The fundamental theorem of projective geometry

Andrew Putman

Abstract

We prove the fundamental theorem of projective geometry. In addition to the usual statement, we also prove a variant in the presence of a symplectic form.

1 Introduction

Let K be a field. The fundamental theorem of projective geometry says that an abstract automorphism of the set of lines in K^{n} which preserves "incidence relations" must have a simple algebraic form. The most natural way of describing these incidence relations is via the associated Tits building.

Building. The Tits building of K^{n}, denoted $\mathcal{T}_{n}(K)$, is the poset of nonzero proper subspaces of K^{n}. The following are two fundamental examples of automorphisms of $\mathcal{T}_{n}(K)$.

- The group $\mathrm{GL}_{n}(K)$ acts linearly on K^{n}. This descends to an action of $\mathrm{PGL}_{n}(K)$ on $\mathcal{T}_{n}(K)$.
- Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis of K^{n} and let $\tau: K \rightarrow K$ be a field automorphism. The map $K^{n} \rightarrow K^{n}$ defined via the formula

$$
\sum_{i=1}^{n} c_{i} \vec{v}_{i} \mapsto \sum_{i=1}^{n} \tau\left(c_{i}\right) \vec{v}_{i}
$$

induces an automorphism of $\mathcal{T}_{n}(K)$.
It turns out that every automorphism of $\mathcal{T}_{n}(K)$ is a sort of combination of the above types of automorphisms.

Semilinear automorphisms. A semilinear transformation of K^{n} is a set map $f: K^{n} \rightarrow K^{n}$ for which there exists a field automorphism $\tau: K \rightarrow K$ such that

$$
f\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=\tau\left(c_{1}\right) f\left(\vec{v}_{1}\right)+\tau\left(c_{2}\right) f\left(\vec{v}_{2}\right) \quad\left(c_{1}, c_{2} \in K, \vec{v}_{1}, \vec{v}_{2} \in K^{n}\right)
$$

A semilinear transformation $f: K^{n} \rightarrow K^{n}$ is a semilinear automorphism if it is bijective. Let $\Gamma \mathrm{L}_{n}(K)$ be the group of semilinear automorphisms of K^{n}. This contains a normal subgroup isomorphic to K^{*}, namely the set of all scalar matrices. The quotient of $\Gamma \mathrm{L}_{n}(K)$ by this normal subgroup is denoted $\mathrm{P} \Gamma \mathrm{L}_{n}(K)$.

The fundamental theorem. The group $\mathrm{P}^{\mathrm{L}} \mathrm{L}_{n}(K)$ clearly acts on $\mathcal{T}_{n}(K)$. The following theorem will be proved in $\S 2$.
Theorem 1 (Fundamental theorem of projective geometry). If K is a field and $n \geq 3$, then $\operatorname{Aut}\left(\mathcal{T}_{n}(K)\right)=P \Gamma L_{n}(K)$.

This theorem has its origins in $19^{\text {th }}$ century work of von Staudt [4]. I do not know a precise reference for the above modern version of it, but on [2, p. 52] it is attributed to Kamke. The proof we give is adapted from [1, Chapter II.10]. Another excellent source that contains a lot of other related results is [3].

Remark. In the classical literature, an automorphism of $\mathcal{T}_{n}(K)$ is called a collineation.

Remark. Theorem 1 is false for $n=2$ since $\mathcal{T}_{2}(K)$ is a discrete poset.
Remark. The map $\Gamma \mathrm{L}_{n}(K) \rightarrow \operatorname{Aut}(K)$ that takes $f \in \Gamma \mathrm{~L}_{n}(K)$ to the $\tau \in$ $\operatorname{Aut}(K)$ associated to f is surjective and has kernel $\mathrm{GL}_{n}(K)$. We thus have a short exact sequence

$$
1 \longrightarrow \mathrm{GL}_{n}(K) \longrightarrow \Gamma \mathrm{L}_{n}(K) \longrightarrow \operatorname{Aut}(K) \longrightarrow 1
$$

Fixing a basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ for K^{n}, we obtain a splitting $\operatorname{Aut}(K) \rightarrow \Gamma L_{n}(K)$ of this short exact sequence that takes $\tau \in \operatorname{Aut}(K)$ to the map $K^{n} \rightarrow K^{n}$ defined via the formula

$$
\sum_{i=1}^{n} c_{i} \vec{v}_{i} \mapsto \sum_{i=1}^{n} \tau\left(c_{i}\right) \vec{v}_{i}
$$

It follows that $\Gamma \mathrm{L}_{n}(K)=\mathrm{GL}_{n}(K) \rtimes \operatorname{Aut}(K)$.
Symplectic building. There is also a natural symplectic analogue of the fundamental theorem of projective geometry. Recall that a symplectic form on K^{n} is an alternating bilinear form $\omega(\cdot, \cdot)$ such that the map

$$
\begin{aligned}
K^{n} & \rightarrow\left(K^{n}\right)^{*} \\
\vec{v} & \mapsto(\vec{w} \mapsto \omega(\vec{v}, \vec{w}))
\end{aligned}
$$

is an isomorphism. If a symplectic form on K^{n} exists, then $n=2 g$ for some $g \geq 1$. Moreover, all symplectic forms on $K^{2 g}$ are equivalent. If ω is a symplectic form on $K^{2 g}$, then a subspace $V \subset K^{2 g}$ is isotropic if $\omega(\vec{v}, \vec{w})=0$ for all $\vec{v}, \vec{w} \in K^{2 g}$. Isotropic subspace of $K^{2 g}$ are at most g-dimensional. Define $\mathcal{T} \mathcal{P}_{2 g}(K)$ to be the poset of nonzero isotropic subspaces of $K^{2 g}$.

Symplectic semilinear. The symplectic group $\mathrm{Sp}_{2 g}(K)$ acts on $\mathcal{T} \mathcal{P}_{2 g}(K)$, but in fact the automorphism group is much larger. Define

$$
\Gamma \mathrm{P}_{2 g}(K)=\left\{f \in \Gamma \mathrm{~L}_{2 g}(K) \mid \omega(f(\vec{v}), f(\vec{w}))=0 \text { if and only if } \omega(\vec{v}, \vec{w})=0\right\} .
$$

The group $\Gamma \mathrm{P}_{2 g}(K)$ contains a normal subgroup isomorphic to K^{*} consisting of scalar matrices; let $\mathrm{P}^{\mathrm{P}} \mathrm{P}_{2 g}(K)$ be the quotient.

Fundamental theorem, symplectic. The group $\mathrm{P}^{\mathrm{P}} \mathrm{P}_{2 g}(K)$ clearly acts on $\mathcal{T} \mathcal{P}_{2 g}(K)$. The following theorem will be proved in $\S 3$.

Theorem 2 (Fundamental theorem of symplectic projective geometry). If K is a field and $g \geq 2$, then $\operatorname{Aut}\left(\mathcal{T} \mathcal{P}_{2 g}(K)\right)=P \Gamma P_{2 g}(K)$.

Remark. Theorem 2 is false for $g=1$ since in that case $\mathcal{T} \mathcal{P}_{2 g}(K)$ is a discrete poset.

2 Proof of fundamental theorem of projective geometry

In this section, we prove Theorem 1. It is enough to prove that each element of $\operatorname{Aut}\left(\mathcal{T}_{n}(K)\right)$ is induced by some element of $\Gamma \mathrm{L}_{n}(F)$. To simplify some of our arguments, we add the subspaces 0 and K^{n} to $\mathcal{T}_{n}(K)$; of course, any automorphism of $\mathcal{T}_{n}(K)$ must fix 0 and K^{n}. Fixing some $F \in \operatorname{Aut}\left(\mathcal{T}_{n}(K)\right)$, we begin with the following observation.

Claim 1. Let $\vec{a}_{1}, \ldots, \vec{a}_{p} \in K^{n}$ be nonzero vectors. For $1 \leq i \leq p$, let $\vec{b}_{i} \in K^{n}$ be such that $F\left(\left\langle\vec{a}_{i}\right\rangle\right)=\left\langle\vec{b}_{i}\right\rangle$. Then

$$
F\left(\left\langle\vec{a}_{1}, \ldots, \vec{a}_{p}\right\rangle\right)=\left\langle\vec{b}_{1}, \ldots, \vec{b}_{p}\right\rangle
$$

Proof of claim. The subspace $\left\langle\vec{a}_{1}, \ldots, \vec{a}_{p}\right\rangle$ is the minimal subspace of K^{n} containing each $\left\langle\vec{a}_{i}\right\rangle$. Since F is an automorphism of the poset $\mathcal{T}_{n}(K)$, we see that $F\left(\left\langle\vec{a}_{1}, \ldots, \vec{a}_{p}\right\rangle\right)$ is the minimal subspace of K^{n} containing each $F\left(\left\langle\vec{a}_{i}\right\rangle\right)=\left\langle\vec{b}_{i}\right\rangle$. The claim follows.

Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis for K^{n}. To construct the desired $f \in \Gamma L_{n}(K)$, we must construct a field automorphism $\tau: K \rightarrow K$ and a basis $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$ for K^{n}; we can then define $f: K^{n} \rightarrow K^{n}$ via the formula

$$
\begin{equation*}
f\left(c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}\right)=\tau\left(c_{1}\right) \vec{w}_{1}+\cdots+\tau\left(c_{n}\right) \vec{w}_{n} \quad\left(c_{1}, \ldots, c_{n} \in K\right) . \tag{2.1}
\end{equation*}
$$

We start with the basis $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$. First, let $\vec{w}_{1} \in K^{n}$ be any vector such that $F\left(\left\langle\vec{v}_{1}\right\rangle\right)=\left\langle\vec{w}_{1}\right\rangle$. The choice of \vec{w}_{1} will be our only arbitrary choice; everything else will be determined by it (as it must since we are proving that the automorphism group of $\mathcal{T}_{n}(K)$ is the projective version of the group of semilinear automorphisms). We now construct $\left\{\vec{w}_{2}, \ldots, \vec{w}_{n}\right\}$.

Claim 2. For $2 \leq i \leq n$, there exists a unique $\vec{w}_{i} \in K^{n}$ such that

$$
F\left(\left\langle\vec{v}_{i}\right\rangle\right)=\left\langle\vec{w}_{i}\right\rangle \quad \text { and } \quad F\left(\left\langle\vec{v}_{1}+\vec{v}_{i}\right\rangle\right)=\left\langle\vec{w}_{1}+\vec{w}_{i}\right\rangle .
$$

Moreover, the set $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$ is a basis for K^{n}.

Proof of claim. Pick $\vec{u}_{i} \in K^{n}$ such that $F\left(\left\langle\vec{v}_{i}\right\rangle\right)=\left\langle\vec{u}_{i}\right\rangle$. Using Claim 1, we then have

$$
F\left(\left\langle\vec{v}_{1}+\vec{v}_{i}\right\rangle\right) \subset F\left(\left\langle\vec{v}_{1}, \vec{v}_{i}\right\rangle\right)=\left\langle\vec{w}_{1}, \vec{u}_{i}\right\rangle .
$$

Since $F\left(\left\langle\vec{v}_{1}+\vec{v}_{i}\right\rangle\right) \neq\left\langle\vec{u}_{i}\right\rangle$, it follows that there exists a unique $\lambda_{i} \in K$ such that $F\left(\left\langle\vec{v}_{1}+\vec{v}_{i}\right\rangle\right)=\left\langle\vec{w}_{1}+\lambda_{i} \vec{u}_{i}\right\rangle$. The desired vector is thus $\vec{w}_{i}:=\lambda_{i} \vec{u}_{i}$. To see that $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$ is a basis for K^{n}, observe that we can use Claim 1 to deduce that

$$
K^{n}=F\left(K^{n}\right)=F\left(\left\langle\vec{v}_{1}, \ldots, \vec{v}_{n}\right\rangle\right)=\left\langle\vec{w}_{1}, \ldots, \vec{w}_{n}\right\rangle .
$$

The construction of the field automorphism $\tau: K \rightarrow K$ will take several steps. The next two claims construct it as a set map.

Claim 3. For $2 \leq i \leq n$, there exists a unique set map $\tau_{i}: K \rightarrow K$ such that

$$
F\left(\left\langle\vec{v}_{1}+c \vec{v}_{i}\right\rangle\right)=\left\langle\vec{w}_{1}+\tau_{i}(c) \vec{w}_{i}\right\rangle \quad(c \in K) .
$$

Proof of claim. We define τ_{i} as follows (this construction is very similar to that in Claim 2). Consider $c \in K$. We can apply Claim 1 to see that

$$
F\left(\left\langle\vec{v}_{1}+c \vec{v}_{i}\right\rangle\right) \subset F\left(\left\langle\vec{v}_{1}, \vec{v}_{i}\right\rangle\right)=\left\langle\vec{w}_{1}, \vec{w}_{i}\right\rangle .
$$

Since $F\left(\left\langle\vec{v}_{1}+c \vec{v}_{i}\right\rangle\right) \neq\left\langle\vec{w}_{i}\right\rangle$, we see that there exists a unique $\tau_{i}(c) \in K$ such that $F\left(\left\langle\vec{v}_{1}+c \vec{v}_{i}\right\rangle\right)=\left\langle\vec{w}_{1}+\tau_{i}(c) \vec{w}_{i}\right\rangle$.

We remark that the uniqueness of τ_{i} implies that $\tau_{i}(0)=0$ and $\tau_{i}(1)=1$.
Claim 4. For distinct $2 \leq i, j \leq n$, we have $\tau_{i}=\tau_{j}$.
Proof of claim. Consider a nonzero $c \in K$. We have

$$
\left\langle\vec{v}_{i}-\vec{v}_{j}\right\rangle \subset\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle \quad \text { and } \quad\left\langle\vec{v}_{i}-\vec{v}_{j}\right\rangle \subset\left\langle\vec{v}_{1}+c \vec{v}_{i}, \vec{v}_{1}+c \vec{v}_{j}\right\rangle .
$$

Applying Claim 1 twice, we see that

$$
F\left(\left\langle\vec{v}_{i}-\vec{v}_{j}\right\rangle\right) \subset\left\langle\vec{w}_{i}, \vec{w}_{j}\right\rangle \quad \text { and } \quad F\left(\left\langle\vec{v}_{i}-\vec{v}_{j}\right\rangle\right) \subset\left\langle\vec{w}_{1}+\tau_{i}(c) \vec{w}_{i}, \vec{w}_{1}+\tau_{j}(c) \vec{w}_{j}\right\rangle .
$$

We have

$$
\left\langle\vec{w}_{i}, \vec{w}_{j}\right\rangle \cap\left\langle\vec{w}_{1}+\tau_{i}(c) \vec{w}_{i}, \vec{w}_{1}+\tau_{j}(c) \vec{w}_{j}\right\rangle=\left\langle\tau_{i}(c) \vec{w}_{i}-\tau_{j}(c) \vec{w}_{j}\right\rangle,
$$

so we deduce that

$$
F\left(\left\langle\vec{v}_{i}-\vec{v}_{j}\right\rangle\right)=\left\langle\tau_{i}(c) \vec{w}_{i}-\tau_{j}(c) \vec{w}_{j}\right\rangle .
$$

The left hand side does not depend on c, so despite its appearance the right hand side must also be independent of c. In particular, we have

$$
\left\langle\vec{w}_{i}-\vec{w}_{j}\right\rangle=\left\langle\tau_{i}(1) \vec{w}_{i}-\tau_{j}(1) \vec{w}_{j}\right\rangle=\left\langle\tau_{i}(c) \vec{w}_{i}-\tau_{j}(c) \vec{w}_{j}\right\rangle .
$$

The only way this equality can hold is if $\tau_{i}(c)=\tau_{j}(c)$, as desired.

Let $\tau: K \rightarrow K$ be the set map $\tau_{2}=\tau_{3}=\cdots=\tau_{n}$. We will prove that τ is an automorphism of K below in Claims 7-9. First, however, we will prove two claims whose main purpose will be to show that the element $f \in \Gamma \mathrm{~L}_{n}(K)$ constructed via (2.1) actually induces F (but which will also be used to prove that τ is an automorphism).

Claim 5. For $c_{2}, \ldots, c_{n} \in K$, we have

$$
F\left(\left\langle\vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right\rangle\right)=\left\langle\vec{w}_{1}+\tau\left(c_{2}\right) \vec{w}_{2}+\cdots+\tau\left(c_{n}\right) \vec{w}_{n}\right\rangle .
$$

Proof of claim. We will prove that

$$
F\left(\left\langle\vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}\right\rangle\right)=\left\langle\vec{w}_{1}+\tau\left(c_{2}\right) \vec{w}_{2}+\cdots+\tau\left(c_{p}\right) \vec{w}_{p}\right\rangle
$$

for all $2 \leq p \leq n$ by induction on p. The base case $p=2$ is the defining property of τ, so assume that $2<p \leq n$ and that the above equation holds for smaller values of p. Applying Claim 1 and our inductive hypothesis, we see that

$$
\begin{aligned}
F\left(\left\langle\vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}\right\rangle\right) & \subset F\left(\left\langle\vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p-1} \vec{v}_{p-1}, \vec{v}_{p}\right\rangle\right) \\
& =\left\langle\vec{w}_{1}+\tau\left(c_{2}\right) \vec{w}_{2}+\cdots+\tau\left(c_{p-1}\right) \vec{w}_{p-1}, \vec{w}_{p}\right\rangle .
\end{aligned}
$$

Moreover, $F\left(\left\langle\vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}\right\rangle\right)$ is not $\left\langle\vec{w}_{p}\right\rangle$, so we deduce that there exists some $d \in K$ such that

$$
F\left(\left\langle\vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}\right\rangle\right)=\left\langle\vec{w}_{1}+\tau\left(c_{2}\right) \vec{w}_{2}+\cdots+\tau\left(c_{p-1}\right) \vec{w}_{p-1}+d \vec{w}_{p}\right\rangle .
$$

We want to prove that $d=\tau\left(c_{p}\right)$. Applying Claim 1 and the defining property of τ, we see that

$$
\begin{aligned}
F\left(\left\langle\vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}\right\rangle\right) & \subset F\left(\left\langle\vec{v}_{1}+c_{p} \vec{v}_{p}, \vec{v}_{2}, \ldots, \vec{v}_{p-1}\right\rangle\right) \\
& =\left\langle\vec{w}_{1}+\tau\left(c_{p}\right) \vec{w}_{p}, \vec{w}_{2}, \ldots, \vec{w}_{p-1}\right\rangle .
\end{aligned}
$$

Comparing this with the previous displayed equation, we see that the only possibility is that $d=\tau\left(c_{p}\right)$, as desired.
Claim 6. For $c_{2}, \ldots, c_{n} \in K$, we have

$$
F\left(\left\langle c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right\rangle\right)=\left\langle\tau\left(c_{2}\right) \vec{w}_{2}+\cdots+\tau\left(c_{n}\right) \vec{w}_{n}\right\rangle .
$$

Proof of claim. By Claim 1, we have

$$
F\left(\left\langle c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right\rangle\right) \subset F\left(\left\langle\vec{v}_{2}, \ldots, \vec{v}_{n}\right\rangle\right)=\left\langle\vec{w}_{2}, \ldots, \vec{w}_{n}\right\rangle .
$$

Also, combining Claim 1 with Claim 5 we have

$$
\begin{aligned}
F\left(\left\langle c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right\rangle\right) & \subset F\left(\left\langle\vec{v}_{1}, \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right\rangle\right) \\
& =\left\langle\vec{w}_{1}, \vec{w}_{1}+\tau\left(c_{2}\right) \vec{w}_{2}+\cdots+\tau\left(c_{n}\right) \vec{w}_{n}\right\rangle .
\end{aligned}
$$

The only way both of these equations can hold is if

$$
F\left(\left\langle c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right\rangle\right)=\left\langle\tau\left(c_{2}\right) \vec{w}_{2}+\cdots+\tau\left(c_{n}\right) \vec{w}_{n}\right\rangle,
$$

as claimed.

The next three claims prove that τ is an automorphism of K. We remark that the proofs of Claims 7 and 8 are where we use the assumption $n \geq 3$.

Claim 7. For $c, d \in K$ we have $\tau(c+d)=\tau(c)+\tau(d)$.
Proof of claim. By Claim 5, we have

$$
F\left(\left\langle\vec{v}_{1}+(c+d) \vec{v}_{2}+\vec{v}_{3}\right\rangle\right)=\left\langle\vec{w}_{1}+\tau(c+d) \vec{w}_{2}+\vec{w}_{3}\right\rangle .
$$

Combining Claim 1 with Claims 5 and 6, we have

$$
\begin{aligned}
F\left(\left\langle\vec{v}_{1}+(c+d) \vec{v}_{2}+\vec{v}_{3}\right\rangle\right) & \subset F\left(\left\langle\vec{v}_{1}+c \vec{v}_{2}, d \vec{v}_{2}+\vec{v}_{3}\right\rangle\right) \\
& =\left\langle\vec{w}_{1}+\tau(c) \vec{w}_{2}, \tau(d) \vec{w}_{2}+\vec{w}_{3}\right\rangle
\end{aligned}
$$

Combining these two equations, we get that

$$
\left\langle\vec{w}_{1}+\tau(c+d) \vec{w}_{2}+\vec{w}_{3}\right\rangle \subset\left\langle\vec{w}_{1}+\tau(c) \vec{w}_{2}, \tau(d) \vec{w}_{2}+\vec{w}_{3}\right\rangle .
$$

The only way this can hold is if $\tau(c+d)=\tau(c)+\tau(d)$, as claimed.
Claim 8. For $c, d \in K$ we have $\tau(c d)=\tau(c) \tau(d)$.
Proof of claim. By Claim 5, we have

$$
F\left(\left\langle\vec{v}_{1}+c d \vec{v}_{2}+c \vec{v}_{3}\right\rangle\right)=\left\langle\vec{w}_{1}+\tau(c d) \vec{w}_{2}+\tau(c) \vec{w}_{3}\right\rangle .
$$

Combining Claim 1 with Claim 6, we have

$$
F\left(\left\langle\vec{v}_{1}+c d \vec{v}_{2}+c \vec{v}_{3}\right\rangle\right) \subset F\left(\left\langle\vec{v}_{1}, d \vec{v}_{2}+\vec{v}_{3}\right\rangle\right)=\left\langle\vec{w}_{1}, \tau(d) \vec{w}_{2}+\vec{w}_{3}\right\rangle .
$$

Combining these two equations, we get that

$$
\left\langle\vec{w}_{1}+\tau(c d) \vec{w}_{2}+\tau(c) \vec{w}_{3}\right\rangle \subset\left\langle\vec{w}_{1}, \tau(d) \vec{w}_{2}+\vec{w}_{3}\right\rangle .
$$

The only way this can hold is if $\tau(c d)=\tau(c) \tau(d)$, as claimed.
Claim 9. The map $\tau: K \rightarrow K$ is an automorphism of K.
Proof of claim. We know that τ is a set map satisfying $\tau(0)=0$ and $\tau(1)=1$. Claims 7 and 8 imply that τ is a ring homomorphism. Since K is a field, τ must be injective. We must prove that τ is surjective. Consider $\bar{c} \in K$. Since F is an automorphism of the set of lines in K^{n}, there exists some line $L \subset K^{n}$ such that $F(L)=\left\langle\vec{w}_{1}+\bar{c} \vec{w}_{2}\right\rangle$. Every line in K^{n} is either of the form $\left\langle\vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right\rangle$ or $\left\langle c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right\rangle$ for some $c_{2}, \ldots, c_{n} \in K$. Examining Claims 5-6, we see that in fact $L=\left\langle\vec{v}_{1}+c \vec{v}_{2}\right\rangle$ for some $c \in K$ satisfying $\tau(c)=\bar{c}$, as desired.

We now have constructed our basis $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$ for K^{n} and our automorphism $\tau: K \rightarrow K$, so we can define $f \in \Gamma \mathrm{~L}_{n}(K)$ via the formula

$$
f\left(c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}\right)=\tau\left(c_{1}\right) \vec{w}_{1}+\cdots+\tau\left(c_{n}\right) \vec{w}_{n} \quad\left(c_{1}, \ldots, c_{n} \in K\right)
$$

Claim 10. The semilinear automorphism $f: K^{n} \rightarrow K^{n}$ induces the automorphism $F \in \operatorname{Aut}\left(\mathcal{T}_{n}(K)\right)$.

Proof of claim. Consider $V \in \mathcal{T}_{n}(K)$. We can write $V=\left\langle\vec{x}_{1}, \ldots, \vec{x}_{p}\right\rangle$, where each x_{i} is either of the form $\vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}$ or of the form $c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}$ for some $c_{2}, \ldots, c_{n} \in K$. Combining Claim 1 with Claims 5-6, we see that $F(V)=\left\langle f\left(\vec{x}_{1}\right), \ldots, f\left(\vec{x}_{p}\right)\right\rangle$, as desired.

This completes the proof of the fundamental theorem of projective geometry.

3 Proof of fundamental theorem of symplectic projective geometry

Our proof of Theorem 2 is based on the following lemma. For a field K and $n \geq 3$, define $\mathcal{T}_{n}^{\prime}(K)$ to be the subposet of $\mathcal{T}_{n}(K)$ consisting of subspaces $V \subset K^{n}$ such that $\operatorname{dim}(V) \in\{1, n-1\}$.

Lemma 3. Let K be a field and $n \geq 3$. Then $\operatorname{Aut}\left(\mathcal{T}_{n}^{\prime}(K)\right)=P \Gamma L_{n}(K)$.
Proof. By the Fundamental Theorem of Projective Geometry (Theorem 1), it is enough to prove that every $F \in \operatorname{Aut}\left(\mathcal{T}_{n}^{\prime}(K)\right)$ can be extended to an automorphism of $\mathcal{T}_{n}(K)$. Consider $F \in \operatorname{Aut}\left(\mathcal{T}_{n}^{\prime}(K)\right)$.
Claim. Consider lines $L_{1}, \ldots, L_{p}, L_{1}^{\prime}, \ldots, L_{q}^{\prime} \subset K^{n}$. Then $\left\langle L_{1}, \ldots, L_{p}\right\rangle \subset$ $\left\langle L_{1}^{\prime}, \ldots, L_{q}^{\prime}\right\rangle$ if and only if $\left\langle F\left(L_{1}\right), \ldots, F\left(L_{p}\right)\right\rangle \subset\left\langle F\left(L_{1}^{\prime}\right), \ldots, F\left(L_{q}^{\prime}\right)\right\rangle$.

Proof of claim. Since F is an automorphism of the poset $\mathcal{T}_{n}^{\prime}(K)$, it is enough to express the condition $\left\langle L_{1}, \ldots, L_{p}\right\rangle \subset\left\langle L_{1}^{\prime}, \ldots, L_{q}^{\prime}\right\rangle$ entirely in terms of the poset structure on $\mathcal{T}_{n}^{\prime}(K)$. This is easy:

- For all subspaces $V \subset K^{n}$ with $\operatorname{dim}(V)=n-1$, if $L_{1}^{\prime}, \ldots, L_{q}^{\prime} \subset V$, then $L_{1}, \ldots, L_{P} \subset V$.

We now construct the desired extension of F to $\mathcal{T}_{n}(K)$. Consider a nonzero proper subspace $V \subset K^{n}$. Write $V=\left\langle L_{1}, \ldots, L_{p}\right\rangle$, where the L_{i} are lines in K^{n}. Set $F(V)=\left\langle F\left(L_{1}\right), \ldots, F\left(L_{p}\right)\right\rangle$. To see that this is well-defined, if we have a different expression $V=\left\langle L_{1}^{\prime}, \ldots, L_{q}^{\prime}\right\rangle$ with the L_{j}^{\prime} lines in K^{n}, then applying the claim twice we see that

$$
\left\langle F\left(L_{1}\right), \ldots, F\left(L_{p}\right)\right\rangle \subset\left\langle F\left(L_{1}^{\prime}\right), \ldots, F\left(L_{q}^{\prime}\right)\right\rangle
$$

and

$$
\left\langle F\left(L_{1}^{\prime}\right), \ldots, F\left(L_{q}^{\prime}\right)\right\rangle \subset\left\langle F\left(L_{1}\right), \ldots, F\left(L_{p}\right)\right\rangle,
$$

so $\left\langle F\left(L_{1}\right), \ldots, F\left(L_{p}\right)\right\rangle=\left\langle F\left(L_{1}^{\prime}\right), \ldots, F\left(L_{q}^{\prime}\right)\right\rangle$ and F is well-defined. Another application of the claim shows that F is an automorphism of $\mathcal{T}_{n}(K)$, and we are done.

Proof of Theorem 2. Consider $F \in \operatorname{Aut}\left(\mathcal{T P}_{2 g}(K)\right)$. It is enough to show that F is induced by some element of $\Gamma \mathrm{P}_{2 g}(K)$. Define $F^{\prime} \in \operatorname{Aut}\left(\mathcal{T}_{2 g}^{\prime}(K)\right)$ as follows.

- For a subspace $L \subset K^{2 g}$ with $\operatorname{dim}(L)=1$, define $F^{\prime}(L)=F(L)$.
- For a subspace $V \subset K^{2 g}$ with $\operatorname{dim}(V)=2 g-1$, write $V=L^{\perp}$ for some line $L \subset K^{2 g}$ (the orthogonal complement is with respect to the symplectic form), and define $F^{\prime}(V)=(F(L))^{\perp}$.

To see that $F^{\prime} \in \operatorname{Aut}\left(\mathcal{T}_{2 g}^{\prime}(K)\right)$, we must check two things.

- That F^{\prime} is a bijection of $\mathcal{T}_{2 g}^{\prime}(K)$. It is a bijection on lines since F is a bijection on lines, and it is a bijection on codimension-1 subspaces since the \perp-relation is a bijection between lines and codimension- 1 subspaces.
- That F preserves the poset structure. Observe that if $L, L^{\prime} \subset K^{2 g}$ satisfy $\operatorname{dim}(L)=\operatorname{dim}\left(L^{\prime}\right)=1$, then $L^{\prime} \subset L^{\perp}$ if and only there exists an isotropic subspace $W \subset K^{2 g}$ such that $L, L^{\prime} \subset W$. This condition is preserved by F, so $F\left(L^{\prime}\right) \subset F\left(L^{\perp}\right)$ if and only if $L^{\prime} \subset L^{\perp}$.

Lemma 3 implies that there exists some $f \in \Gamma \mathrm{~L}_{2 g}(K)$ such that f induces F^{\prime}.
For nonzero $\vec{v}, \vec{w} \in K^{2 g}$, we have $\omega(\vec{v}, \vec{w})=0$ if and only if $\langle\vec{v}\rangle \subset\langle\vec{w}\rangle^{\perp}$. By assumption, this holds if and only if $\langle f(\vec{v})\rangle \subset\langle f(\vec{w})\rangle^{\perp}$, so we conclude that $\omega(\vec{v}, \vec{w})=0$ if and only if $\omega(f(\vec{v}), f(\vec{w}))=0$, and thus that $f \in \Gamma \mathrm{P}_{2 g}(K)$.

It remains to check that f induces F. We know that F and f agree on lines. Consider an arbitrary isotropic subspace $V \subset K^{2 g}$. Set $U=$ $\left\{L \in \mathcal{T} \mathcal{P}_{2 g}(V) \mid L \subset V\right.$ and $\left.\operatorname{dim}(L)=1\right\}$. In terms of the poset structure on $\mathcal{T} \mathcal{P}_{2 g}(V)$, the element V is characterized as the unique element containing all $L \in U$. Since F is an automorphism of $\mathcal{T} \mathcal{P}_{2 g}(V)$, we see that $F(V)$ is the unique element containing all $L \in F(U)$. Clearly $f(V) \in \mathcal{T} \mathcal{P}_{2 g}(V)$ also is the unique element containing all $L \in F(U)=f(U)$, so we conclude that $f(V)=F(V)$, as desired.

References

[1] E. Artin, Geometric algebra, Interscience Publishers, Inc., New York, 1957.
[2] R. Baer, Linear algebra and projective geometry, Academic Press, New York, NY, 1952.
[3] M. Pankov, Grassmannians of classical buildings, Algebra and Discrete Mathematics, 2, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.
[4] G. von Staudt, Geometrie der Lage, Nürnberg, 1847.

Andrew Putman
Department of Mathematics
Rice University, MS 136
6100 Main St.
Houston, TX 77005
andyp@math.rice.edu

