Exercises 2
Monday 6/13/17

5. Define the Bernoulli number Bsy,, using the Taylor expansion!

2n

zcotan(z) =1+ Z ntn o))

From calculus we also know that
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Expand each geometric series ————— to show that
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6. Let ¢ = e?™%. The second formula from the previous exercise can be rewritten as
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(a) Show directly from the definition of cotan that
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(b) Differentiate k — 1 times to show that
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7. Let k be an integer. Show that if f(z + 1) = f(2) and f(—1/2) = 2*f(2) then f(g-2) = (cz +d)* f(2)

for all g € SL(2,Z). Here g = (CCL Z . [Hint: The group SL(2,7Z) is generated by S = (? _01) and

r=(p 1)’

8. Let S be the set of pairs of integers (m,n) not both zero. Suppose (CCL b) € SL(2,Z). Show that

d
{(ma +ne,mb+nd) | (m,n) € S} =S

1The more standard definition is that => Bn . Plug in @ = 2iz to deduce the cotan Taylor series.



