Burnside's $p^{a} q^{b}$-theorem

Andrew Putman

Abstract

We prove Burnside's theorem saying that a group of order $p^{a} q^{b}$ for primes p and q is solvable.

In this note, we discuss the proof of the following theorem of Burnside [1].
Theorem A. Let G be a group with $|G|=p^{a} q^{b}$ for primes p and q. Then G is solvable.
The key to the proof is showing that such a group must contain a nontrivial normal subgroup. The subgroups we will construct will be of the following form. All representations in this note are finite-dimensional and defined over \mathbb{C}.

Definition 0.1. Let V be a representation of a group G. The V-central subgroup of G, denoted $Z(V)$, is the subgroup consisting of all $g \in G$ that act on V by homotheties, i.e. such that there exists some $\lambda \in \mathbb{C}$ such that $g \cdot \vec{v}=\lambda \vec{v}$ for all $\vec{v} \in V$.

Remark. It is clear that $Z(V)$ is a normal subgroup of G; indeed, for $g \in Z(V)$ and λ as above, for all $h \in G$ we have

$$
h^{-1} g h \cdot \vec{v}=h^{-1} \cdot(\lambda(h \cdot \vec{v}))=\lambda\left(h^{-1} h\right) \cdot \vec{v}=\lambda \vec{v} \quad \text { for all } \vec{v} \in V .
$$

so $h^{-1} g h \in Z(G)$.
How can we detect nontrivial $Z(V)$? With respect to an appropriate basis, the matrices representing the action of elements of G on V are algebraic integers (see, e.g., [2]). It follows that for $g \in Z(V)$, the action of g on V is a homothety with scaling factor an algebraic integer. Letting χ be the character of V, this scaling factor is precisely $\chi(g) / n$, where $n=\operatorname{dim}(V)$. This must therefore be an algebraic integer. The following lemma is a converse to this:

Lemma 0.2. Let G be a finite group and let V be an n-dimensional representation of G with character χ. For some $g \in G$, assume that $\chi(g) / n$ is a nonzero algebraic integer. Then $g \in Z(V)$.
Proof. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ be the eigenvalues of the action of g on V. Our goal is to prove that the λ_{i} are all equal. Assume otherwise. Each of the λ_{i} is a root of unity, so this implies that

$$
|\chi(g)|=\left|\lambda_{1}+\cdots+\lambda_{n}\right|<n .
$$

This can be improved as follows. Let \mathbf{k} / \mathbb{Q} be a Galois extension containing each of the λ_{i}. For each $\phi \in \operatorname{Gal}(\mathbf{k} / \mathbb{Q})$, the elements $\phi\left(\lambda_{1}\right), \ldots, \phi\left(\lambda_{n}\right) \in \mathbb{C}$ are also roots of unity that are not all equal, so we have

$$
|\phi(\chi(g))|=\left|\phi\left(\lambda_{1}\right)+\cdots+\phi\left(\lambda_{n}\right)\right|<n .
$$

We thus see that

$$
\prod_{\phi \in \operatorname{Gal}(\mathbf{k} / \mathbb{Q})}\left|\phi\left(\frac{\chi(g)}{n}\right)\right|<1 .
$$

Since $\chi(g) / n$ is a nonzero algebraic integer contained in \mathbf{k}, the left hand side lies in \mathbb{Z}, and thus must be 0 , a contradiction.

The following technical lemma will help us verify the hypotheses of Lemma 0.2. For $g \in G$, let $\operatorname{cl}(g)$ denote the conjugacy class of g.

Lemma 0.3. Let G be a finite group and let V be an n-dimensional irreducible representation of G with character χ. For all $g \in G$, the number $|\operatorname{cl}(g)| \chi(g) / n$ is an algebraic integer.
Proof. Fix some $g \in G$, and define

$$
\omega=\sum_{h \in \operatorname{cl}(g)} h \in \mathbb{C}[G] .
$$

The element ω lies in the center of the ring $\mathbb{C}[G]$, so it acts on V by $\mathbb{C}[G]$-module endomorphisms. Since V is irreducible, Schur's Lemma says that $\operatorname{End}_{\mathbb{C}[G]}(V)=\mathbb{C}$, so there exists some $\lambda \in \mathbb{C}$ such that $\omega \cdot \vec{v}=\lambda \vec{v}$ for all $\vec{v} \in V$. Taking traces, we see that

$$
n \lambda=\chi(\omega)=\sum_{h \in \mathrm{cl}(g)} \chi(h)=|\operatorname{cl}(g)| \chi(g),
$$

so

$$
\lambda=|\operatorname{cl}(g)| \chi(g) / n .
$$

With respect to an appropriate basis, the entries of the matrices representing the action of G on V are algebraic integers (see, e.g., [2]). It follows that λ is an algebraic integer, and the lemma follows.

We will use these results to prove the following key proposition:
Proposition 0.4. Let G be a finite group such that there exists some $g \in G$ with $|\operatorname{cl}(g)|=p^{k}$ for some prime p and some $k \geq 1$. Then there exists some nontrivial representation V of G such that $Z(V) \neq 1$.
Proof. Let V_{1}, \ldots, V_{r} be the irreducible representations of G, ordered such that V_{1} is the trivial representation. For $1 \leq i \leq r$, let χ_{i} be the character of V_{i} and $n_{i}=\operatorname{dim}\left(V_{i}\right)$. Since $|\operatorname{cl}(g)| \neq 1$, we have $g \neq 1$, so the orthogonality of the columns of the character table says that

$$
0=\sum_{i=1}^{r} \chi_{i}(g) \overline{\chi_{i}(1)}=\sum_{i=1}^{r} n_{i} \chi_{i}(g)=1+\sum_{i=2}^{r} n_{i} \chi_{i}(g) .
$$

Thus

$$
\frac{-1}{p}=\sum_{i=2}^{r} \frac{n_{i} \chi_{i}(g)}{p} .
$$

From this, we see that there must exist some $2 \leq j \leq r$ such that $n_{j} \chi_{j}(g) / p$ is not an algebraic integer. Since $\chi_{j}(g)$ is a sum of roots of unity, it is an algebraic integer. We deduce that p does not divide n_{j} and that $\chi_{j}(g) \neq 0$. Sine $|\operatorname{cl}(g)|=p^{k}$ and n_{j} are coprime, we can find $a, b \in \mathbb{Z}$ such that

$$
1=a|\operatorname{cl}(g)|+b n_{j} .
$$

Multiplying this by $\chi_{j}(g) / n_{j}$, we get that

$$
\frac{\chi_{j}(g)}{n_{j}}=a \frac{|\operatorname{cl}(g)| \chi_{j}(g)}{n_{j}}+b \chi_{j}(g) .
$$

Lemma 0.3 implies that this first term is an algebraic integer, and since $\chi_{j}(g)$ is an algebraic integer the second term is as well. We conclude that $\chi_{j}(g) / n_{j}$ is an algebraic integer, so by Lemma 0.2 we have that $g \in Z\left(V_{j}\right)$, as desired.

Proof of Theorem A. Consider a group G with $|G|=p^{a} q^{b}$ for primes p and q. Our goal is to prove that G is solvable. By induction, we can assume that this holds for all such groups of smaller order. We can also assume that G is nonabelian since abelian groups are trivially solvable. Finally, we can assume that p and q are distinct and that $a, b \geq 1$ since otherwise G has prime power order and hence is nilpotent. It is enough to prove that under these circumstances, there exists a normal subgroup $N \triangleleft G$ that is nontrivial in the sense that $1 \subsetneq N \subsetneq G$. Indeed, our inductive hypothesis will then imply that both N and G / N are solvable, so G is as well.

Let $H<G$ be a Sylow q-subgroup. Since $|H|=q^{b}$, the group H is a q-group and thus is nilpotent. In particular, its center $Z(H)$ satisfies $Z(H) \neq 1$. Let $g \in Z(H)$ be nontrivial. The centralizer $C_{G}(g)$ thus contains H, so

$$
|\operatorname{cl}(g)|=|G| /\left|C_{G}(g)\right|=p^{k} \quad \text { for some } k \leq a .
$$

If $k=0$, then $g \in Z(G)$, so $Z(G)$ is our desired nontrivial normal subgroup. If $k \geq 1$, then instead Proposition 0.4 says that there exists a nontrivial representation V of G such that $Z(V) \neq 1$. If V is not a faithful representation of G, then its kernel is the desired nontrivial normal subgroup. If V is faithful, then $Z(V) \neq G$ since G is nonabelian, so $Z(V)$ is the desired nontrivial normal subgroup.

References

[1] W. Burnside, On Groups of Order $p^{\alpha} q^{\beta}$, Proc. London Math. Soc. (2) 1 (1904), 388-392.
[2] A. Putman, Algebraicity of matrix entries of representations, informal note.

Andrew Putman
Department of Mathematics University of Notre Dame
255 Hurley Hall
Notre Dame, IN 46556
andyp@nd.edu

