~b1) = δi1 for all 1 ≤ i ≤ g. If ω is

antisymmetric, then we have ω(~b1,~b1) = 0. If instead ω is symmetric,
then this might not hold. However, for c ∈ k we have

ω(~b1 + c~a1,~b1 + c~a1) = ω(~b1,~b1) + 2c.

Since k does not have characteristic 2, we can replace ~b1 with ~b1 + c~a1
for an appropriate value of c and ensure that ω(~b1,~b1) = 0.

It is clear that {~a1, . . . ,~ag,~b1} is linearly independent. Again using

the nondegeneracy of ω, we can find some ~b2 ∈ V with ω(~ai,~b2) = δi2
for all 1 ≤ i ≤ g and with ω(~b1,~b2) = 0. Just like above, we can add an

appropriate multiple of ~a2 to ~b2 and ensure that ω(~b2,~b2) = 0 as well.

Repeating this process, we obtain a set of vectors {~a1,~b1, . . . ,~ag,~bg}
satisfying (i) and (ii). It is clear that these vectors are linearly inde-
pendent, so all that remains is to prove that they span V . Consider

some ~v ∈ V . By adding a linear combination of the ~bi to ~v, we can
ensure that ω(~ai, ~v) = 0 for all 1 ≤ i ≤ g. Since the ~ai are a basis
for L, this implies that ~v ∈ L⊥. But since L is a Lagrangian we have
L⊥ = L, so ~v ∈ L and we can write ~v as a linear combination of the ~ai,
as desired. �

Corollary 0.3. Let V be a finite-dimensional vector space over k
equipped with a nondegenerate form ω. Let L be a Lagrangian in V .
Then L is a half-dimensional subspace of V on which ω vanishes.

Proof. Immediate from Lemma 0.2. �

0.4. Half-lives, half dies. We now come to our main result.

Theorem 0.4 (Half-lives, half dies). Let M2n+1 be a compact oriented
(2n + 1)-dimensional manifold with boundary and let L be the kernel
of the map Hn(∂M2n+1;k) → Hn(M2n+1;k). Then L is a Lagrangian
with respect to the algebraic intersection form on Hn(∂M2n+1;k).

By Corollary 0.3, this implies in particular that Hn(∂M2n+1;k) is even-
dimensional and that L is a half-dimensional subspace of Hn(∂M2n+1;k)
on which the algebraic intersection form vanishes.
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Proof of Theorem 0.4. To simplify our notation, we will omit the co-
efficients k from all our homology groups. Let ι : Hn(∂M2n+1) →
Hn(M2n+1) be the map induced by the inclusion and let ω∂(−,−) be
the algebraic intersection form on Hn(∂M2n+1). There is also an alge-
braic intersection pairing

ωM : Hn(M2n+1)× Hn+1(M
2n+1, ∂M2n+1)→ k.

Poincaré–Lefschetz duality implies that ωM is a perfect pairing between
Hn(M2n+1) and Hn+1(M

2n+1, ∂M2n+1), i.e., it identifies one with the
dual of the other. There is a boundary map ∂ : Hn+1(M

2n+1, ∂M2n+1)→
Hn(∂M2n+1), and our two algebraic intersection forms are related as
follows: for all a ∈ Hn(∂M2n+1) and B ∈ Hn+1(M

2n+1, ∂M2n+1), we
have

ωM(ι(a), B) = ω∂M(a, ∂(B))

This can be proved by carefully examining the definitions of the pairings,
but to make it at least plausible note that it is obvious if a and B are
represented by manifolds intersecting transversely.

Recall that L = ker(ι). Our goal is to prove that L⊥ = L, and we
start by proving that L ⊂ L⊥. Consider x, y ∈ L. We must show that
ω∂(x, y) = 0. Since y ∈ Hn(∂M2n+1) satisfies ι(y) = 0, we can find
some Y ∈ Hn+1(M

2n+1, ∂M2n+1) with ∂(Y ) = y. We then have

ω∂(x, y) = ωM(ι(x), Y ) = ωM(0, Y ) = 0,

as desired.
We next prove that L⊥ ⊂ L. Consider some z with z /∈ L. Our goal is

to prove that z /∈ L⊥. Since z /∈ L, we have ι(z) 6= 0, so since ωM (−,−)
is a perfect pairing, we can find some W ∈ Hn+1(M

2n+1, ∂M2n+1) with
ωM(ι(z),W ) 6= 0. We then have

(0.1) ω∂M(z, ∂(W )) = ωM(ι(z),W ) 6= 0.

However, since ∂(W ) is a boundary in M2n+1, we have ι(∂(W )) = 0, so
∂(W ) ∈ L. The equation (0.1) then implies that z /∈ L⊥, as desired. �

0.5. Signatures of boundaries. Let V be a finite-dimensional vector
space over R equipped with a symmetric form ω. We can diagonalize the
matrix representing ω, and the signature of ω is the number of positive
eigenvalues minus the number of negative eigenvalues. If M4n is a closed
oriented 4n-dimensional manifold, then the algebraic intersection form
on H2n(M ;R) is symmetric, and its signature is called the signature of
M . We then have the following fundamental result:
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Theorem 0.5. Let M4n is a closed oriented 4n-dimensional manifold.
Assume that M4n = ∂W 4n+1 for a compact oriented (4n+1)-dimensional
manifold W 4n+1. Then the signature of M4n is 0.

Remark 0.6. One reason that this is important is that since the signature
is clearly additive under disjoint unions, it implies that the signature is
a homomorphism from the oriented 4n-dimensional bordism group to
Z. This is one of the easiest ways of seeing that this bordism group is
not trivial. �

Proof of Theorem 0.5. Theorem 0.4 implies that H2n(M4n;R) has a
Lagrangian, so this follows immediate from Lemma 0.7 below. �

Lemma 0.7. Let V be a finite-dimensional vector space over R equipped
with a nondegenerate symmetric bilinear form ω(−,−). Assume that
there exists a Lagrangian L in V . Then the signature of ω is 0.

Proof. Lemma 0.2 implies that V is the orthogonal direct sum of 2-
dimensional subspaces on which the form ω is represented by the matrix(

0 1
1 0

)
.

These are often called “hyperbolic planes”. Since their signature is 0 and
the signature is additive under orthogonal direct sums, the signature of
ω is 0. �
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