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Abstract
We prove the fundamental theorem of projective geometry. In addi-

tion to the usual statement, we also prove a variant in the presence of
a symplectic form.

1 Introduction
Let K be a field. The fundamental theorem of projective geometry says that
an abstract automorphism of the set of lines in Kn which preserves “incidence
relations” must have a simple algebraic form. The most natural way of de-
scribing these incidence relations is via the associated Tits building.

Building. The Tits building of Kn, denoted Tn(K), is the poset of nonzero
proper subspaces of Kn. The following are two fundamental examples of au-
tomorphisms of Tn(K).

• The group GLn(K) acts linearly on Kn. This descends to an action of
PGLn(K) on Tn(K).

• Let {v⃗1, . . . , v⃗n} be a basis of Kn and let τ : K → K be a field automor-
phism. The map Kn → Kn defined via the formula

n∑
i=1

civ⃗i 7→
n∑

i=1
τ(ci)v⃗i

induces an automorphism of Tn(K).

It turns out that every automorphism of Tn(K) is a sort of combination of the
above types of automorphisms.

Semilinear automorphisms. A semilinear transformation of Kn is a set
map f : Kn → Kn for which there exists a field automorphism τ : K → K
such that

f(c1v⃗1 + c2v⃗2) = τ(c1)f(v⃗1) + τ(c2)f(v⃗2) (c1, c2 ∈ K, v⃗1, v⃗2 ∈ Kn).

A semilinear transformation f : Kn → Kn is a semilinear automorphism if
it is bijective. Let ΓLn(K) be the group of semilinear automorphisms of Kn.
This contains a normal subgroup isomorphic to K∗, namely the set of all
scalar matrices. The quotient of ΓLn(K) by this normal subgroup is denoted
PΓLn(K).
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The fundamental theorem. The group PΓLn(K) clearly acts on Tn(K).
The following theorem will be proved in §2.

Theorem 1 (Fundamental theorem of projective geometry). If K is a field
and n ≥ 3, then Aut(Tn(K)) = PΓLn(K).

This theorem has its origins in 19th century work of von Staudt [4]. I do not
know a precise reference for the above modern version of it, but on [2, p. 52] it
is attributed to Kamke. The proof we give is adapted from [1, Chapter II.10].
Another excellent source that contains a lot of other related results is [3].

Remark. In the classical literature, an automorphism of Tn(K) is called a
collineation.

Remark. Theorem 1 is false for n = 2 since T2(K) is a discrete poset.

Remark. The map ΓLn(K) → Aut(K) that takes f ∈ ΓLn(K) to the τ ∈
Aut(K) associated to f is surjective and has kernel GLn(K). We thus have a
short exact sequence

1 −→ GLn(K) −→ ΓLn(K) −→ Aut(K) −→ 1.

Fixing a basis {v⃗1, . . . , v⃗n} for Kn, we obtain a splitting Aut(K) → ΓLn(K)
of this short exact sequence that takes τ ∈ Aut(K) to the map Kn → Kn

defined via the formula
n∑

i=1
civ⃗i 7→

n∑
i=1

τ(ci)v⃗i.

It follows that ΓLn(K) = GLn(K) ⋊ Aut(K).

Symplectic building. There is also a natural symplectic analogue of the
fundamental theorem of projective geometry. Recall that a symplectic form
on Kn is an alternating bilinear form ω(·, ·) such that the map

Kn → (Kn)∗

v⃗ 7→ (w⃗ 7→ ω (v⃗, w⃗))

is an isomorphism. If a symplectic form on Kn exists, then n = 2g for some
g ≥ 1. Moreover, all symplectic forms on K2g are equivalent. If ω is a
symplectic form on K2g, then a subspace V ⊂ K2g is isotropic if ω(v⃗, w⃗) = 0
for all v⃗, w⃗ ∈ K2g. Isotropic subspace of K2g are at most g-dimensional. Define
T P2g(K) to be the poset of nonzero isotropic subspaces of K2g.

Symplectic semilinear. The symplectic group Sp2g(K) acts on T P2g(K),
but in fact the automorphism group is much larger. Define

ΓP2g(K) = {f ∈ ΓL2g(K) | ω(f(v⃗), f(w⃗)) = 0 if and only if ω(v⃗, w⃗) = 0}.

The group ΓP2g(K) contains a normal subgroup isomorphic to K∗ consisting
of scalar matrices; let PΓP2g(K) be the quotient.
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Fundamental theorem, symplectic. The group PΓP2g(K) clearly acts on
T P2g(K). The following theorem will be proved in §3.

Theorem 2 (Fundamental theorem of symplectic projective geometry). If K
is a field and g ≥ 2, then Aut(T P2g(K)) = PΓP2g(K).

Remark. Theorem 2 is false for g = 1 since in that case T P2g(K) is a discrete
poset.

2 Proof of fundamental theorem of projective
geometry

In this section, we prove Theorem 1. It is enough to prove that each element
of Aut(Tn(K)) is induced by some element of ΓLn(F ). To simplify some of
our arguments, we add the subspaces 0 and Kn to Tn(K); of course, any
automorphism of Tn(K) must fix 0 and Kn. Fixing some F ∈ Aut(Tn(K)), we
begin with the following observation.

Claim 1. Let a⃗1, . . . , a⃗p ∈ Kn be nonzero vectors. For 1 ≤ i ≤ p, let b⃗i ∈ Kn

be such that F (⟨⃗ai⟩) = ⟨⃗bi⟩. Then

F (⟨⃗a1, . . . , a⃗p⟩) = ⟨⃗b1, . . . , b⃗p⟩.

Proof of claim. The subspace ⟨⃗a1, . . . , a⃗p⟩ is the minimal subspace of Kn con-
taining each ⟨⃗ai⟩. Since F is an automorphism of the poset Tn(K), we see that
F (⟨⃗a1, . . . , a⃗p⟩) is the minimal subspace of Kn containing each F (⟨⃗ai⟩) = ⟨⃗bi⟩.
The claim follows.

Let {v⃗1, . . . , v⃗n} be a basis for Kn. To construct the desired f ∈ ΓLn(K),
we must construct a field automorphism τ : K → K and a basis {w⃗1, . . . , w⃗n}
for Kn; we can then define f : Kn → Kn via the formula

f(c1v⃗1 + · · · + cnv⃗n) = τ(c1)w⃗1 + · · · + τ(cn)w⃗n (c1, . . . , cn ∈ K). (2.1)

We start with the basis {w⃗1, . . . , w⃗n}. First, let w⃗1 ∈ Kn be any vector such
that F (⟨v⃗1⟩) = ⟨w⃗1⟩. The choice of w⃗1 will be our only arbitrary choice;
everything else will be determined by it (as it must since we are proving that
the automorphism group of Tn(K) is the projective version of the group of
semilinear automorphisms). We now construct {w⃗2, . . . , w⃗n}.

Claim 2. For 2 ≤ i ≤ n, there exists a unique w⃗i ∈ Kn such that

F (⟨v⃗i⟩) = ⟨w⃗i⟩ and F (⟨v⃗1 + v⃗i⟩) = ⟨w⃗1 + w⃗i⟩.

Moreover, the set {w⃗1, . . . , w⃗n} is a basis for Kn.

3



Proof of claim. Pick u⃗i ∈ Kn such that F (⟨v⃗i⟩) = ⟨u⃗i⟩. Using Claim 1, we
then have

F (⟨v⃗1 + v⃗i⟩) ⊂ F (⟨v⃗1, v⃗i⟩) = ⟨w⃗1, u⃗i⟩.
Since F (⟨v⃗1 + v⃗i⟩) ̸= ⟨u⃗i⟩, it follows that there exists a unique λi ∈ K such
that F (⟨v⃗1 + v⃗i⟩) = ⟨w⃗1 + λiu⃗i⟩. The desired vector is thus w⃗i := λiu⃗i. To
see that {w⃗1, . . . , w⃗n} is a basis for Kn, observe that we can use Claim 1 to
deduce that

Kn = F (Kn) = F (⟨v⃗1, . . . , v⃗n⟩) = ⟨w⃗1, . . . , w⃗n⟩.

The construction of the field automorphism τ : K → K will take several
steps. The next two claims construct it as a set map.

Claim 3. For 2 ≤ i ≤ n, there exists a unique set map τi : K → K such that

F (⟨v⃗1 + cv⃗i⟩) = ⟨w⃗1 + τi(c)w⃗i⟩ (c ∈ K).

Proof of claim. We define τi as follows (this construction is very similar to
that in Claim 2). Consider c ∈ K. We can apply Claim 1 to see that

F (⟨v⃗1 + cv⃗i⟩) ⊂ F (⟨v⃗1, v⃗i⟩) = ⟨w⃗1, w⃗i⟩.

Since F (⟨v⃗1 + cv⃗i⟩) ̸= ⟨w⃗i⟩, we see that there exists a unique τi(c) ∈ K such
that F (⟨v⃗1 + cv⃗i⟩) = ⟨w⃗1 + τi(c)w⃗i⟩.

We remark that the uniqueness of τi implies that τi(0) = 0 and τi(1) = 1.

Claim 4. For distinct 2 ≤ i, j ≤ n, we have τi = τj.

Proof of claim. Consider a nonzero c ∈ K. We have

⟨v⃗i − v⃗j⟩ ⊂ ⟨v⃗i, v⃗j⟩ and ⟨v⃗i − v⃗j⟩ ⊂ ⟨v⃗1 + cv⃗i, v⃗1 + cv⃗j⟩.

Applying Claim 1 twice, we see that

F (⟨v⃗i − v⃗j⟩) ⊂ ⟨w⃗i, w⃗j⟩ and F (⟨v⃗i − v⃗j⟩) ⊂ ⟨w⃗1 + τi(c)w⃗i, w⃗1 + τj(c)w⃗j⟩.

We have

⟨w⃗i, w⃗j⟩ ∩ ⟨w⃗1 + τi(c)w⃗i, w⃗1 + τj(c)w⃗j⟩ = ⟨τi(c)w⃗i − τj(c)w⃗j⟩,

so we deduce that

F (⟨v⃗i − v⃗j⟩) = ⟨τi(c)w⃗i − τj(c)w⃗j⟩.

The left hand side does not depend on c, so despite its appearance the right
hand side must also be independent of c. In particular, we have

⟨w⃗i − w⃗j⟩ = ⟨τi(1)w⃗i − τj(1)w⃗j⟩ = ⟨τi(c)w⃗i − τj(c)w⃗j⟩.

The only way this equality can hold is if τi(c) = τj(c), as desired.
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Let τ : K → K be the set map τ2 = τ3 = · · · = τn. We will prove that τ
is an automorphism of K below in Claims 7-9. First, however, we will prove
two claims whose main purpose will be to show that the element f ∈ ΓLn(K)
constructed via (2.1) actually induces F (but which will also be used to prove
that τ is an automorphism).

Claim 5. For c2, . . . , cn ∈ K, we have

F (⟨v⃗1 + c2v⃗2 + · · · + cnv⃗n⟩) = ⟨w⃗1 + τ(c2)w⃗2 + · · · + τ(cn)w⃗n⟩.

Proof of claim. We will prove that

F (⟨v⃗1 + c2v⃗2 + · · · + cpv⃗p⟩) = ⟨w⃗1 + τ(c2)w⃗2 + · · · + τ(cp)w⃗p⟩

for all 2 ≤ p ≤ n by induction on p. The base case p = 2 is the defining
property of τ , so assume that 2 < p ≤ n and that the above equation holds
for smaller values of p. Applying Claim 1 and our inductive hypothesis, we
see that

F (⟨v⃗1 + c2v⃗2 + · · · + cpv⃗p⟩) ⊂F (⟨v⃗1 + c2v⃗2 + · · · + cp−1v⃗p−1, v⃗p⟩)
=⟨w⃗1 + τ(c2)w⃗2 + · · · + τ(cp−1)w⃗p−1, w⃗p⟩.

Moreover, F (⟨v⃗1 +c2v⃗2 + · · ·+cpv⃗p⟩) is not ⟨w⃗p⟩, so we deduce that there exists
some d ∈ K such that

F (⟨v⃗1 + c2v⃗2 + · · · + cpv⃗p⟩) = ⟨w⃗1 + τ(c2)w⃗2 + · · · + τ(cp−1)w⃗p−1 + dw⃗p⟩.

We want to prove that d = τ(cp). Applying Claim 1 and the defining property
of τ , we see that

F (⟨v⃗1 + c2v⃗2 + · · · + cpv⃗p⟩) ⊂F (⟨v⃗1 + cpv⃗p, v⃗2, . . . , v⃗p−1⟩)
=⟨w⃗1 + τ(cp)w⃗p, w⃗2, . . . , w⃗p−1⟩.

Comparing this with the previous displayed equation, we see that the only
possibility is that d = τ(cp), as desired.

Claim 6. For c2, . . . , cn ∈ K, we have

F (⟨c2v⃗2 + · · · + cnv⃗n⟩) = ⟨τ(c2)w⃗2 + · · · + τ(cn)w⃗n⟩.

Proof of claim. By Claim 1, we have

F (⟨c2v⃗2 + · · · + cnv⃗n⟩) ⊂ F (⟨v⃗2, . . . , v⃗n⟩) = ⟨w⃗2, . . . , w⃗n⟩.

Also, combining Claim 1 with Claim 5 we have

F (⟨c2v⃗2 + · · · + cnv⃗n⟩) ⊂F (⟨v⃗1, v⃗1 + c2v⃗2 + · · · + cnv⃗n⟩)
=⟨w⃗1, w⃗1 + τ(c2)w⃗2 + · · · + τ(cn)w⃗n⟩.

The only way both of these equations can hold is if

F (⟨c2v⃗2 + · · · + cnv⃗n⟩) = ⟨τ(c2)w⃗2 + · · · + τ(cn)w⃗n⟩,

as claimed.
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The next three claims prove that τ is an automorphism of K. We remark
that the proofs of Claims 7 and 8 are where we use the assumption n ≥ 3.

Claim 7. For c, d ∈ K we have τ(c + d) = τ(c) + τ(d).

Proof of claim. By Claim 5, we have

F (⟨v⃗1 + (c + d)v⃗2 + v⃗3⟩) = ⟨w⃗1 + τ(c + d)w⃗2 + w⃗3⟩.

Combining Claim 1 with Claims 5 and 6, we have

F (⟨v⃗1 + (c + d)v⃗2 + v⃗3⟩) ⊂F (⟨v⃗1 + cv⃗2, dv⃗2 + v⃗3⟩)
=⟨w⃗1 + τ(c)w⃗2, τ(d)w⃗2 + w⃗3⟩.

Combining these two equations, we get that

⟨w⃗1 + τ(c + d)w⃗2 + w⃗3⟩ ⊂ ⟨w⃗1 + τ(c)w⃗2, τ(d)w⃗2 + w⃗3⟩.

The only way this can hold is if τ(c + d) = τ(c) + τ(d), as claimed.

Claim 8. For c, d ∈ K we have τ(cd) = τ(c)τ(d).

Proof of claim. By Claim 5, we have

F (⟨v⃗1 + cdv⃗2 + cv⃗3⟩) = ⟨w⃗1 + τ(cd)w⃗2 + τ(c)w⃗3⟩.

Combining Claim 1 with Claim 6, we have

F (⟨v⃗1 + cdv⃗2 + cv⃗3⟩) ⊂ F (⟨v⃗1, dv⃗2 + v⃗3⟩) = ⟨w⃗1, τ(d)w⃗2 + w⃗3⟩.

Combining these two equations, we get that

⟨w⃗1 + τ(cd)w⃗2 + τ(c)w⃗3⟩ ⊂ ⟨w⃗1, τ(d)w⃗2 + w⃗3⟩.

The only way this can hold is if τ(cd) = τ(c)τ(d), as claimed.

Claim 9. The map τ : K → K is an automorphism of K.

Proof of claim. We know that τ is a set map satisfying τ(0) = 0 and τ(1) = 1.
Claims 7 and 8 imply that τ is a ring homomorphism. Since K is a field,
τ must be injective. We must prove that τ is surjective. Consider c ∈ K.
Since F is an automorphism of the set of lines in Kn, there exists some line
L ⊂ Kn such that F (L) = ⟨w⃗1 + cw⃗2⟩. Every line in Kn is either of the
form ⟨v⃗1 + c2v⃗2 + · · · + cnv⃗n⟩ or ⟨c2v⃗2 + · · · + cnv⃗n⟩ for some c2, . . . , cn ∈ K.
Examining Claims 5-6, we see that in fact L = ⟨v⃗1 + cv⃗2⟩ for some c ∈ K
satisfying τ(c) = c, as desired.

We now have constructed our basis {w⃗1, . . . , w⃗n} for Kn and our automor-
phism τ : K → K, so we can define f ∈ ΓLn(K) via the formula

f(c1v⃗1 + · · · + cnv⃗n) = τ(c1)w⃗1 + · · · + τ(cn)w⃗n (c1, . . . , cn ∈ K).
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Claim 10. The semilinear automorphism f : Kn → Kn induces the automor-
phism F ∈ Aut(Tn(K)).

Proof of claim. Consider V ∈ Tn(K). We can write V = ⟨x⃗1, . . . , x⃗p⟩, where
each xi is either of the form v⃗1 +c2v⃗2 + · · ·+cnv⃗n or of the form c2v⃗2 + · · ·+cnv⃗n

for some c2, . . . , cn ∈ K. Combining Claim 1 with Claims 5-6, we see that
F (V ) = ⟨f(x⃗1), . . . , f(x⃗p)⟩, as desired.

This completes the proof of the fundamental theorem of projective geome-
try.

3 Proof of fundamental theorem of symplectic
projective geometry

Our proof of Theorem 2 is based on the following lemma. For a field K and
n ≥ 3, define T ′

n(K) to be the subposet of Tn(K) consisting of subspaces
V ⊂ Kn such that dim(V ) ∈ {1, n − 1}.

Lemma 3. Let K be a field and n ≥ 3. Then Aut(T ′
n(K)) = PΓLn(K).

Proof. By the Fundamental Theorem of Projective Geometry (Theorem 1),
it is enough to prove that every F ∈ Aut(T ′

n(K)) can be extended to an
automorphism of Tn(K). Consider F ∈ Aut(T ′

n(K)).

Claim. Consider lines L1, . . . , Lp, L′
1, . . . , L′

q ⊂ Kn. Then ⟨L1, . . . , Lp⟩ ⊂
⟨L′

1, . . . , L′
q⟩ if and only if ⟨F (L1), . . . , F (Lp)⟩ ⊂ ⟨F (L′

1), . . . , F (L′
q)⟩.

Proof of claim. Since F is an automorphism of the poset T ′
n(K), it is enough

to express the condition ⟨L1, . . . , Lp⟩ ⊂ ⟨L′
1, . . . , L′

q⟩ entirely in terms of the
poset structure on T ′

n(K). This is easy:

• For all subspaces V ⊂ Kn with dim(V ) = n − 1, if L′
1, . . . , L′

q ⊂ V , then
L1, . . . , LP ⊂ V .

We now construct the desired extension of F to Tn(K). Consider a nonzero
proper subspace V ⊂ Kn. Write V = ⟨L1, . . . , Lp⟩, where the Li are lines in
Kn. Set F (V ) = ⟨F (L1), . . . , F (Lp)⟩. To see that this is well-defined, if we
have a different expression V = ⟨L′

1, . . . , L′
q⟩ with the L′

j lines in Kn, then
applying the claim twice we see that

⟨F (L1), . . . , F (Lp)⟩ ⊂ ⟨F (L′
1), . . . , F (L′

q)⟩

and
⟨F (L′

1), . . . , F (L′
q)⟩ ⊂ ⟨F (L1), . . . , F (Lp)⟩,

so ⟨F (L1), . . . , F (Lp)⟩ = ⟨F (L′
1), . . . , F (L′

q)⟩ and F is well-defined. Another
application of the claim shows that F is an automorphism of Tn(K), and we
are done.
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Proof of Theorem 2. Consider F ∈ Aut(T P2g(K)). It is enough to show that
F is induced by some element of ΓP2g(K). Define F ′ ∈ Aut(T ′

2g(K)) as follows.

• For a subspace L ⊂ K2g with dim(L) = 1, define F ′(L) = F (L).

• For a subspace V ⊂ K2g with dim(V ) = 2g − 1, write V = L⊥ for
some line L ⊂ K2g (the orthogonal complement is with respect to the
symplectic form), and define F ′(V ) = (F (L))⊥.

To see that F ′ ∈ Aut(T ′
2g(K)), we must check two things.

• That F ′ is a bijection of T ′
2g(K). It is a bijection on lines since F is a

bijection on lines, and it is a bijection on codimension-1 subspaces since
the ⊥-relation is a bijection between lines and codimension-1 subspaces.

• That F preserves the poset structure. Observe that if L, L′ ⊂ K2g satisfy
dim(L) = dim(L′) = 1, then L′ ⊂ L⊥ if and only there exists an isotropic
subspace W ⊂ K2g such that L, L′ ⊂ W . This condition is preserved by
F , so F (L′) ⊂ F (L⊥) if and only if L′ ⊂ L⊥.

Lemma 3 implies that there exists some f ∈ ΓL2g(K) such that f induces F ′.
For nonzero v⃗, w⃗ ∈ K2g, we have ω(v⃗, w⃗) = 0 if and only if ⟨v⃗⟩ ⊂ ⟨w⃗⟩⊥. By

assumption, this holds if and only if ⟨f(v⃗)⟩ ⊂ ⟨f(w⃗)⟩⊥, so we conclude that
ω(v⃗, w⃗) = 0 if and only if ω(f(v⃗), f(w⃗)) = 0, and thus that f ∈ ΓP2g(K).

It remains to check that f induces F . We know that F and f agree
on lines. Consider an arbitrary isotropic subspace V ⊂ K2g. Set U =
{L ∈ T P2g(V ) | L ⊂ V and dim(L) = 1}. In terms of the poset structure on
T P2g(V ), the element V is characterized as the unique element containing
all L ∈ U . Since F is an automorphism of T P2g(V ), we see that F (V ) is
the unique element containing all L ∈ F (U). Clearly f(V ) ∈ T P2g(V ) also
is the unique element containing all L ∈ F (U) = f(U), so we conclude that
f(V ) = F (V ), as desired.
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