The fundamental theorem of projective geometry

Andrew Putman

Abstract

We prove the fundamental theorem of projective geometry. In addition to the usual statement, we also prove a variant in the presence of a symplectic form.

1 Introduction

Let K be a field. The fundamental theorem of projective geometry says that an abstract automorphism of the set of lines in K^n which preserves "incidence relations" must have a simple algebraic form. The most natural way of describing these incidence relations is via the associated Tits building.

Building. The *Tits building* of K^n , denoted $\mathcal{T}_n(K)$, is the poset of nonzero proper subspaces of K^n . The following are two fundamental examples of automorphisms of $\mathcal{T}_n(K)$.

- The group $\operatorname{GL}_n(K)$ acts linearly on K^n . This descends to an action of $\operatorname{PGL}_n(K)$ on $\mathcal{T}_n(K)$.
- Let $\{\vec{v}_1, \ldots, \vec{v}_n\}$ be a basis of K^n and let $\tau : K \to K$ be a field automorphism. The map $K^n \to K^n$ defined via the formula

$$\sum_{i=1}^{n} c_i \vec{v}_i \mapsto \sum_{i=1}^{n} \tau(c_i) \vec{v}_i$$

induces an automorphism of $\mathcal{T}_n(K)$.

It turns out that every automorphism of $\mathcal{T}_n(K)$ is a sort of combination of the above types of automorphisms.

Semilinear automorphisms. A semilinear transformation of K^n is a set map $f: K^n \to K^n$ for which there exists a field automorphism $\tau: K \to K$ such that

$$f(c_1\vec{v}_1 + c_2\vec{v}_2) = \tau(c_1)f(\vec{v}_1) + \tau(c_2)f(\vec{v}_2) \qquad (c_1, c_2 \in K, \vec{v}_1, \vec{v}_2 \in K^n).$$

A semilinear transformation $f : K^n \to K^n$ is a semilinear automorphism if it is bijective. Let $\Gamma L_n(K)$ be the group of semilinear automorphisms of K^n . This contains a normal subgroup isomorphic to K^* , namely the set of all scalar matrices. The quotient of $\Gamma L_n(K)$ by this normal subgroup is denoted $\Gamma \Gamma L_n(K)$. The fundamental theorem. The group $P\Gamma L_n(K)$ clearly acts on $\mathcal{T}_n(K)$. The following theorem will be proved in §2.

Theorem 1 (Fundamental theorem of projective geometry). If K is a field and $n \ge 3$, then $\operatorname{Aut}(\mathcal{T}_n(K)) = P\Gamma L_n(K)$.

This theorem has its origins in 19th century work of von Staudt [4]. I do not know a precise reference for the above modern version of it, but on [2, p. 52] it is attributed to Kamke. The proof we give is adapted from [1, Chapter II.10]. Another excellent source that contains a lot of other related results is [3].

Remark. In the classical literature, an automorphism of $\mathcal{T}_n(K)$ is called a *collineation*.

Remark. Theorem 1 is false for n = 2 since $\mathcal{T}_2(K)$ is a discrete poset.

Remark. The map $\Gamma L_n(K) \to \operatorname{Aut}(K)$ that takes $f \in \Gamma L_n(K)$ to the $\tau \in \operatorname{Aut}(K)$ associated to f is surjective and has kernel $\operatorname{GL}_n(K)$. We thus have a short exact sequence

$$1 \longrightarrow \operatorname{GL}_n(K) \longrightarrow \Gamma \operatorname{L}_n(K) \longrightarrow \operatorname{Aut}(K) \longrightarrow 1.$$

Fixing a basis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ for K^n , we obtain a splitting $\operatorname{Aut}(K) \to \Gamma \operatorname{L}_n(K)$ of this short exact sequence that takes $\tau \in \operatorname{Aut}(K)$ to the map $K^n \to K^n$ defined via the formula

$$\sum_{i=1}^{n} c_i \vec{v_i} \mapsto \sum_{i=1}^{n} \tau(c_i) \vec{v_i}.$$

It follows that $\Gamma L_n(K) = GL_n(K) \rtimes Aut(K)$.

Symplectic building. There is also a natural symplectic analogue of the fundamental theorem of projective geometry. Recall that a symplectic form on K^n is an alternating bilinear form $\omega(\cdot, \cdot)$ such that the map

$$K^n \to (K^n)^*$$
$$\vec{v} \mapsto (\vec{w} \mapsto \omega \, (\vec{v}, \vec{w})$$

is an isomorphism. If a symplectic form on K^n exists, then n = 2g for some $g \geq 1$. Moreover, all symplectic forms on K^{2g} are equivalent. If ω is a symplectic form on K^{2g} , then a subspace $V \subset K^{2g}$ is *isotropic* if $\omega(\vec{v}, \vec{w}) = 0$ for all $\vec{v}, \vec{w} \in K^{2g}$. Isotropic subspace of K^{2g} are at most g-dimensional. Define $\mathcal{TP}_{2g}(K)$ to be the poset of nonzero isotropic subspaces of K^{2g} .

Symplectic semilinear. The symplectic group $\operatorname{Sp}_{2g}(K)$ acts on $\mathcal{TP}_{2g}(K)$, but in fact the automorphism group is much larger. Define

$$\Gamma \mathcal{P}_{2g}(K) = \{ f \in \Gamma \mathcal{L}_{2g}(K) \mid \omega(f(\vec{v}), f(\vec{w})) = 0 \text{ if and only if } \omega(\vec{v}, \vec{w}) = 0 \}.$$

The group $\Gamma P_{2g}(K)$ contains a normal subgroup isomorphic to K^* consisting of scalar matrices; let $P\Gamma P_{2g}(K)$ be the quotient.

Fundamental theorem, symplectic. The group $P\Gamma P_{2g}(K)$ clearly acts on $\mathcal{TP}_{2g}(K)$. The following theorem will be proved in §3.

Theorem 2 (Fundamental theorem of symplectic projective geometry). If K is a field and $g \ge 2$, then $\operatorname{Aut}(\mathcal{TP}_{2g}(K)) = P\Gamma P_{2g}(K)$.

Remark. Theorem 2 is false for g = 1 since in that case $\mathcal{TP}_{2g}(K)$ is a discrete poset.

2 Proof of fundamental theorem of projective geometry

In this section, we prove Theorem 1. It is enough to prove that each element of $\operatorname{Aut}(\mathcal{T}_n(K))$ is induced by some element of $\operatorname{\GammaL}_n(F)$. To simplify some of our arguments, we add the subspaces 0 and K^n to $\mathcal{T}_n(K)$; of course, any automorphism of $\mathcal{T}_n(K)$ must fix 0 and K^n . Fixing some $F \in \operatorname{Aut}(\mathcal{T}_n(K))$, we begin with the following observation.

Claim 1. Let $\vec{a}_1, \ldots, \vec{a}_p \in K^n$ be nonzero vectors. For $1 \leq i \leq p$, let $\vec{b}_i \in K^n$ be such that $F(\langle \vec{a}_i \rangle) = \langle \vec{b}_i \rangle$. Then

$$F(\langle \vec{a}_1, \ldots, \vec{a}_p \rangle) = \langle \vec{b}_1, \ldots, \vec{b}_p \rangle.$$

Proof of claim. The subspace $\langle \vec{a}_1, \ldots, \vec{a}_p \rangle$ is the minimal subspace of K^n containing each $\langle \vec{a}_i \rangle$. Since F is an automorphism of the poset $\mathcal{T}_n(K)$, we see that $F(\langle \vec{a}_1, \ldots, \vec{a}_p \rangle)$ is the minimal subspace of K^n containing each $F(\langle \vec{a}_i \rangle) = \langle \vec{b}_i \rangle$. The claim follows.

Let $\{\vec{v}_1, \ldots, \vec{v}_n\}$ be a basis for K^n . To construct the desired $f \in \Gamma L_n(K)$, we must construct a field automorphism $\tau : K \to K$ and a basis $\{\vec{w}_1, \ldots, \vec{w}_n\}$ for K^n ; we can then define $f : K^n \to K^n$ via the formula

$$f(c_1 \vec{v}_1 + \dots + c_n \vec{v}_n) = \tau(c_1) \vec{w}_1 + \dots + \tau(c_n) \vec{w}_n \qquad (c_1, \dots, c_n \in K).$$
(2.1)

We start with the basis $\{\vec{w}_1, \ldots, \vec{w}_n\}$. First, let $\vec{w}_1 \in K^n$ be any vector such that $F(\langle \vec{v}_1 \rangle) = \langle \vec{w}_1 \rangle$. The choice of \vec{w}_1 will be our only arbitrary choice; everything else will be determined by it (as it must since we are proving that the automorphism group of $\mathcal{T}_n(K)$ is the *projective* version of the group of semilinear automorphisms). We now construct $\{\vec{w}_2, \ldots, \vec{w}_n\}$.

Claim 2. For $2 \leq i \leq n$, there exists a unique $\vec{w_i} \in K^n$ such that

$$F(\langle \vec{v}_i \rangle) = \langle \vec{w}_i \rangle$$
 and $F(\langle \vec{v}_1 + \vec{v}_i \rangle) = \langle \vec{w}_1 + \vec{w}_i \rangle.$

Moreover, the set $\{\vec{w}_1, \ldots, \vec{w}_n\}$ is a basis for K^n .

Proof of claim. Pick $\vec{u}_i \in K^n$ such that $F(\langle \vec{v}_i \rangle) = \langle \vec{u}_i \rangle$. Using Claim 1, we then have

$$F(\langle \vec{v}_1 + \vec{v}_i \rangle) \subset F(\langle \vec{v}_1, \vec{v}_i \rangle) = \langle \vec{w}_1, \vec{u}_i \rangle.$$

Since $F(\langle \vec{v}_1 + \vec{v}_i \rangle) \neq \langle \vec{u}_i \rangle$, it follows that there exists a unique $\lambda_i \in K$ such that $F(\langle \vec{v}_1 + \vec{v}_i \rangle) = \langle \vec{w}_1 + \lambda_i \vec{u}_i \rangle$. The desired vector is thus $\vec{w}_i := \lambda_i \vec{u}_i$. To see that $\{\vec{w}_1, \ldots, \vec{w}_n\}$ is a basis for K^n , observe that we can use Claim 1 to deduce that

$$K^n = F(K^n) = F(\langle \vec{v}_1, \dots, \vec{v}_n \rangle) = \langle \vec{w}_1, \dots, \vec{w}_n \rangle.$$

The construction of the field automorphism $\tau : K \to K$ will take several steps. The next two claims construct it as a set map.

Claim 3. For $2 \leq i \leq n$, there exists a unique set map $\tau_i : K \to K$ such that

$$F(\langle \vec{v}_1 + c\vec{v}_i \rangle) = \langle \vec{w}_1 + \tau_i(c)\vec{w}_i \rangle \qquad (c \in K).$$

Proof of claim. We define τ_i as follows (this construction is very similar to that in Claim 2). Consider $c \in K$. We can apply Claim 1 to see that

$$F(\langle \vec{v}_1 + c\vec{v}_i \rangle) \subset F(\langle \vec{v}_1, \vec{v}_i \rangle) = \langle \vec{w}_1, \vec{w}_i \rangle.$$

Since $F(\langle \vec{v}_1 + c\vec{v}_i \rangle) \neq \langle \vec{w}_i \rangle$, we see that there exists a unique $\tau_i(c) \in K$ such that $F(\langle \vec{v}_1 + c\vec{v}_i \rangle) = \langle \vec{w}_1 + \tau_i(c)\vec{w}_i \rangle$.

We remark that the uniqueness of τ_i implies that $\tau_i(0) = 0$ and $\tau_i(1) = 1$.

Claim 4. For distinct $2 \leq i, j \leq n$, we have $\tau_i = \tau_j$.

Proof of claim. Consider a nonzero $c \in K$. We have

$$\langle \vec{v}_i - \vec{v}_j \rangle \subset \langle \vec{v}_i, \vec{v}_j \rangle$$
 and $\langle \vec{v}_i - \vec{v}_j \rangle \subset \langle \vec{v}_1 + c\vec{v}_i, \vec{v}_1 + c\vec{v}_j \rangle$.

Applying Claim 1 twice, we see that

$$F(\langle \vec{v}_i - \vec{v}_j \rangle) \subset \langle \vec{w}_i, \vec{w}_j \rangle$$
 and $F(\langle \vec{v}_i - \vec{v}_j \rangle) \subset \langle \vec{w}_1 + \tau_i(c)\vec{w}_i, \vec{w}_1 + \tau_j(c)\vec{w}_j \rangle.$

We have

$$\langle \vec{w}_i, \vec{w}_j \rangle \cap \langle \vec{w}_1 + \tau_i(c) \vec{w}_i, \vec{w}_1 + \tau_j(c) \vec{w}_j \rangle = \langle \tau_i(c) \vec{w}_i - \tau_j(c) \vec{w}_j \rangle,$$

so we deduce that

$$F(\langle \vec{v}_i - \vec{v}_j \rangle) = \langle \tau_i(c) \vec{w}_i - \tau_j(c) \vec{w}_j \rangle.$$

The left hand side does not depend on c, so despite its appearance the right hand side must also be independent of c. In particular, we have

$$\langle \vec{w}_i - \vec{w}_j \rangle = \langle \tau_i(1)\vec{w}_i - \tau_j(1)\vec{w}_j \rangle = \langle \tau_i(c)\vec{w}_i - \tau_j(c)\vec{w}_j \rangle.$$

The only way this equality can hold is if $\tau_i(c) = \tau_i(c)$, as desired.

Let $\tau : K \to K$ be the set map $\tau_2 = \tau_3 = \cdots = \tau_n$. We will prove that τ is an automorphism of K below in Claims 7-9. First, however, we will prove two claims whose main purpose will be to show that the element $f \in \Gamma L_n(K)$ constructed via (2.1) actually induces F (but which will also be used to prove that τ is an automorphism).

Claim 5. For $c_2, \ldots, c_n \in K$, we have

$$F(\langle \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n \rangle) = \langle \vec{w}_1 + \tau(c_2) \vec{w}_2 + \dots + \tau(c_n) \vec{w}_n \rangle.$$

Proof of claim. We will prove that

$$F(\langle \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p \rangle) = \langle \vec{w}_1 + \tau(c_2) \vec{w}_2 + \dots + \tau(c_p) \vec{w}_p \rangle$$

for all $2 \leq p \leq n$ by induction on p. The base case p = 2 is the defining property of τ , so assume that 2 and that the above equation holdsfor smaller values of <math>p. Applying Claim 1 and our inductive hypothesis, we see that

$$F(\langle \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p \rangle) \subset F(\langle \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_{p-1} \vec{v}_{p-1}, \vec{v}_p \rangle)$$

= $\langle \vec{w}_1 + \tau(c_2) \vec{w}_2 + \dots + \tau(c_{p-1}) \vec{w}_{p-1}, \vec{w}_p \rangle.$

Moreover, $F(\langle \vec{v_1} + c_2 \vec{v_2} + \dots + c_p \vec{v_p} \rangle)$ is not $\langle \vec{w_p} \rangle$, so we deduce that there exists some $d \in K$ such that

$$F(\langle \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p \rangle) = \langle \vec{w}_1 + \tau(c_2) \vec{w}_2 + \dots + \tau(c_{p-1}) \vec{w}_{p-1} + d\vec{w}_p \rangle.$$

We want to prove that $d = \tau(c_p)$. Applying Claim 1 and the defining property of τ , we see that

$$F(\langle \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p \rangle) \subset F(\langle \vec{v}_1 + c_p \vec{v}_p, \vec{v}_2, \dots, \vec{v}_{p-1} \rangle) = \langle \vec{w}_1 + \tau(c_p) \vec{w}_p, \vec{w}_2, \dots, \vec{w}_{p-1} \rangle.$$

Comparing this with the previous displayed equation, we see that the only possibility is that $d = \tau(c_p)$, as desired.

Claim 6. For $c_2, \ldots, c_n \in K$, we have

$$F(\langle c_2 \vec{v}_2 + \dots + c_n \vec{v}_n \rangle) = \langle \tau(c_2) \vec{w}_2 + \dots + \tau(c_n) \vec{w}_n \rangle.$$

Proof of claim. By Claim 1, we have

$$F(\langle c_2 \vec{v}_2 + \dots + c_n \vec{v}_n \rangle) \subset F(\langle \vec{v}_2, \dots, \vec{v}_n \rangle) = \langle \vec{w}_2, \dots, \vec{w}_n \rangle$$

Also, combining Claim 1 with Claim 5 we have

$$F(\langle c_2 \vec{v}_2 + \dots + c_n \vec{v}_n \rangle) \subset F(\langle \vec{v}_1, \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n \rangle)$$
$$= \langle \vec{w}_1, \vec{w}_1 + \tau(c_2) \vec{w}_2 + \dots + \tau(c_n) \vec{w}_n \rangle.$$

The only way both of these equations can hold is if

$$F(\langle c_2 \vec{v}_2 + \dots + c_n \vec{v}_n \rangle) = \langle \tau(c_2) \vec{w}_2 + \dots + \tau(c_n) \vec{w}_n \rangle,$$

as claimed.

The next three claims prove that τ is an automorphism of K. We remark that the proofs of Claims 7 and 8 are where we use the assumption $n \geq 3$.

Claim 7. For $c, d \in K$ we have $\tau(c+d) = \tau(c) + \tau(d)$.

Proof of claim. By Claim 5, we have

$$F(\langle \vec{v}_1 + (c+d)\vec{v}_2 + \vec{v}_3 \rangle) = \langle \vec{w}_1 + \tau(c+d)\vec{w}_2 + \vec{w}_3 \rangle.$$

Combining Claim 1 with Claims 5 and 6, we have

$$F(\langle \vec{v}_1 + (c+d)\vec{v}_2 + \vec{v}_3 \rangle) \subset F(\langle \vec{v}_1 + c\vec{v}_2, d\vec{v}_2 + \vec{v}_3 \rangle) = \langle \vec{w}_1 + \tau(c)\vec{w}_2, \tau(d)\vec{w}_2 + \vec{w}_3 \rangle.$$

Combining these two equations, we get that

$$\langle \vec{w}_1 + \tau(c+d)\vec{w}_2 + \vec{w}_3 \rangle \subset \langle \vec{w}_1 + \tau(c)\vec{w}_2, \tau(d)\vec{w}_2 + \vec{w}_3 \rangle.$$

The only way this can hold is if $\tau(c+d) = \tau(c) + \tau(d)$, as claimed.

Claim 8. For $c, d \in K$ we have $\tau(cd) = \tau(c)\tau(d)$.

Proof of claim. By Claim 5, we have

$$F(\langle \vec{v}_1 + cd\vec{v}_2 + c\vec{v}_3 \rangle) = \langle \vec{w}_1 + \tau(cd)\vec{w}_2 + \tau(c)\vec{w}_3 \rangle.$$

Combining Claim 1 with Claim 6, we have

$$F(\langle \vec{v}_1 + cd\vec{v}_2 + c\vec{v}_3 \rangle) \subset F(\langle \vec{v}_1, d\vec{v}_2 + \vec{v}_3 \rangle) = \langle \vec{w}_1, \tau(d)\vec{w}_2 + \vec{w}_3 \rangle.$$

Combining these two equations, we get that

$$\langle \vec{w}_1 + \tau(cd)\vec{w}_2 + \tau(c)\vec{w}_3 \rangle \subset \langle \vec{w}_1, \tau(d)\vec{w}_2 + \vec{w}_3 \rangle.$$

The only way this can hold is if $\tau(cd) = \tau(c)\tau(d)$, as claimed.

Claim 9. The map $\tau : K \to K$ is an automorphism of K.

Proof of claim. We know that τ is a set map satisfying $\tau(0) = 0$ and $\tau(1) = 1$. Claims 7 and 8 imply that τ is a ring homomorphism. Since K is a field, τ must be injective. We must prove that τ is surjective. Consider $\bar{c} \in K$. Since F is an automorphism of the set of lines in K^n , there exists some line $L \subset K^n$ such that $F(L) = \langle \vec{w}_1 + \bar{c}\vec{w}_2 \rangle$. Every line in K^n is either of the form $\langle \vec{v}_1 + c_2\vec{v}_2 + \cdots + c_n\vec{v}_n \rangle$ or $\langle c_2\vec{v}_2 + \cdots + c_n\vec{v}_n \rangle$ for some $c_2, \ldots, c_n \in K$. Examining Claims 5-6, we see that in fact $L = \langle \vec{v}_1 + c\vec{v}_2 \rangle$ for some $c \in K$ satisfying $\tau(c) = \bar{c}$, as desired.

We now have constructed our basis $\{\vec{w}_1, \ldots, \vec{w}_n\}$ for K^n and our automorphism $\tau: K \to K$, so we can define $f \in \Gamma L_n(K)$ via the formula

$$f(c_1\vec{v}_1 + \dots + c_n\vec{v}_n) = \tau(c_1)\vec{w}_1 + \dots + \tau(c_n)\vec{w}_n \qquad (c_1,\dots,c_n \in K).$$

Claim 10. The semilinear automorphism $f : K^n \to K^n$ induces the automorphism $F \in Aut(\mathcal{T}_n(K))$.

Proof of claim. Consider $V \in \mathcal{T}_n(K)$. We can write $V = \langle \vec{x}_1, \ldots, \vec{x}_p \rangle$, where each x_i is either of the form $\vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_n \vec{v}_n$ or of the form $c_2 \vec{v}_2 + \cdots + c_n \vec{v}_n$ for some $c_2, \ldots, c_n \in K$. Combining Claim 1 with Claims 5-6, we see that $F(V) = \langle f(\vec{x}_1), \ldots, f(\vec{x}_p) \rangle$, as desired. \Box

This completes the proof of the fundamental theorem of projective geometry.

3 Proof of fundamental theorem of symplectic projective geometry

Our proof of Theorem 2 is based on the following lemma. For a field K and $n \geq 3$, define $\mathcal{T}'_n(K)$ to be the subposet of $\mathcal{T}_n(K)$ consisting of subspaces $V \subset K^n$ such that $\dim(V) \in \{1, n-1\}$.

Lemma 3. Let K be a field and $n \ge 3$. Then $\operatorname{Aut}(\mathcal{T}'_n(K)) = P\Gamma L_n(K)$.

Proof. By the Fundamental Theorem of Projective Geometry (Theorem 1), it is enough to prove that every $F \in \operatorname{Aut}(\mathcal{T}'_n(K))$ can be extended to an automorphism of $\mathcal{T}_n(K)$. Consider $F \in \operatorname{Aut}(\mathcal{T}'_n(K))$.

Claim. Consider lines $L_1, \ldots, L_p, L'_1, \ldots, L'_q \subset K^n$. Then $\langle L_1, \ldots, L_p \rangle \subset \langle L'_1, \ldots, L'_q \rangle$ if and only if $\langle F(L_1), \ldots, F(L_p) \rangle \subset \langle F(L'_1), \ldots, F(L'_q) \rangle$.

Proof of claim. Since F is an automorphism of the poset $\mathcal{T}'_n(K)$, it is enough to express the condition $\langle L_1, \ldots, L_p \rangle \subset \langle L'_1, \ldots, L'_q \rangle$ entirely in terms of the poset structure on $\mathcal{T}'_n(K)$. This is easy:

• For all subspaces $V \subset K^n$ with $\dim(V) = n - 1$, if $L'_1, \ldots, L'_q \subset V$, then $L_1, \ldots, L_P \subset V$.

We now construct the desired extension of F to $\mathcal{T}_n(K)$. Consider a nonzero proper subspace $V \subset K^n$. Write $V = \langle L_1, \ldots, L_p \rangle$, where the L_i are lines in K^n . Set $F(V) = \langle F(L_1), \ldots, F(L_p) \rangle$. To see that this is well-defined, if we have a different expression $V = \langle L'_1, \ldots, L'_q \rangle$ with the L'_j lines in K^n , then applying the claim twice we see that

$$\langle F(L_1), \ldots, F(L_p) \rangle \subset \langle F(L'_1), \ldots, F(L'_q) \rangle$$

and

$$\langle F(L'_1), \ldots, F(L'_q) \rangle \subset \langle F(L_1), \ldots, F(L_p) \rangle,$$

so $\langle F(L_1), \ldots, F(L_p) \rangle = \langle F(L'_1), \ldots, F(L'_q) \rangle$ and F is well-defined. Another application of the claim shows that F is an automorphism of $\mathcal{T}_n(K)$, and we are done.

Proof of Theorem 2. Consider $F \in \operatorname{Aut}(\mathcal{TP}_{2g}(K))$. It is enough to show that F is induced by some element of $\Gamma P_{2g}(K)$. Define $F' \in \operatorname{Aut}(\mathcal{T}'_{2g}(K))$ as follows.

- For a subspace $L \subset K^{2g}$ with $\dim(L) = 1$, define F'(L) = F(L).
- For a subspace $V \subset K^{2g}$ with $\dim(V) = 2g 1$, write $V = L^{\perp}$ for some line $L \subset K^{2g}$ (the orthogonal complement is with respect to the symplectic form), and define $F'(V) = (F(L))^{\perp}$.

To see that $F' \in \operatorname{Aut}(\mathcal{T}'_{2g}(K))$, we must check two things.

- That F' is a bijection of $\mathcal{T}'_{2g}(K)$. It is a bijection on lines since F is a bijection on lines, and it is a bijection on codimension-1 subspaces since the \perp -relation is a bijection between lines and codimension-1 subspaces.
- That F preserves the poset structure. Observe that if $L, L' \subset K^{2g}$ satisfy $\dim(L) = \dim(L') = 1$, then $L' \subset L^{\perp}$ if and only there exists an isotropic subspace $W \subset K^{2g}$ such that $L, L' \subset W$. This condition is preserved by F, so $F(L') \subset F(L^{\perp})$ if and only if $L' \subset L^{\perp}$.

Lemma 3 implies that there exists some $f \in \Gamma L_{2g}(K)$ such that f induces F'.

For nonzero $\vec{v}, \vec{w} \in K^{2g}$, we have $\omega(\vec{v}, \vec{w}) = 0$ if and only if $\langle \vec{v} \rangle \subset \langle \vec{w} \rangle^{\perp}$. By assumption, this holds if and only if $\langle f(\vec{v}) \rangle \subset \langle f(\vec{w}) \rangle^{\perp}$, so we conclude that $\omega(\vec{v}, \vec{w}) = 0$ if and only if $\omega(f(\vec{v}), f(\vec{w})) = 0$, and thus that $f \in \Gamma P_{2g}(K)$.

It remains to check that f induces F. We know that F and f agree on lines. Consider an arbitrary isotropic subspace $V \subset K^{2g}$. Set $U = \{L \in \mathcal{TP}_{2g}(V) \mid L \subset V \text{ and } \dim(L) = 1\}$. In terms of the poset structure on $\mathcal{TP}_{2g}(V)$, the element V is characterized as the unique element containing all $L \in U$. Since F is an automorphism of $\mathcal{TP}_{2g}(V)$, we see that F(V) is the unique element containing all $L \in F(U)$. Clearly $f(V) \in \mathcal{TP}_{2g}(V)$ also is the unique element containing all $L \in F(U) = f(U)$, so we conclude that f(V) = F(V), as desired. \Box

References

- [1] E. Artin, Geometric algebra, Interscience Publishers, Inc., New York, 1957.
- [2] R. Baer, Linear algebra and projective geometry, Academic Press, New York, NY, 1952.
- [3] M. Pankov, Grassmannians of classical buildings, Algebra and Discrete Mathematics, 2, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.
- [4] G. von Staudt, Geometrie der Lage, Nürnberg, 1847.

Andrew Putman Department of Mathematics Rice University, MS 136 6100 Main St. Houston, TX 77005 andyp@math.rice.edu