The Cauchy-Binet formula

Andrew Putman

Abstract

We give a proof of the Cauchy-Binet formula for the determinant of the product of two matrices that mostly avoids explicit matrix manipulations.

Let \mathbf{k} be a field. All matrices in this note have entries in \mathbf{k}. Let A be an $n \times m$ matrix and let B be an $m \times n$ matrix. The product $A B$ is thus an $n \times n$ matrix. The Cauchy-Binet formula shows how to express the determinant of $A B$ in terms of A and B. When $n=m$, it reduces to the familiar fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Stating it requires introducing some notation. Let $[m]=\{1, \ldots, m\}$. For $I \subset[m]$, let A_{I} be the $n \times|I|$ submatrix of A consisting of the rows of A lying in I. Similarly, let ${ }_{I} B$ be the $|I| \times n$ submatrix of B consisting of the columns of B lying in I.

Theorem 0.1 (Cauchy-Binet formula). Let A be an $n \times m$ matrix and let B be an $m \times n$ matrix. Then

$$
\operatorname{det}(A B)=\sum_{\substack{I \subset[m] \\|I|=n}} \operatorname{det}\left(A_{I}\right) \operatorname{det}\left({ }_{I} B\right) .
$$

Proof. For an $r \times s$ matrix C, let $\phi_{C}: \mathbf{k}^{s} \rightarrow \mathbf{k}^{r}$ be the associated linear map. Thus $\phi_{A B}$ equals the composition

$$
\mathbf{k}^{n} \xrightarrow{\phi_{B}} \mathbf{k}^{m} \xrightarrow{\phi_{A}} \mathbf{k}^{n} .
$$

Letting $\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ be the standard basis for \mathbf{k}^{n}, we thus have that

$$
\phi_{A} \circ \phi_{B}\left(\vec{e}_{1} \wedge \cdots \wedge \vec{e}_{n}\right)=\operatorname{det}(A B) \vec{e}_{1} \wedge \cdots \wedge \vec{e}_{n} .
$$

To express this in terms of A and B, we will have to first understand $\phi_{B}: \wedge^{n} \mathbf{k}^{n} \rightarrow \wedge^{n} \mathbf{k}^{m}$.
Let $\left\{\vec{f}_{1}, \ldots, \vec{f}_{n}\right\}$ be the standard basis \mathbf{k}^{m}. The vector space $\wedge^{n} \mathbf{k}^{m}$ thus has a basis

$$
\left\{{\overrightarrow{f_{1}}} \wedge \cdots \wedge{\overrightarrow{f_{i}}} \mid\left\{i_{1}<\cdots<i_{n}\right\} \subset[m]\right\} .
$$

We claim that

$$
\begin{equation*}
\phi_{B}\left(\vec{e}_{1} \wedge \cdots \wedge \vec{e}_{n}\right)=\sum_{I=\left\{i_{1}<\cdots<i_{n}\right\} \subset[m]} \operatorname{det}\left({ }_{I} B\right) \vec{f}_{i_{1}} \wedge \cdots \wedge \vec{f}_{i_{n}} . \tag{0.1}
\end{equation*}
$$

To see this, fix some $I=\left\{i_{1}<\cdots<i_{n}\right\} \subset[m]$. Let $V_{I}=\left\langle\overrightarrow{f_{1}}, \ldots, \overrightarrow{f_{i_{n}}}\right\rangle \subset \mathbf{k}^{m}$ and let $\pi_{I}: \mathbf{k}^{m} \rightarrow V_{I}$ be the projection whose kernel is generated by the \vec{f}_{j} with $j \notin I$. Identifying V_{I} with \mathbf{k}^{n} via its natural basis, the composition

$$
\mathbf{k}^{n} \xrightarrow{\phi_{B}} \mathbf{k}^{m} \xrightarrow{\pi_{I}} V_{I}
$$

equals the linear map associated to ${ }_{I} B$. We thus have

$$
\left(\pi_{I} \circ \phi_{B}\right)_{*}\left(\vec{e}_{1} \wedge \cdots \wedge \vec{e}_{n}\right)=\operatorname{det}\left({ }_{I} B\right) \vec{f}_{i_{1}} \wedge \cdots \wedge \vec{f}_{i_{n}}
$$

The equation (0.1) follows.
Fixing some $I=\left\{i_{1}<\cdots<i_{n}\right\} \subset[m]$ again, the next step is to observe that if we again identify V_{I} with \mathbf{k}^{n} via its natural basis, the composition

$$
V_{I} \hookrightarrow \mathbf{k}^{m} \xrightarrow{\phi_{A}} \mathbf{k}^{n}
$$

equals the linear map associated to A_{I}. It follows that

$$
\phi_{A}\left(\vec{f}_{i_{1}} \wedge \cdots \wedge \vec{f}_{i_{n}}\right)=\operatorname{det}\left(A_{I}\right) \vec{e}_{1} \wedge \cdots \wedge \vec{e}_{n} .
$$

Combining this with (0.1), we see that

$$
\begin{aligned}
\phi_{A} \circ \phi_{B}\left(\vec{e}_{1} \wedge \cdots \wedge \vec{e}_{n}\right) & =\sum_{I=\left\{i_{1}<\cdots<i_{n}\right\} \subset[m]} \operatorname{det}\left({ }_{I} B\right) \phi_{A}\left(\vec{f}_{i_{1}} \wedge \cdots \wedge \vec{f}_{i_{n}}\right) \\
& =\sum_{I=\left\{i_{1}<\cdots<i_{n}\right\} \subset[m]} \operatorname{det}\left({ }_{I} B\right) \operatorname{det}\left(A_{I}\right) \vec{e}_{1} \wedge \cdots \wedge \vec{e}_{n} .
\end{aligned}
$$

The theorem follows.

Andrew Putman
Department of Mathematics University of Notre Dame
164 Hurley Hall
Notre Dame, IN 46556
andyp@nd.edu

