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Abstract

We discuss the Borel density theorem and prove it for SLn(Z).

This short note is devoted to the Borel density theorem.

Lattices. If G is a Lie group, then a subgroup Γ < G is a lattice if Γ is
discrete and the quotient G/Γ supports a G-invariant Riemannian metric of
finite volume. Here we are regarding G/Γ as the space of left cosets gΓ, so G
acts on the left.

Example. Let G = Rn and Γ = Zn. Then Γ is clearly discrete and G/Γ is an
n-dimensional torus. The G-invariant Riemannian metric on G/Γ is the usual
flat one.

Example. Let G = SLn(R) and Γ = SLn(Z). While Γ is clearly discrete in G,
the quotient G/Γ is noncompact, so the fact that it supports a finite-volume
G-invariant Riemannian metric is nontrivial.

Borel density theorem. The following is one of the fundamental properties
of lattices.

Theorem 1 (Borel density theorem). Let G be a connected semisimple R-
algebraic group without compact factors and let Γ < G be a lattice. Then Γ is
Zariski dense in G.

The statement that Γ is Zariski dense in G can be rephrased as saying that
any polynomial function on G that vanishes on Γ must vanish identically (the
notion of a polynomial function makes sense in this context because G is
endowed with the structure of a R-algebraic group). For example, Theorem 1
applies to SLn(Z) ⊂ SLn(R). Letting xij : SLn(R) → R be the function that
returns the matrix entry at position (i, j), it asserts that any polynomial in
the xij with real coefficients that vanishes on SLn(Z) ⊂ SLn(R) must vanish
on all of SLn(R) (warning: it need not literally be the zero polynomial; for
instance, the function det(M) − 1 is a polynomial in the xij which vanishes on
SLn(R)). We will prove this special case of Theorem 1 below.

History and references. Theorem 1 was originally proved in [1]. See [4,
Chapter V] for a textbook treatment of Borel’s original proof. See also [6,
§3.2] and [5, §4F] for textbook treatments of alternate proofs.
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Application to representation theory. Lie groups act on many things
via polynomials, and Theorem 1 says that the restrictions of these actions to
lattices faithfully reflect the properties of the original actions. This is quite
useful in numerous contexts. One sample application is as follows.

Definition 2. Let G be an R-algebraic group. A polynomial representation of
G is a homomorphism ϕ : G → GLm(R) whose matrix entries are polynomial
functions on G.

Remark. For semisimple R-algebraic groups G, almost all representations you
are likely to meet in nature are polynomial. For example, it is proved in [2, p.
236] that measurable representations are automatically continuous, and most
(but not all) continuous representations are actually polynomial (see [3]). In
particular, for SLn(R) all continuous representations are polynomial.

Theorem 3. Let G be a connected semisimple R-algebraic group and let Γ < G
be a lattice. Let ϕ : G → GLm(R) be an irreducible polynomial representation
of G. Then the restriction of ϕ to Γ is irreducible.

Proof. Assume that the restriction of ϕ to Γ is not irreducible, and let V ⊂ Rm

be a proper nonzero Γ-subrepresentation. Changing bases, we can assume
that V = ⟨e⃗1, . . . , e⃗k⟩, where {e⃗1, . . . , e⃗m} is the standard basis for Rm and
1 ≤ k < m. In other words, we can assume that in block form we have

ϕ(g) =
(

A B
0 C

)

for all g ∈ Γ. Here A is a k × k matrix, B is a k × (m − k) matrix, and C is
an (m − k) × (m − k) matrix. For k < i ≤ m and 1 ≤ j ≤ k, the (i, j) matrix
entry of ϕ(g) is thus 0 for all g ∈ Γ, so Theorem 1 implies that it is 0 for all
g ∈ G. We conclude that V is G-invariant, a contradiction.

Remark. Though we deduced Theorem 3 from the Borel density theorem,
Theorem 3 actually forms one of the key steps in the the original proof of the
Borel density theorem in [1]. The other proofs referenced above do not make
use of Theorem 3.

Proofs for special linear group. To give some intuition for Theorem 1,
we will prove it for SLn(Z). As a warm-up, we begin with the following two
lemmas. Strictly speaking these, these lemmas are not special cases of the
Borel density theorem since the groups in question are not semisimple, but
the conclusion of the theorem holds for them.

Lemma 4. The group Z is Zariski dense in R.

Proof. Any nonzero polynomial f(x) has only finitely many roots, so any poly-
nomial f(x) such that f(k) = 0 for all k ∈ Z must vanish identically.
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Lemma 5. The group Zn is Zariski dense in Rn.

Proof. Let f(x1, . . . , xn) be any polynomial such that f(v⃗) = 0 for all v⃗ ∈ Zn.
Our goal is to show that f = 0. Since Q is dense in R (with the usual topology),
it is enough to show that f(q1, . . . , qn) = 0 for all nonzero q1, . . . , qn ∈ Q.
Fixing some nonzero q1, . . . , qn ∈ Q, define ϕ : R → Rn to be the function

ϕ(t) = (tq1, . . . , tqn).

Then the function f ◦ ϕ : R → R is a polynomial vanishing on all points of
the form t = nd, where n ∈ Z and d is the least common multiple of the
denominators of the qi. There are infinitely many numbers of this form, so we
deduce that f ◦ ϕ = 0. Plugging in t = 1, we obtain that f(q1, . . . , qn) = 0, as
desired.

Proof of Theorem 1 for special linear group. We wish to prove that SLn(Z) is
Zariski dense in SLn(R). Consider a polynomial f in the matrix entries xij of
SLn(R) such that f(M) = 0 for all M ∈ SLn(Z). Our goal is to prove that
f(M) = 0 for all M ∈ SLn(R). Fix such an M ∈ SLn(R). For r ∈ R and
distinct 1 ≤ i, j ≤ n, let eij(r) be the elementary matrix obtained from the
n × n identity matrix by inserting r at position (i, j). For any field F, the
group SLn(F) is generated by elementary matrices. This hold in particular for
F = R, so there exists an expression

M = ei1j1(r1) · ei2j2(r2) · · · eipjp(rp).

Here
r1, . . . , rp ∈ R and 1 ≤ i1, j1, . . . , ip, jp ≤ n.

Also, iℓ ̸= jℓ for all 1 ≤ ℓ ≤ p. Since Q is dense in R and f is a continuous
function, it is enough to prove that

f
(
ei1j1 (q1) · ei2j2 (q2) · · · eipjp (qp)

)
= 0 (0.1)

for all nonzero q1, . . . , qp ∈ Q. Fixing some nonzero q1, . . . , qp ∈ Q, define a
function ϕ : R → SLn(R) via the formula

ϕ(t) = ei1j1 (tq1) · ei2j2 (tq2) · · · eipjp (tqp) .

The function f ◦ϕ : R → R is a polynomial which vanishes for all t of the form
t = nd, where n ∈ Z and d is the least common multiple of the denominators
of the qi. There are infinitely many numbers of this form, so we deduce that
f ◦ ϕ = 0. Plugging in t = 1, we obtain (0.1).
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