HALF LIVES, HALF DIES AND THE SIGNATURES OF BOUNDARIES

ANDREW PUTMAN

In this note we prove the well-known "half lives, half dies" theorem, and as an application prove that the signatures of boundaries are 0 . Throughout, we fix a field \mathbf{k} of characteristic not equal to 2 .
0.1. Easy example. Consider a closed genus g surface Σ_{g} embedded in \mathbb{R}^{3} in the usual way:

The surface Σ_{g} forms the boundary of a genus g handlebody \mathcal{H}_{g} embedded in \mathbb{R}^{3}. The kernel L of the map $\mathrm{H}_{1}\left(\Sigma_{g} ; \mathbf{k}\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{H}_{g} ; \mathbf{k}\right)$ satisfies $L \cong \mathbf{k}^{g}$ with basis the curves $\left\{\alpha_{1}, \ldots, \alpha_{g}\right\}$ indicated above. The subspace L is a half-dimensional subspace on which the algebraic intersection pairing vanishes. The general half lives, half dies theorem generalizes this to boundaries of arbitrary odd-dimensional manifolds.
0.2. Nondegenerate forms. Its statement requires some preliminaries. Let V be a finite-dimensional vector space over \mathbf{k}. In this note, a form on V is a bilinear form $\omega(-,-)$ that is either symmetric or antisymmetric. Such an ω induces a map $V \rightarrow V^{*}$ taking $\vec{v} \in V$ to the map $\omega(\vec{v},-)$ from V to \mathbf{k}, and we say that ω is nondegenerate if this map $V \rightarrow V^{*}$ is an isomorphism.
Example 0.1. If $M^{2 n}$ is a closed oriented $2 n$-dimensional manifold, then by Poincaré duality the algebraic intersection pairing on $V=\mathrm{H}_{n}\left(M^{2 n} ; \mathbf{k}\right)$ is a nondegenerate form.
0.3. Lagrangians. Let V be a finite-dimensional vector space over \mathbf{k} equipped with a nondegenerate form ω. For a subspace W of V, define

$$
W^{\perp}=\{\vec{v} \in V \mid \omega(\vec{w}, \vec{v})=0 \text { for all } \vec{w} \in W\} .
$$

We say that W is a Lagrangian in V if $W^{\perp}=W$. We have the following lemma:

Date: November 1, 2022.

Lemma 0.2. Let V be a finite-dimensional vector space over \mathbf{k} equipped with a nondegenerate form ω. Let L be a Lagrangian in V. Then there is a basis $\left\{\vec{a}_{1}, \vec{b}_{1}, \ldots, \vec{a}_{g}, \vec{b}_{g}\right\}$ for V with the following properties:
(i) $\left\{\vec{a}_{1}, \ldots, \vec{a}_{g}\right\}$ is a basis for L.
(ii) For all $1 \leq i, j \leq g$, we have

$$
\omega\left(\vec{a}_{i}, \vec{a}_{j}\right)=\omega\left(\vec{b}_{i}, \vec{b}_{j}\right)=0 \quad \text { and } \quad \omega\left(\vec{a}_{i}, \vec{b}_{j}\right)=\delta_{i j}
$$

Proof. Pick a basis $\left\{\vec{a}_{1}, \ldots, \vec{a}_{g}\right\}$ for L. Since ω is nondegenerate, we can find some $\vec{b}_{1} \in V$ with $\omega\left(\vec{a}_{i}, \vec{b}_{1}\right)=\delta_{i 1}$ for all $1 \leq i \leq g$. If ω is antisymmetric, then we have $\omega\left(\vec{b}_{1}, \vec{b}_{1}\right)=0$. If instead ω is symmetric, then this might not hold. However, for $c \in \mathbf{k}$ we have

$$
\omega\left(\vec{b}_{1}+c \vec{a}_{1}, \vec{b}_{1}+c \vec{a}_{1}\right)=\omega\left(\vec{b}_{1}, \vec{b}_{1}\right)+2 c
$$

Since \mathbf{k} does not have characteristic 2 , we can replace \vec{b}_{1} with $\vec{b}_{1}+c \vec{a}_{1}$ for an appropriate value of c and ensure that $\omega\left(\vec{b}_{1}, \vec{b}_{1}\right)=0$.

It is clear that $\left\{\vec{a}_{1}, \ldots, \vec{a}_{g}, \vec{b}_{1}\right\}$ is linearly independent. Again using the nondegeneracy of ω, we can find some $\vec{b}_{2} \in V$ with $\omega\left(\vec{a}_{i}, \vec{b}_{2}\right)=\delta_{i 2}$ for all $1 \leq i \leq g$ and with $\omega\left(\vec{b}_{1}, \vec{b}_{2}\right)=0$. Just like above, we can add an appropriate multiple of \vec{a}_{2} to \vec{b}_{2} and ensure that $\omega\left(\vec{b}_{2}, \vec{b}_{2}\right)=0$ as well.

Repeating this process, we obtain a set of vectors $\left\{\vec{a}_{1}, \vec{b}_{1}, \ldots, \vec{a}_{g}, \vec{b}_{g}\right\}$ satisfying (i) and (ii). It is clear that these vectors are linearly independent, so all that remains is to prove that they span V. Consider some $\vec{v} \in V$. By adding a linear combination of the \vec{b}_{i} to \vec{v}, we can ensure that $\omega\left(\vec{a}_{i}, \vec{v}\right)=0$ for all $1 \leq i \leq g$. Since the \vec{a}_{i} are a basis for L, this implies that $\vec{v} \in L^{\perp}$. But since L is a Lagrangian we have $L^{\perp}=L$, so $\vec{v} \in L$ and we can write \vec{v} as a linear combination of the \vec{a}_{i}, as desired.
Corollary 0.3. Let V be a finite-dimensional vector space over \mathbf{k} equipped with a nondegenerate form ω. Let L be a Lagrangian in V. Then L is a half-dimensional subspace of V on which ω vanishes.
Proof. Immediate from Lemma 0.2.
0.4. Half-lives, half dies. We now come to our main result.

Theorem 0.4 (Half-lives, half dies). Let $M^{2 n+1}$ be a compact oriented $(2 n+1)$-dimensional manifold with boundary and let L be the kernel of the map $\mathrm{H}_{n}\left(\partial M^{2 n+1} ; \mathbf{k}\right) \rightarrow \mathrm{H}_{n}\left(M^{2 n+1} ; \mathbf{k}\right)$. Then L is a Lagrangian with respect to the algebraic intersection form on $\mathrm{H}_{n}\left(\partial M^{2 n+1} ; \mathbf{k}\right)$.

By Corollary 0.3, this implies in particular that $\mathrm{H}_{n}\left(\partial M^{2 n+1} ; \mathbf{k}\right)$ is evendimensional and that L is a half-dimensional subspace of $\mathrm{H}_{n}\left(\partial M^{2 n+1} ; \mathbf{k}\right)$ on which the algebraic intersection form vanishes.

Proof of Theorem 0.4. To simplify our notation, we will omit the coefficients \mathbf{k} from all our homology groups. Let $\iota: \mathrm{H}_{n}\left(\partial M^{2 n+1}\right) \rightarrow$ $\mathrm{H}_{n}\left(M^{2 n+1}\right)$ be the map induced by the inclusion and let $\omega_{\partial}(-,-)$ be the algebraic intersection form on $\mathrm{H}_{n}\left(\partial M^{2 n+1}\right)$. There is also an algebraic intersection pairing

$$
\omega_{M}: \mathrm{H}_{n}\left(M^{2 n+1}\right) \times \mathrm{H}_{n+1}\left(M^{2 n+1}, \partial M^{2 n+1}\right) \rightarrow \mathbf{k}
$$

Poincaré-Lefschetz duality implies that ω_{M} is a perfect pairing between $\mathrm{H}_{n}\left(M^{2 n+1}\right)$ and $\mathrm{H}_{n+1}\left(M^{2 n+1}, \partial M^{2 n+1}\right)$, i.e., it identifies one with the dual of the other. There is a boundary map $\partial: \mathrm{H}_{n+1}\left(M^{2 n+1}, \partial M^{2 n+1}\right) \rightarrow$ $\mathrm{H}_{n}\left(\partial M^{2 n+1}\right)$, and our two algebraic intersection forms are related as follows: for all $a \in \mathrm{H}_{n}\left(\partial M^{2 n+1}\right)$ and $B \in \mathrm{H}_{n+1}\left(M^{2 n+1}, \partial M^{2 n+1}\right)$, we have

$$
\omega_{M}(\iota(a), B)=\omega_{\partial M}(a, \partial(B))
$$

This can be proved by carefully examining the definitions of the pairings, but to make it at least plausible note that it is obvious if a and B are represented by manifolds intersecting transversely.

Recall that $L=\operatorname{ker}(\iota)$. Our goal is to prove that $L^{\perp}=L$, and we start by proving that $L \subset L^{\perp}$. Consider $x, y \in L$. We must show that $\omega_{\partial}(x, y)=0$. Since $y \in \mathrm{H}_{n}\left(\partial M^{2 n+1}\right)$ satisfies $\iota(y)=0$, we can find some $Y \in \mathrm{H}_{n+1}\left(M^{2 n+1}, \partial M^{2 n+1}\right)$ with $\partial(Y)=y$. We then have

$$
\omega_{\partial}(x, y)=\omega_{M}(\iota(x), Y)=\omega_{M}(0, Y)=0,
$$

as desired.
We next prove that $L^{\perp} \subset L$. Consider some z with $z \notin L$. Our goal is to prove that $z \notin L^{\perp}$. Since $z \notin L$, we have $\iota(z) \neq 0$, so since $\omega_{M}(-,-)$ is a perfect pairing, we can find some $W \in \mathrm{H}_{n+1}\left(M^{2 n+1}, \partial M^{2 n+1}\right)$ with $\omega_{M}(\iota(z), W) \neq 0$. We then have

$$
\begin{equation*}
\omega_{\partial M}(z, \partial(W))=\omega_{M}(\iota(z), W) \neq 0 \tag{0.1}
\end{equation*}
$$

However, since $\partial(W)$ is a boundary in $M^{2 n+1}$, we have $\iota(\partial(W))=0$, so $\partial(W) \in L$. The equation (0.1) then implies that $z \notin L^{\perp}$, as desired.
0.5. Signatures of boundaries. Let V be a finite-dimensional vector space over \mathbb{R} equipped with a symmetric form ω. We can diagonalize the matrix representing ω, and the signature of ω is the number of positive eigenvalues minus the number of negative eigenvalues. If $M^{4 n}$ is a closed oriented $4 n$-dimensional manifold, then the algebraic intersection form on $\mathrm{H}_{2 n}(M ; \mathbb{R})$ is symmetric, and its signature is called the signature of M. We then have the following fundamental result:

Theorem 0.5. Let $M^{4 n}$ is a closed oriented $4 n$-dimensional manifold. Assume that $M^{4 n}=\partial W^{4 n+1}$ for a compact oriented ($4 n+1$)-dimensional manifold $W^{4 n+1}$. Then the signature of $M^{4 n}$ is 0 .
Remark 0.6. One reason that this is important is that since the signature is clearly additive under disjoint unions, it implies that the signature is a homomorphism from the oriented $4 n$-dimensional bordism group to \mathbb{Z}. This is one of the easiest ways of seeing that this bordism group is not trivial.

Proof of Theorem 0.5. Theorem 0.4 implies that $\mathrm{H}_{2 n}\left(M^{4 n} ; \mathbb{R}\right)$ has a Lagrangian, so this follows immediate from Lemma 0.7 below.
Lemma 0.7. Let V be a finite-dimensional vector space over \mathbb{R} equipped with a nondegenerate symmetric bilinear form $\omega(-,-)$. Assume that there exists a Lagrangian L in V. Then the signature of ω is 0 .

Proof. Lemma 0.2 implies that V is the orthogonal direct sum of 2dimensional subspaces on which the form ω is represented by the matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

These are often called "hyperbolic planes". Since their signature is 0 and the signature is additive under orthogonal direct sums, the signature of ω is 0 .

Dept of Mathematics; University of Notre Dame; 255 Hurley Hall; Notre Dame, IN 46556

Email address: andyp@nd.edu

