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Lecture 1
2013-04-01

1 Local Class Field Theory

1.1 Main results

(1.1.1) Have an upper rami�cation �ltration GuK for u ≥ −1 such that G−1
K = GK , G

(−1,0]
K = IK , G

(0,1]
K =

PK . If L/K is an algebraic extension then GuL/K = GuK/(G
u
K ∩GL).

(1.1.2) The invariant map is an isomorphism invK : Br(K) ∼= H2(GK ,K
×

) ∼= Q/Z such that if L/K then
invK ◦ cor = invL and invL ◦ res = [L : K] invK .

(1.1.3) Tate duality. If M is a �nite GK-module let M∗ = Hom(M,Q/Z). The Galois group GK acts on
m∗ ∈M∗ via (gm∗)(m) = m∗(g−1m). Write M(1) ∼= M ⊗Q/Z µ∞. Write Hi

ur(GK ,M) = Hi(GK/IK ,M
IK ).

Then there exists a perfect pairing

Hi(GK ,M)⊗H2−i(GK ,M
∗(1))→ H2(GK ,M ⊗M∗(1))→ H2(GK , µ∞)→ H2(GK ,K

×
)→ Q/Z

such that Hi
ur(GK ,M)⊥ = H2−i

ur (GK ,M
∗(1)).

(1.1.4) The Artin map. For K/Qp �nite write U−1
K = K×, U0

K = O×K and UnK = 1 + ($)n for n ≥ 1.

There exists a homomorphism rK : K× ∼= W ab
K such that rK(UnK) = Gn,ab

K . It has the property that
rK(NL/Kx) = rL(x) for x ∈ L× and rK(x) = cor∨(rL(x)) for x ∈ K× ⊂ L×.

1.2 Application

We will prove Kronecker-Weber for local �elds.

Theorem 1.1. The maximal abelian extension of Qp is Qp(µ∞).

Proof. Recall that GK = IK oFrobẐ
K and WK = IK oFrobZ

K . Thus G
ab
Qp
∼= (Iab

Qp)Frobp ×FrobẐ
p and I

ab
Qp
∼= Z×p

and so Gab
Qp is a quotient of Z

×
p oẐ which we will show to be equal to GQp(µ∞)/Qp under the reciprocity map.

First, recall Qur
p = Qp(ω(α)|α ∈ F×p ) and since pϕ(n) ≡ 1 (mod n) if p - n it follows that Qur

p = Qp(ζn|p -
n). Next Qp(ζp) is rami�ed over Qp and so ζp - Qur

p and therefore Qur
p ∩ Qp(µp∞) = Qp. This gives

GQp(µ∞)/Qp
∼= GQp(µp∞ )/Qp ×GQur

p /Qp .
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2 Glocal Class Field Theory

2.1 Adeles

(2.1.1) If K/Q is a �nite extension then K∞ = K ⊗Q R, K×,0∞ is the connected component of 1 in K×∞. For
an embedding v : K ↪→ R write v | R and v : K ↪→ C write v | C. Then K∞ =

∏
v|∞Kv, K

×
∞ =

∏
v|∞K×v

and K×,0∞ =
∏
v|R(0,∞)

∏
v|C C×.

(2.1.2) Write AK =
∏′
{Ov}Kv with the restricted product topology. For a �nite set of places S write

KS =
∏
v∈S Kv and ASK =

∏′
v/∈S,{Ov}Kv in which case AK = KS ×ASK . Then the ring AK =

∏′
{Ov}Kv has

the product topology, K ⊂ AK is a discrete subgroup and AK/K is compact.

(2.1.3) Write A×K =
∏′
{O×v }K

×
v with the restricted product topology. As above A×K = K×S × AS,×K . The

natural inclusion A×K ⊂ AK is not continuous and in fact the topology on A×K is the subset topology induced
by the map A×K ↪→ AK ×AK which takes x to (x, x−1). Write | · |AK : A×K → (0,∞). De�ne A1

K ⊂ A×K as the
kernel of | · |AK . Then K× ⊂ A1

K is a discrete subgroup, A1
K ⊂ AK is continuous and A1

K/K
× is compact.

(2.1.4) Strong approximation states that if S 6= ∅ then K ⊂ ASK is dense.

2.2 The Dirichlet unit theorem using adeles

Theorem 2.1. Let K/Q be a number �eld with r real embeddings and s complex embeddings. Then O×K is
a �nitely generated abelian group of rank r + s− 1.

Proof. For a �nite set S of places which include the in�nite places write OK [1/S] = {x ∈ K|v(x) ≥ 0, v /∈ S}.
Note that if S = {v | ∞} then O[1/S]× = O×K . We will show that OK [1/S]× is a �nitely generated abelian
group of rank |S| − 1.

Let ClS(K) be the class group of OK [1/S], i.e., the set of ideals modulo the set of principal ideals. An
element a = (av) of A×K gives the fractional ideal

∏
v/∈S($v)

v(av) of OK [1/S] and the set of fractional ideals is

isomorphic to A×K/K
×
S

∏
v/∈S O×v . Write K1

S = {x ∈ KS |
∏
v∈S |xv|v = 1} in which case A×K/K

×
S
∼= A1

K/K
1
S .

It is easy to see that ClS(K) = A1
K/K

×K1
S

∏
v/∈S O×v which gives the exact sequence

1→ K1
S

∏
v/∈S

O×v /OK [1/S]× → A1
K/K

× → ClS(K)→ 1

Immediately one sees ClS(K) as a quotient of a compact group by an open subgroup and so ClS(K) is �nite.
De�ne ∆ as the kernel of the summation map ⊕vR→ R and write ∆S the kernel of ⊕v∈SR→ R. Then

one has the map log : A1
K/K

× → ∆ given by (av) 7→ (log |av|v). Clearly
∏
v/∈S O×v K1

S → ∆S is surjective
and so get an exact sequence

K1
S

∏
v/∈S

O×v /OK [1/S]× → ∆S/ logOK [1/S]× → 0

which exhibits ∆S/ logOK [1/S]× as the image via a continuous map of an open subgroup of a compact group,
therefore ∆S/ logOK [1/S]× is compact. In particular logOK [1/S]× is a lattice in the (|S| − 1)-dimensional
∆S .

We would like to prove that OK [1/S]× is a �nitely generated abelian group of rank |S| − 1. To do this
it is enough to show that the intersection of the kernel of log with OK [1/S]× consists only of torsion. What
is the kernel? The kernel of log on A1

K is {(av) ∈ A1
K ||av|v = 1}, i.e.,

∏
v-∞O×v ×

∏
v|R{±1} ×

∏
v|C S

1.

This is compact and its intersection with K× is compact and discrete, therefore �nite. Since it is �nite this
intersection must be µ∞(K), i.e., torsion.
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2.3 Main results

(2.3.1) The global Brauer sequence

0→ Br(K)→ ⊕v Br(Kv)→ Q/Z→ 0

is exact where the rightmost map is the sum of the local invariant maps.
Application: a global quaternion algebra over any number �eld must be nonsplit at an even number of

places. (Used to study Hilbert modular forms.)

(2.3.2) The Artin map rK : A×K → Gab
K has the property that rK(1, . . . , 1, x, 1, . . .) = rKv (x) where x ∈ K×v

is placed in position v and rKv is the local Artin map. It gives

rK : A×K/K×K
×,0
∞ ∼= Gab

K

such that rL(x) = rK(NL/K(x)) and rK induces an isomorphism Gab
L/K

∼= A×K/K×NL/KA×L .

Lecture 2
2013-04-03

2.4 Conductors

(2.4.1) If K/Qp is a �nite extension and V is a continuous complex �nite dimensional representation of GK

de�ne the conductor cond(V ) =

∫ ∞
−1

codimV (V G
u
K )du. Since the Galois action is continuous, V is �xed by

an open subgroup of GK and so the integral is �nite. For any V , cond(V ) ∈ Z≥0 and cond(V ) = 0 if and
only if V is unrami�ed and cond(V ) ≤ 1 if and only if V is tamely rami�ed.

(2.4.2) Let K/Q be a �nite extension and V be a continuous complex �nite dimensional representation of
GK .

Proposition 2.2. The representation V is almost everywhere unrami�ed.

Proof. By the Brauer induction theorem V =
∑
ni IndKLi χi for �nite Galois extensions Li and characters

χi : GLi → C×. It su�ces to show the proposition for V a character χ since then V will be unrami�ed at
all �nite places where no Li nor χi is rami�ed. Now χ : Gab

K → C× is continuous and the kernel kerχ will

be open in Gab
K
∼= A×K/K×K

×,0
∞ and so will contain an open set of the form US

∏
v/∈S O

×
Kv

where US ⊂ K×S
is an open set. Then χ will be unrami�ed at v /∈ S.

De�ne the conductor cond(V ) =
∏
v-∞($v)

cond(V |GKv ) as an ideal of OK , the product being �nite by

Proposition 2.2. The representation V is unrami�ed if and only if cond(V ) = OK and it is tamely rami�ed
if and only if cond(V ) is square free.

Since V has a continuous action of GK , one can �nd a �nite Galois extension L/K such that GL acts
trivially on V . Thus the action of GK factors through the discrete action of GL/K . For every �nite place v
of K choose a place w of L. Then

cond(V ) =
∏
v-∞

($v)
cond(V |GLw/Kv )

where Kv is chosen as containing Lw.

Proposition 2.3. Let L/K be a �nite extension of number �elds. Then L as a vector space over K has a
linear action of GL/K and the discriminant DL/K is equal to cond(L) as ideals of OK .
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Proof. For each place v of K �x an arbitrary place w of L. Recall that DL/K = NL/K(
∏
v DLw/Kv ) where

DLw/Kv is the di�erent and v(DLw/Kv ) =
∫∞
−1

(
1− 1

|Gu
Lw/Kv

|

)
du. Therefore

v(cond(L)) = cond(L|GLw/Kv )

=

∫ ∞
−1

codimL(LG
u
Lw/Kv )du

=

∫ ∞
−1

(|GL/K | − |GL/K/GuLw/Kv |)du

= [L : K]

∫ ∞
−1

((1− 1/|GuLw/Kv |)du

= [L : K]vKv (DLw/Kv )

= v(NL/K(DLw/Kv ))

2.5 Hilbert, ray and ring class �elds

A little classical notation. The class group Cl(K), also known as the �wide� or �weak� class group, is the
set of fractional ideals of OK modulo principal ideals, equal to ClS(K) as de�ned above when S = {v | ∞}.
The �narrow� or �strict� class group Cl+(K) is the set of fractional ideals modulo principal ideals generated
by totally positive elements, i.e., x such that for every real emberdding τ : K ↪→ R, τ(x) > 0.

Let K/Q be a number �eld. For any open subgroup U of A×K , rK(U) is an open subgroup of Gab
K and so

is of the form Gab
LU

for a �nite extension LU/K. In fact LU = (Kab)rK(U) is an abelian extension and

GLU/K
∼= A×K/K

×K×,0∞ U

2.5.1 The Hilbert class �eld

Suppose U = K×∞
∏
v-∞O×v . Then LU is called the (wide/weak) Hilbert class �eld HK of K and GHK/K

∼=
A×K/K×K×∞

∏
O×v ∼= Cl(K).

Suppose U+ = K×,0∞
∏
v-∞O×v . Then LU+ is called the (narrow/strict) Hilbert class �eld H+

K of K and

GH+
K/K

∼= A×K/K×K×,0∞
∏
O×v ∼= Cl+(K). Note that

H+
K/HK = K×K×∞/K

×K×,0∞ ⊂
∏
v|R

{±1}

Two facts about Hilbert class �elds: HK/K is the maximal abelian extension which is unrami�ed at
every place while H+

K is the maximal abelian extension unrami�ed at every �nite place, and every ideal of
K becomes principal in H+

K .
We now give an example application.

Example 2.4. If m | n then hQ(µm) | hQ(µn).

Proof. Let Hm be the Hilbert class �eld of Q(µm) and Hn be the Hilbert class �eld of Q(µn). The extension
Q(µn)/Q(µm) (which is an extension since m | n) is totally rami�ed at every p | n/m and so Q(µn)∩Hm =
Q(ζm). Now Q(µn)Hm/Q(µn) is unrami�ed and abelian and so Q(µn)Hm ⊂ Hn. Therefore

hQ(µn) = [Hn : Q(µn)]

= [Hn : HmQ(µn)]|GHmQ(µn)/Q(µn)|
= [Hn : HmQ(µn)]|GHm/Q(µm)|
= [Hn : HmQ(µn)]hQ(µm)

as desired.
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2.5.2 Ray class �elds

Suppose m is an ideal of OK . Let Km = {x ∈ K|x ≡ 1 (mod m)} and K+
m consist of totally positive x ∈ Km.

Let Clm(K) be the set of ideals coprime to m modulo the principal ideals generated by Km and let Cl+m(K)
be the set of ideals coprime to m modulo the principal ideals generated by K+

m .

Let U+
m = K×,0∞

∏
v-∞ U

v(m)
K and Um = K×∞

∏
v-∞ U

v(m)
K . Then HK,m = LUm

is called the weak ray class

�eld and H+
K,m = LU+

m
is the strict ray class �eld of conductor m.

Proposition 2.5. Cl+m = A×K/K×U+
m and Clm = A×K/K×Um.

Proof. Let x = (xv) ∈ A×K . The Chinese remainder theorem implies that there exists y ∈ K× such that

xy = (xvy) has the property that for v | m, xvy ∈ 1 + ($v)
v(m) = Uv(m)

K and xvy is positive for every v | R;
elements of K with this property are ≡ 1 (mod m) (and so in Km) and totally positive. Attach to x the ideal∏
v-m($v)

v(xvy) in which case A×K/K×U+
m becomes the set of ideals coprime to m modulo principal ideals

generated by totally positive x ≡ 1 (mod m). Similarly for Um.

Then as before GHK,m/K = Clm(K) and GH+
K,m/K

= Cl+m(K).

Example 2.6. 1. If K = Q and m = nZ then Cl+n (K) ∼= (Z/nZ)× and so the strict ray class �eld of
conductor n is Q(µn).

2. If m = OK then HK = HK,m and H+
K = H+

K,m.

Proposition 2.7. Let m be an ideal of OK . Then H+
K,m is the maximal abelian extension H of K such that

GnHw/Kv = 0 if n ≥ v(m), where w | v is an arbitrary place of H. In particular, the strict Hilbert class �eld

H+
K is the maximal abelian extension of K which is unrami�ed at every �nite place.

Proof. Let L/K be an abelian extension such that if v is a place of K and w | v is an arbitrary place of L

then GnLw/Kv = 0. Recall Herbrandt's theorem that GnLw/Kv = Gn,ab
Kv

/Gn,ab
Kv
∩W ab

Lw
and so this is equivalent

to W ab
Lw
⊃ Gn,ab

Kv
. Via the inverse of the Artin map this is equivalent to r−1

Kv
(W ab

Lw
) ⊃ UnKv . Equivalently,

using the global Artin map, the component at v of the open subgroup r−1
K (Gab

L ) of A×K should contain UnKv .
That L is the largest abelian extension of K such that GnLw/Kv = 0 for n ≥ v(m) is equivalent to the fact

that U = r−1
K (Gab

L ) is the largest open subgroup of Gab
K such that the component in v is included in Uv(m)

Kv
.

The largest such U is U+
m .

Lecture 3
2013-04-05

Proposition 2.8. Let m be an ideal of OK . Then the discriminant of H = HK,m over K is∏
v|m

m
[H:K](v(m)− 1

qv−1 )
v

Proof. For simplicity write H = H+
m . Since (DL/K) = NH/K(

∏
m
v(DHw/Kv )
v ) it su�ces to show that for each

�nite place v of K (and an arbitrary choice w | v of H) we have v(DHw/Kv ) = v(m) − 1
qv−1 . For this we

need to know the cardinality of GnHw/Kv = Gn,ab
Kv

/Gn,ab
Kv
∩W ab

Hw
and via the inverse of the local Artin map

this is Unv /(Unv ∩NHw/KvH×w . This is trivial if and only if n ≥ v(m) which implies that Unv ⊂ NHw/KvH×w if

and only if n ≥ v(m). But H is maximal among such abelian extensions and so NHw/KvH
×
w = Uv(m)

v giving

GnHw/Kv
∼= Unv /U

v(m)
v . Since O×Kv/(1 + ($v)) ∼= k×Kv and (1 + ($v)

i)/(1 + ($v)
i+1) ∼= kKv it follows that

6



|GnHw/Kv | = q
v(m)−n
v if n ≥ 1 and |G0

Hw/Kv
| = q

v(m)−1
v (qv − 1) as long as v | m. We compute the conductor

of H as a GHw/Kv -representation (see the proof of Proposition 2.3:

cond(H) = [H : K]

∫ ∞
−1

(1− 1/|GuHw/Kv |)du

= [H : K]

v(m)∑
n=0

(1− 1/|GnHw/Kv |)

= [H : K]

v(m) + 1− 1

q
v(m)−1
v (qv − 1)

−
v(m)∑
n=1

1

q
v(m)−n
v


= [H : K]

(
v(m)− 1

qv − 1

)

The following section was not covered in lecture

2.5.3 Ring class �elds

An order O ⊂ K in a number �eld K is a �nitely generated Z-submodule of K such that O ⊗Z Q = K.
Every order O is contained in OK . The conductor of the order O is the cardinality of OK/O.

If K = Q(
√
−d) then every order is of the form O = Z +OKf which has conductor f . An ideal I of O

is said to be proper if O = {x ∈ K|xI ⊂ I}; I is said to be coprime to f if I + (f) = O. An ideal is proper
if and only if it is equivalent to an ideal coprime to f . The ring class group Cl(O) is de�ned to be the set of
proper ideals of O modulo principal ideals. There is an isomorphism between ideals of OK coprime to the
conductor f and proper ideals of O, the map from the �rst to the second being I 7→ I ∩ O and the inverse
being I 7→ IOK . As such Cl(O) is the set of ideals of O coprime to f modulo principal ideals generated by
x such that x ≡ n (mod fOK) for some integer n coprime to f .

Finally, Cl(O) ⊂ ClfOK (K) and so there is an open set UO ⊃ UfOK such that Cl(O) ∼= A×K/K×K×∞UO
in which case Cl(O) = GLO/K where LO is the ring class �eld of O. It shows up in the study of Heegner
points.

Proposition 2.9. Let K = Q(
√
−d) with (wide) Hilbert class �eld HK . For f ≥ 2 consider O = Z + fOK

the order of conductor f . Let Kf be the ring class �eld of O. Then Kf is Galois over HK and GKf/HK
∼=

(OK/fOK)×/(Z/fZ)×.

Proof. The Galois group GHK,f/HK is isomorphic to the group of principal ideals of OK coprime to f modulo
those principal ideals generated by x ≡ c (mod fOK) with c coprime to f .

End of section not covered in lecture

3 Selmer groups and applications

3.1 Selmer systems and Selmer groups

(3.1.1) Let K/Q be a number �eld and M a �nite discrete GK-module. Then M has trivial action of GL
for some �nite extension L/K and so M will be unrami�ed at all places v where L/K is unrami�ed.

A Selmer system is a collection L = {Lv} of Lv ⊂ H1(GKv ,M) such that Lv = H1
ur(GKv ,M) for

almost all v.
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Proposition 3.1. De�ne L⊥v ⊂ H1(GKv ,M
∗(1)) as the annihilator of Lv under the local Tate pairing.

Then L⊥ = {L⊥v } is also a Selmer system, called the dual Selmer system of L.

Proof. This follows from the fact that H1
ur(GKv ,M)⊥ = H1

ur(GKv ,M
∗(1)).

De�nition 3.2. The Selmer group is H1
L(K,M) = {x ∈ H1(GK ,M)| resv x ∈ Lv}.

Proposition 3.3. Let L be a Selmer system and let S be a set of places containing the in�nite places, �nite
places v such that Lv 6= H1

ur(GKv ,M) and �nite places v such that IKv does not act trivially on M . Let
KS/K be the largest extension which is unrami�ed outside S and let GK,S = GKS/K . Then

0→ H1
L(K,M)→ H1(GK,S ,M)→ ⊕v∈SH1(GKv ,M)/Lv

is exact.

Proof. By de�nition H1
L(K,M) is the kernel of the map H1(GK ,M)→

∏
vH

1(GKv ,M)/Lv. If v /∈ S then
Lv = H1

ur(Kv,M) is the kernel of the restriction map H1(Kv,M) → H1(Iv,M) ∼= Hom(Iv,M). Therefore∏
vH

1(GKv ,M)/Lv ⊂ ⊕v∈SH1(GKv ,M)/Lv ⊕
∏
v/∈S Hom(Iv,M).

Suppose c ∈ H1(K,M) is the image of some class in H1
L(K,M). Then c|Iv is the trivial map Iv → M

when v /∈ S. The Galois group GKS is generated by Iv for v /∈ S and so c|GKS is the trivial class. But then

by in�ation-restriction c ∈ H1(GK,S ,M) since GKS acts trivially on M .

3.2 Global duality and dual Selmer groups

This section is about the Tate-Poitou nine-term exact sequence, which is a global version of local Tate duality,
and its application to Selmer groups.

3.2.1 Tate-Poitou duality

Let K be a number �eld and let S be a �nite set of places containing the in�nite places. Let M be a �nite
GK-module and suppose that S contains all the �nite places v such that Iv acts nontrivially on M and all
the �nite places v such that v(|M |) > 0. Then M is naturally a GK,S-module.

De�ne

Ĥ0(Kv,M) =


MGKv v -∞
MGKv /NKv/Kv

M v | R
0 v | C

If A is an abelian group write A∨ = Hom(A,Q/Z). IfM is a �nite GK-module writeM∗ = Hom(M,Q/Z)
with the action (gφ)(m) = φ(g−1m).

Theorem 3.4. Suppose M is a �nite GK,S module as above. Then

1. There is an exact sequence

0→ H0(GK,S ,M)→ ⊕v∈SĤ0(Kv,M)→ H2(GK,S ,M
∗(1))∨ →

→ H1(GK,S ,M)→ ⊕v∈SH1(Kv,M)→ H1(GK,S ,M
∗(1))∨ →

→ H2(GK,S ,M)→ ⊕v∈SH2(Kv,M)→ H0(GK,S ,M
∗(1))∨ → 0

2. If i ≥ 3 then Hi(GK,S ,M) ∼= ⊕v∈SHi(Kv,M).

Lecture 4
2013-04-08
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3.2.2 Dual Selmer groups

Suppose L is a Selmer system and L⊥ is the dual Selmer system for the cohomology of a �nite GK-module
M .

Proposition 3.5. There is an exact sequence

0→ H0(GK,S ,M)→ ⊕v∈SĤ0(Kv,M)→ H2(GK,S ,M
∗(1))∨ →

→ H1
L(K,M)→ ⊕v∈SLv → H1(GK,S ,M

∗(1))∨ → H1
L⊥(K,M∗(1))∨ → 0

Proof. Tate-Poitou implies that

0→ H0(GK,S ,M)→ ⊕v∈SĤ0(Kv,M)→ H2(GK,S ,M
∗(1))∨ →

→ H1(GK,S ,M)→ ⊕v∈SH1(Kv,M)→ H1(GK,S ,M
∗(1))∨

is exact. Since Lv ⊂ H1(Kv,M) is sequence gives the exact sequence

0→ H0(GK,S ,M)→ ⊕v∈SĤ0(Kv,M)→ H2(GK,S ,M
∗(1))∨ → K → ⊕v∈SLv → H1(GK,S ,M

∗(1))∨

where K is the preimage of ⊕v∈SLv under the restriction map H1(GK,S ,M) → ⊕v∈SH1(Kv,M). By
de�nition K = H1

L(K,M) and so get an exact sequence

0→ H0(GK,S ,M)→ ⊕v∈SĤ0(Kv,M)→ H2(GK,S ,M
∗(1))∨ → H1

L(K,M)→ ⊕v∈SLv → H1(GK,S ,M
∗(1))∨

Proposition 3.3 replacing M by M∗(1) and L by L⊥ gives

0→ H1
L⊥(K,M∗(1))→ H1(GK,S ,M

∗(1))→ ⊕v∈SH1(Kv,M
∗(1))/L⊥v

which after dualizing and using (H1(Kv,M
∗(1))/L⊥v )∨ ∼= Lv gives

⊕v∈SLv → H1(GK,S ,M
∗(1))∨ → H1

L⊥(K,M∗(1))∨ → 0

Putting everything together gives the proposition.

3.3 Euler characteristics and sizes of Selmer groups

3.3.1 The Euler characteristic formulae

Proposition 3.6. If K/Qp is a �nite extension and M is a �nite GK-module then Hi(K,M) is �nite for
i ≥ 0. Moreover, Hi(K,M) = 0 for i ≥ 3.

Theorem 3.7. Let K/Qp be a �nite extension and M a �nite GK-module. Then

χ(K,M) =
|H0(K,M)||H2(K,M)|

|H1(K,M)|
= |#M |K

Proposition 3.8. If M is a �nite GK,S-module then Hi(GK,S ,M) is �nite for i ≥ 0.

Proof. This is clear when i = 0 as H0(GK,S ,M) ⊂ M . When i ≥ 3 then Hi(GK,S ,M) ∼= ⊕v∈SHi(Kv,M)
by Theorem 3.4 and �niteness follows from Proposition 3.6. Again by Theorem 3.4 we get exactness for
H1(GK,S ,M

∗(1))∨ → H2(GK,S ,M)→ ⊕v∈SH2(Kv,M) and �niteness of H2(GK,S ,M) follows from Propo-
sition 3.6 if we assume �niteness of H1(GK,S ,M

∗(1))∨. Therefore it su�ces to treat the case of i = 1 and
show that H1(GK,S ,M) is �nite for M �nite.

Since M is a GK,S-module there exists a �nite Galois subextension L/K of KS/K such that GKS/L acts
trivially on M . In�ation-restriction gives 0 → H1(L/K,M) → H1(GK,S ,M) → H1(GKS/L,M). Let SL
for the set of places of L lying above places of K in S in which case LSL = KS and so GKS/L = GL,SL .
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Therefore to show �niteness of H1(GK,S ,M) it su�ces to treat the case when GK,S acts trivially on M in
which case

H1(GK,S ,M) ∼= Hom(GK,S ,M) ∼= Hom(Gab
K,S ,M)

It is unfortunate that we use KS as both the maximal extension of K which is unrami�ed outside S and
as
∏
v∈S Kv but it should be clear which one we mean from context. So Gab

K,S
∼= A×K/K×K×,0∞

∏
v/∈S O×v .

We have already seen in the proof of Theorem 2.1 that we have an exact sequence

0→ K×S /OK [1/S]× → A×K/K
×
∏
v/∈S

O×v → ClS(K)→ 0

Since ClS(K) is �nite to show that Hom(Gab
K,S ,M) is �nite is su�ces to show that Hom(K×S /OK [1/S]×,M)

is �nite. But Hom(K×S /OK [1/S]×,M) ↪→
∏
v∈S Hom(K×v ,M) and Hom(K×v ,M) ∼= Hom(GKv ,M) ∼=

H1(Kv,M) is �nite by Proposition 3.6.

Theorem 3.9. Let K/Q be a number �eld, M a �nite GK-module and S as in Theorem 3.4. Then

χ(K,M) =
|H0(GK,S ,M)||H2(GK,S ,M)|

|H1(GK,S ,M)|
=

∏
v|∞ |H0(Kv,M)|
|M |[K:Q]

3.3.2 Sizes of Selmer groups and a theorem of Wiles

Lemma 3.10. Let K/Q be a number �eld and M �nite, L and S as in Proposition 3.3. Then H1
L(K,M) is

�nite.

Proof. Proposition 3.3 implies that H1
L(K,M) ⊂ H1(GK,S ,M) which we know is �nite by Theorem 3.4.

Theorem 3.11. Let K/Q be a number �eld and M , L and S as in Proposition 3.3. Then

|H1
L(K,M)|

|H1
L⊥(K,M∗(1))|

=
|H0(K,M)|
|H0(K,M∗(1))|

∏
v

|Lv|
|H0(Kv,M)|

Example 3.12. Let p > 2 be a prime and S be a �nite set of places of Q containing p and ∞. What is the
number of abelian extensions of Q of degree pn which are unrami�ed at all places ` /∈ S?

Proof. Recall that G∨Q
∼= Gab,∨

Q and so every continuous homomorphism φ : GQ → Q/Z has open kernel
kerφ = GL for a �nite abelian extension L/Q. If [L : Q] = m then for every g ∈ GQ, g

m ∈ GL and
so mφ(g) = φ(gm) ∈ φ(GL) = 0 and so φ : GQ → Z/mZ. The map taking φ to L is not injective, as
AutGL/Q acts on the set of φ. Reciprocally, every L/Q cyclic of degree m produces ϕ(m) = |Aut(Z/mZ)|
homomorphisms φ.

Every φ : GQ → M = Z/pnZ (with trivial GQ-action produces a cyclic extension of degree dividing pn.
Therefore we need to study Hom(GQ,M) ∼= H1(Q,M). If L/Q is as above then L is unrami�ed at ` /∈ S if
and only if φ(I`) = 0 if and only if φ|GQ`

∈ H1
ur(Q`,M). Therefore L/Q is unrami�ed outside S if and only

if φ ∈ H1
L(Q,Z/pnZ) where L` = H1

ur(Q`,M) for ` /∈ S and Lv = H1(Qv,M) when v ∈ S. The problem
now becomes to compute hn = |H1

L(Q,Z/pnZ)|. The number of φ with image Z/pnZ is exactly hn − hn−1

and Aut(Z/pnZ) acts on this giving hn−hn−1

ϕ(pn) extensions L/Q cyclic of order pn unrami�ed outside S.

Note that L⊥v = 0 for v ∈ S and L⊥` = H1
ur(Q`,M) for ` /∈ S. Suppose c ∈ H1

L⊥(Q,M∗(1)). Here
M∗(1) = µpn and so c ∈ H1(Q, µpn) such that c|Q` ∈ L⊥` ⊂ H1

ur(Q`, µpn) for all `.

By Kummer theory c(g) =
g( pn
√
α)

pn
√
α

where α ∈ Q×/(Q×)p
n

, since H1(Q, µpn) ∼= Q×/(Q×)p
n

. Since

c is unrami�ed at all primes ` it follows that c is trivial in H1(IQ` , µpn) ∼= Qur,×
` /(Qur,×

` )p
n

. Therefore

α ∈ (Qur,×
` )p

n

. In particular, v`(α) ∈ pnv`(Qur,×
` ) = pnZ. Let α = ±

∏
` `
a` in which case we just

showed pn | a`. Therefore α = (±
∏
` `
a`p
−n

)p
n ∈ (Q×)p

n

since p > 2. This shows that c is trivial and
so H1

L⊥(Q,M∗(1)) = 0.
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By Theorem 3.11 it follows that

|H1
L(Q,Z/pnZ)| = |H

0(Q,Z/pnZ)|
|H0(Q, µpn)|

∏
v

|Lv|
|H0(Qv,Z/pnZ)|

= pn
∏
v∈S

|H1(Qv,Z/pnZ)|
|H0(Qv,Z/pnZ)|

since H0(Q,Z/pnZ) = Z/pnZ and H0(Q, µpn) = 0. The second line in the equation above comes from the
�rst paragraph of the proof of Theorem 3.11. Now H1(R,Z/pnZ) ∼= {0} and H0(R,Z/pnZ) ∼= Z/pnZ while
for ` a prime, Theorem 3.7 implies that

χ(Q`,Z/pnZ) =
|H0(Q`,Z/pnZ)||H2(Q`,Z/pnZ)|

|H1(Q`,Z/pnZ)|
= |Z/pnZ|Q` = |pn|Q`

Therefore
|H1(Qv,Z/pnZ)|
|H0(Qv,Z/pnZ)|

=
|H2(Q`,Z/pnZ)|

|pn|Q`
But by local Tate duality |H2(Q`,Z/pnZ)| = |H0(Q`, µpn)∨| = |H0(Q`, µpn)| = |µpn(Q`)| = |µpn(F`)| =
(pn, `− 1). Finally,

|H1
L(Q,Z/pnZ)| =

∏
`∈S−∞

(pn, `− 1)

|pn|Q`

hn = pn
∏

`∈S−∞

(pn, `− 1)

Finally the number of L/Q cyclic of order pn unrami�ed outside of S is then

hn − hn−1

pn−1(p− 1)
=

∏
`∈S−∞

(pn, `− 1) +
∏

`∈S−∞

(pn−1, `− 1)

(
p|{`∈S−∞|p

n|`−1}| − 1

p− 1

)

Proof of Theorem 3.11. First note that if v /∈ S thenM is an unrami�edGKv -module and soH0(Kur
v /Kv,M)→

M
Frobv −1−→ M → H1

ur(Kv,M)→ 0 is exact. Therefore |H1
ur(Kv,M)| = |H0(Kur

v /Kv,M)| = |H0(Kv,M)|. In
particular the product in the theorem is �nite.

Proposition 3.5 then implies that

|H1
L(K,M)|

|H1
L⊥(K,M∗(1))|

=
|H2(GK,S ,M

∗(1))∨||H0(GK,S ,M)|
|H1(GK,S ,M∗(1))∨|

∏
v∈S

|Lv|
|Ĥ0(Kv,M)|

If A is a �nite abelian group then |A| = |A∨|. Note that M is unrami�ed outside S and so MGKS = M .
Thus H0(K,M) = MGK = (MGKS )GK,S = H0(GK,S ,M). This gives

|H1
L(K,M)|

|H1
L⊥(K,M∗(1))|

= χ(K,M∗(1))
|H0(K,M)|
|H0(K,M∗(1))|

∏
v∈S

|Lv|
|Ĥ0(Kv,M)|

But Theorem 3.9 implies that

χ(K,M∗(1)) =

∏
v|∞ |H0(Kv,M

∗(1))|
|M∗(1)|[K:Q]
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and so, since |M | = |M∗(1)|,

|H1
L(K,M)|

|H1
L⊥(K,M∗(1))|

=

∏
v|∞ |H0(Kv,M

∗(1))|
|M |[K:Q]

|H0(K,M)|
|H0(K,M∗(1))|

∏
v∈S

|Lv|
|Ĥ0(Kv,M)|

so we only need to show that ∏
v|∞ |H0(Kv,M

∗(1))|
|M |[K:Q]

=
∏
v∈S

|Ĥ0(Kv,M)|
|H0(Kv,M)|

But ∏
v∈S

|Ĥ0(Kv,M)|
|H0(Kv,M)|

=
∏
v|∞

|Ĥ0(Kv,M)|
|H0(Kv,M)|

=
∏
v|R

|Ĥ0(Kv,M)|
|H0(Kv,M)|

∏
v|C

|Ĥ0(Kv,M)|
|H0(Kv,M)|

=
∏
v|R

|MGal(C/R)/NC/RM |
|MGal(C/R)|

∏
v|C

|M |−1

and ∏
v|∞ |H0(Kv,M

∗(1))|
|M |[K:Q]

=
∏
v|R

|M |−1|H0(Kv,M
∗(1))|

∏
v|C

|M |−2|H0(Kv,M
∗(1))|

=
∏
v|R

|M |−1|H0(Kv,M
∗(1))|

∏
v|C

|M |−1

Write Gal(C/R) = {1, c}. Then it su�ces to show that

|M c−1/(c+ 1)M |
|M c−1|

=
|(M∗(1))c−1|
|M |

and this follows from

|(M∗(1))c−1| = | ker(c− 1 : M∗(1)→M∗(1))|
= | ker(c+ 1 : M∗ →M∗)|
= | coker(c+ 1 : M →M)|
= |M |/| Im(c+ 1 : M →M)|

Lecture 6
2013-04-12

4 Rational points on elliptic curves

4.1 Facts about elliptic curves

De�nition 4.1. Let K be a �eld. An elliptic curve over K is a smooth curve y2z = x3 + axz2 + bz3 in P2
K

whose solutions E(A) = {(x : y : z) ∈ P2(A)|y2z = x3 +axz2 +bz3} form an abelian group with 0 = (0 : 1 : 0)
the point at in�nity for any K-algebra A.
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Theorem 4.2. If K/Q is a number �eld and E/K is an elliptic curve then E(K) is a �nitely generated
abelian group. The rank of E is de�ned as the rank of E(K).

To prove this theorem we need to collect some facts about elliptic curves.

(4.1.1) First if M/L/K are �eld extensions then E(M) has an action of GM/L which commuted with the

group law. Moreover, E(M)GM/L = E(L).

(4.1.2) If n > 1 is an integer there is a map [n] : E(A)→ E(A) given by P 7→ P + · · ·+ P exactly n times.
Write E(A)[n] = ker([n]). If E is de�ned over a �eld K and L/K is an extension then E(L)[n] is a �nite
group. Note that GL/K acts on E(L)[n]. The map [n] on E(K) is surjective.

(4.1.3) Let K be a number �eld. If one clears denominators in the equation of E and v is a place of K such
that the equation y2z = x3 + axz2 + bz3 is still smooth over the residue �eld kv then E is said to have good
reduction at v. If n is an integer such that v - n then

E(K)[n] ↪→ E(kv)

(4.1.4) Let K be a number �eld. Consider the function H : P2(K)→ [1,∞) de�ned by

H(x : y : z) =

(∏
v

max(|x|v, |y|v, |z|v)

)1/[K:Q]

This is well-de�ned because if λ ∈ K× then
∏
v |λ|v = 1. Moreover, H(x : y : z) does not depend on

the number �eld K over which (x : y : z) is de�ned. That H(x : y : z) ≥ 1 follows from the fact that
H(x : y : z) ≥ (

∏
v |x|v)1/[K:Q] = 1.

Consider h : E(K)→ [0,∞) de�ned by h(P ) = logH(P ). Then

1. for any C > 0, {P ∈ E(K)|h(P ) ≤ C} is a �nite set,

2. for any Q ∈ E(K) there exists a constant CE,Q such that h(P +Q) ≤ 2h(P ) +CE,Q for all P ∈ E(K)
and

3. there exists a constant CE,n such that h([n]P ) ≥ n2h(P )− CE,n.

4.2 Cohomology of elliptic curves over �nite �elds

In this section k represents a �nite �eld with q elements.

Lemma 4.3. Let C be a smooth projective curve of genus 1 over k. If C has a rational point over some
�nite extension of k then it has a rational point over k.

Proof. Riemann-Roch for curves shows that the zeta function of C has the form

Z(C,X) =
1− aX + qX2

(1−X)(1− qX)

where

Z(C,X) = exp

∑
r≥1

|C(Fqr )|Xr/r


If C(Fq) = 0 then Z(C,X) ≡ 1 (mod X2) by de�nition. The formula above then gives a = q + 1 in which
case Z(C,X) = 1. But the C(Fqr ) = 0 for all r contradicting the hypothesis.

Proposition 4.4 (Lang). Let k be a �nite �eld and let E/k be an elliptic curve. Then H1(k,E(k)) = 0.
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Proof. Let c ∈ H1(k,E(k)). Embed E(k) ↪→ Aut(E(k)) of automorphisms over k by sending P to tp(Q) =
P +Q. The Galois cohomology group H1(k,Aut(E(k))) represents forms of E over k. Let C be the form of
E over k represented by the cohomology class −c. In other words C is a smooth projective curve of genus 1
over k with a k-isomorphism φ : C/k ∼= E/k such that φgφ−1 = t−c(g) where φ

g(x) = g(φ(g−1x)).
Lemma 4.3 implies that C has a point P ∈ C(k) and let Q = φ(P ). Then φgφ−1Q = φg(P ) = g(φ(P )) =

g(Q) since P is de�ned over k. But φgφ−1Q = t−c(g)Q = Q− c(g) which gives c(g) = Q− g(Q). Thus c is

trivial in H1(k,E(k)).

4.3 Descent for rational points

Lemma 4.5 (Descent). Let K be a number �eld and E/K an elliptic curve. If for some integer m,
E(K)/mE(K) is �nite, then E(K) is �nitely generated.

Proof. Let E(K)/mE(K) be represented by Q1, . . . , Qr with Q1, . . . , Qr ∈ E(K). We will show by descent
that there exists a constant C such that Q1, . . . , Qr and the �nitely many points {P ∈ E(K)|h(P ) ≤ C}
generate E(K).

Indeed, let C1 = maxCE,−Qi and C = 1 + (CE,m + C1)/2. Let P ∈ E(K). We would like to express P
as a sum of Qi and points of height at most C. Write P = mP1 +Qi1 , and for n ≥ 1 let Pn = mPn+1 +Qin .
Then

h(Pn) ≤ 1

m2
(h([m]Pn) + CE,m)

=
1

m2
(h(Pn−1 −Qin) + CE,m)

≤ 1

m2
(2h(Pn−1) + CE,m + CE,−Qin )

≤ 1

m2
(2h(Pn−1) + CE,m + C1)

Inductively we get

h(Pn) ≤
(

2

m2

)n
h(P ) +

(
n∑
i=1

2i−1

m2i

)
(CE,m + C1)

≤
(

2

m2

)n
h(P ) +

CE,m + C1

m2 − 2

≤ 2−nh(P ) + C − 1

Now if 2n > h(P ) it follows that h(Pn) < C and P = [mn]Pn +
∑n
j=1[mj−1]Qij .

4.4 Selmer groups for elliptic curves

Lemma 4.6. Let n > 1 be an integer, K a �eld and E an elliptic curve over E. Then

0→ E(K)/nE(K)
δK−→ H1(K,E(K)[n])

iK−→ H1(K,E(K))[n]→ 0

Proof. This is Kummer theory for elliptic curves. Take the GK-cohomology of the short exact sequence

0→ E(K)[m]→ E(K)
[n]−→ E(K)→ 0 and get the long exact sequence

E(K)
n−→ E(K)→ H1(K,E(K)[n])→ H1(K,E(K))

n−→ H1(K,E(K))

giving
0→ E(K)/nE(K)→ H1(K,E(K)[n])→ H1(K,E(K))[n]→ 0
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De�nition 4.7. Let K be a number �eld and E an elliptic curve over K. The n-Selmer group of E is

Seln(E/K) = ker

(
H1(K,E(K)[n])→

∏
v

H1(K,E(Kv))[n]

)

where the map to H1(K,E(Kv))[n] is restriction to GKv followed by jKv .

The purpose of this section is to express Seln(E/K) as the Selmer group H1
L(K,E(K)[n]) for a suitable

Selmer system L.

Proposition 4.8. Let Lv be the image of E(Kv)/nE(Kv) via δKv in H1(Kv, E(Kv)[n]). Then L = {Lv}
is a Selmer system and

Seln(E/K) = H1
L(K,E(K)[n])

Lecture 7
2013-04-15

Proof. The equality Seln(E/K) = H1
L(K,E(K)[n]) follows from the fact that

Seln(E/K) = {c ∈ H1(K,E(K)[n])|iKv ◦ resKv c = 0}
= {c ∈ H1(K,E(K)[n])| resKv c ∈ ker iKv}
= {c ∈ H1(K,E(K)[n])| resKv c ∈ Im δKv}
= {c ∈ H1(K,E(K)[n])| resKv c ∈ Lv}
= H1

L(K,E(K)[n])

To show that L is a Selmer system we only need to check that for v /∈ S for some �nite set S one has
Lv = H1

ur(Kv, E(K)[n]). We will do this by showing that each group is contained in the other whenever
v /∈ S where S is an explicit �nite set of places. De�ne S to be the set of places consisting of in�nite places,
of �nite places where E has bad reduction and �nite places above n.

Let v /∈ S. Consider c ∈ Lv with c = δKv (P ) for some P ∈ E(Kv). Kummer theory gives that for any
Q ∈ E(Kv) such that [n]Q = P then δKvP is the cochain (δP )(g) = g(Q)−Q ∈ E(Kv)[n]. Suppose M/Kv

is the smallest �nite extension such that Q ∈ E(M).
There exists a reduction map E(M)→ E(kM ) as follows: if x = (a : b : c) ∈ E(M) there exists λ ∈M×

such that λa, λb, λc ∈ OM and at least one of them is in O×M . Then x = (λa : λb : λc) ∈ E(kM ). The
projection map E(M)→ E(kM ) is Galois equivariant where the Galois group GM/Kv acts on E(kM ) via the
projection to GM/Kv/IM/Kv

∼= GkM/kKv .

LetQ ∈ E(kM ) be the reduction ofQ. Let σ ∈ IM/Kv . Then σ(Q)−Q ∈ E(M)[n] because [n](g(Q)−Q) =

g(P )− P = 0. Moreover, σ(Q)−Q = 0 as σ is trivial in GkM/kv . But E(M)[n] injects into E(kM ) (E has

good reduction at v and v - n as v /∈ S) and so, since σ(Q) − Q projects to σ(Q) − Q = 0, it follows that
σ(Q) = Q. But then Q ∈ E(M)IM/Kv = E(M ∩Kur

v ) and since M is the smallest extension of Kv such that
Q ∈ E(M) it follows thatM/Kv is unrami�ed and so IKv = IM . Finally for σ ∈ IKv = IM ⊂ GM , σ(Q) = Q
and so c(σ) = 0 which implies that c = δvP ∈ H1

ur(Kv, E(Kv)[n]). Therefore Lv ⊂ H1
ur(Kv, E(Kv)[n]).

Reciprocally, suppose c ∈ H1
ur(Kv, E(Kv)[n]). By de�nition H1

ur(Kv, E(Kv)[n]) ∼= H1(kKv , E(kKv )[n])
which, by Lemma 4.6, stays in the exact sequence

0→ E(kKv )/nE(kKv )→ H1(kKv , E(kKv )[n])→ H1(kKv , E(kKv ))[n]→ 0

But Proposition 4.4 implies thatH1(kKv , E(kKv )) = 0 and therefore E(kKv )/nE(kKv ) ∼= H1(kKv , E(kKv )[n]).
Thus there exists P ∈ E(kKv ) such that c = δP . Now Hensel's lemma allows one to �nd P ∈ E(Kv) such
that its image in E(kKv ) is P . Then c = δP and so H1

ur(Kv, E(Kv)[n]) ⊂ Lv.
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4.5 Mordell-Weil

We are now ready to prove the Mordell-Weil Theorem

Proof of Theorem 4.2. Proposition prop:selmer elliptic shows that Seln(E/K) ∼= H1
L(K,E(K)[n]). We

know that E(K)[n] is �nite and therefore Lemma 3.10 implies that Seln(E/K) is �nite. We have a commu-
tative diagram

0 // E(K)/nE(K) //

��

H1(K,E(K)[n])

))SSSSSSSSSSSSSS

��
0 // E(Kv)/nE(Kv) // H1(Kv, E(Kv)[n]) // H1(Kv, E(Kv))[n]

and therefore the image of E(K)/nE(K) in H1(Kv, E(Kv))[n] is trivial for every v. By de�nition, the image
of E(K)/nE(K) in H1(K,E(K)[n]) is included in Seln(E/K) and therefore E(K)/nE(K) is �nite.

Now Lemma 4.5 implies that E(K) is �nitely generated.

The following section was not covered in lecture

4.6 Standard proof of Mordell-Weil

I include here the proof from Silverman's book, for comparison.

Lemma 4.9. Suppose E is an elliptic curve over a number �eld K and L/K is a �nite Galois extension. If
E(L)/mE(L) is �nite then E(K)/mE(K) is �nite.

Proof. Consider the GK-cohomology sequence attached to 1→ E(K)[m]→ E(K)
[m]−→ E(K)→ 1:

1→ E(K)[m]→ E(K)
[m]−→ E(K)→ H1(K,E(K)[m])→ H1(K,E(K))

[m]−→ H1(K,E(K))

which gives the Kummer isomorphism

1→ E(K)/mE(K)→ H1(K,E(K[m]))→ H1(K,E(K))[m]

Kummer and in�ation restriction gives the following diagram

0 // E(L)/mE(L) // H1(L,E(K)[m]) // H1(L,E(K))[m]

0 // E(K)/mE(K) //

OO

H1(K,E(K)[m]) //

OO

H1(K,E(K))[m]

OO

ker //

OO

H1(GL/K , E(L)[m]) //

OO

H1(GL/K , E(L))[m]

OO

0

OO

0

OO

0

OO

From the diagram it is clear that the map ker → H1(GL/K , E(L)[m]) is injective. We know that E(L)[m]
is �nite and GL/K is a �nite group and so ker injects into a �nite group and thus it is �nite. Now
E(K)/mE(K)→ E(L)/mE(L) is a map with �nite kernel and image and so E(K)/mE(K) is �nite.

We are not ready to prove Theorem 4.2.
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Proof of Theorem 4.2. By Lemma 4.5 it su�ces to show that E(K)/mE(K) is �nite. By Lemma 4.9 to
show this we may replace K by any �nite extension. In particular we may assume that E(K)[m]) ⊂ E(K),
which we may do since E(K)[m] is �nite. This implies that E(K)[m] = E(K)[m] has trivial GK-action and
so H1(K,E(K)[m]) ∼= Hom(GK , E(K)[m]).

If P ∈ E(K) let K(P ) be the �nite extension of K generated by the coordinates of P . The Kummer
sequence now implies that E(K)/mE(K) ↪→ Hom(GK , E(K)[m]). This map is described explicitly as
attaching to P ∈ E(K) the map φP : GK → E(K)[m] given by φP (g) = g(Q) −Q for any Q ∈ E(K) such
that [m]Q = P . What is the kernel of φP ? It is K(Q) for the chosen Q with [m]Q = P . Let L be the
compositum of all K(Q) such that [m]Q ∈ E(K). Thus φP vanishes on GL ⊂ GK .

Moreover, E(K)/mE(K) × GL/K → E(K)[m] de�ned by (P, g) 7→ φP (g) is a perfect pairing. Since
E(K)[m] is �nite to show that E(K)/mE(K) is �nite is is enough to show that L/K is a �nite extension.
First, note that φP (gm) = mφP (g) = 0 and so gm = 1 in GL/K and so L/K has exponent m.

Second, let S be a �nite set of places containing the places where E has bad reduction, places v dividing
m and the in�nite places of K. We now show that L/K is unrami�ed outside S. Since the compositum of
unrami�ed extensions is unrami�ed it su�ces to show that if [m]Q ∈ E(K) thenK(Q) is unrami�ed at v /∈ S.
We know that E(K)[m] ↪→ E(kv) as v - m and E has good reduction at v. We need to show that IKv acts
trivially on Q. Let σ ∈ IKv . Recall that [m]Q = p ∈ E(K) and so [m](σ(Q)−Q) = σ(P )−P = 0. Therefore
σ(Q)−Q ∈ E(K)[m] = E(K)[m] ↪→ E(kv). But GKv acts on E(kv) via the projection Gkv

∼= GKv/IKv and
so σ(Q)−Q = 0 in E(kv). Therefore σ(Q) = Q in E(K) and so IKv acts trivially on K(Q) as desired.

Finally, K(Q)/Q is an abelian extension because GL appears as the kernel of the map φP : GK →
E(K)[m] and E(K)[m] is abelian. Therefore L/K is an abelian extension of exponent m which is unrami�ed
outside S. We want to show that L/K is �nite. The inverse of the global Artin map gives an injection

GL/K ↪→ A×K/K
×K×,0∞

∏
v∈S−∞

(K×v )m
∏
v/∈S

O×v

and A×K/K×K×,0∞
∏
v∈S−∞(K×v )m

∏
v/∈S O×v ⊂

∏
v∈S−∞K×v /(K

×
v )m. This is so because K× is dense in

A×,SK and so for every (av) ∈ A×K there exists x ∈ K× such that avx
−1 ∈ O×v when v /∈ S and avx

−1 ∈ K×,0v

when v | ∞.
Therefore it su�ces to show thatK×v /(K

×
v )m is �nite. But by Kummer theoryK×v /(K

×
v )m ∼= H1(Kv, µm(Kv))

which is �nite because µm(Kv) is �nite.

End of section not covered in lecture

5 Characters with prescribed behavior

5.1 Grunwald-Wang

Let K be a number �eld. The Grunwald-Wang problem asks whether if x ∈ K× is an n-th power in almost
all K×v then x is also an n-th power in K×. Another way of putting this problem is to study the kernel of
the map

K×/(K×)n →
∏
v/∈S

K×v /(K
×
v )n

where S is some �nite set of places of K. Since k×/(k×)n = H1(k, µn) for any �eld k this kernel is

X1
S(K,µn) ∼= ker

(
H1(K,µn)→

∏
v/∈S

H1(Kv, µn)

)

Lemma 5.1. Let L/K be a Galois extension of number �elds. If all but �nitely many places v of K split
completely in L then L = K.
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Proof. Suppose S is a �nite set of places of K, containing the in�nite places, such that if v /∈ S then
v = w1 · · ·wn splits completely in L. For each v ∈ S −∞ and w | v a place of L let nw ∈ Z≥0 be an integer
such that UnwKv ⊂ NLw/KvL

×
w which is an open subgroup of K×v . Let nv = max(nw).

For each a = (av) ∈ A×K one may �nd x ∈ K× such that avx
−1 ∈ UnvKv for all v ∈ S−∞ and avx

−1 ∈ K×,0v

for v | ∞. Indeed, choosing u /∈ S strong approximation states that K× is dense in A{u},×K . Therefore there

exists x ∈ K× whose image in A{u},×K is in the open subset∏
v|∞

avK
×,0
∞

∏
v∈S−∞

avUnvKv
∏

v/∈S∪{u}

O×v

Then if v | ∞ one has avx
−1 ∈ NLw/KvL×w = K×,0v , if v ∈ S−∞ one has avx

−1 ∈ UnvKv ⊂ NLw/KvL
×
w by choice

of nv and if v /∈ S and w | v then Lw = Kv so trivially avx
−1 ∈ NLw/KvL×w . Therefore ax−1 ∈ NL/KA×L and

so a ∈ K×NL/KA×L . We deduce that

Gab
L/K

∼= A×K/K
×NL/KA×L ∼= 0

If L/K were abelian then L = K.
Suppose L/K is not abelian. Let L/M/K be a subextension such that L/M is abelian and nontrivial.

This is always possible as there exists a cyclic subgroup of GL/K . Then let SM be the set of places of M
lying above places v ∈ S. Thus for every w /∈ SM , w splits completely in L. Since L/M is abelian it follows
that L = M contradicting the fact that L/M is nontrivial. Therefore L = K.

Lecture 8
2013-04-17

Theorem 5.2 (Weak Grunwald-Wang). Let K be a number �eld and t = v2(n).

1. If K(ζ2t)/K is a cyclic extension then X1
S(K,µn) = 1. In particular this is so when 8 - n.

2. If K(ζ2t)/K is not cyclic then X1
S(K,µn) is a �nite 2-torsion group, i.e., if α ∈ X1

S(K,µn) then
α ∈ (K×)n/2.

Proof. If (m,n) = 1 and α = am = bn then for pm + qn = 1 one obtains α = (aqbp)mn. Therefore it is
enough to show the result when n = pr for a prime p.

If ζn ∈ K and α ∈ X1
S(K,µn) then K( n

√
α)/K is a Galois extension. For every v /∈ S one knows

that n
√
α ∈ Kv and therefore the prime v of K splits completely in K( n

√
α). Lemma 5.1 now shows that

K( n
√
α) = K and therefore α = 1 in X1

S(K,µn).
If ζn /∈ K consider K(ζn). The above shows that α = βn for some β ∈ K(ζn). Let Xn − α =

∏
fi(X)

the factorization into irreducibles over K. Over K(ζn) we know that Xn − α =
∏

(X − βζin) and therefore
fi(X) has a root of the form βi = βζjn ∈ K(ζn). The extension K(βi)/K is therefore abelian Galois.

For v /∈ S let α = αnv for αv ∈ Kv in which case
∏
fi(αv) = 0 and so fi(αv) = 0 for some i. Since

K(βi)/K is abelian the Galois group acts transitively on the roots of fi and so fi splits completely in Kv

and so v splits completely in K(βi). If K(ζn)/K is cyclic of prime power degree then its sub�elds are ordered
linearly and we may assume that K(β1) ⊂ K(β2) ⊂ . . .. Since v splits completely in some K(βi) it must
also split completely in K(β1) and so K(β1) = K by Lemma 5.1. Finally, α = βn1 for β1 ∈ K.

If n = pr with p > 2 then K(ζn)/K is cyclic of degree pr. If n = 2r and K(ζ2t)/K is assumed cyclic then
X1

S(K,µn) = 1.
If K(ζ2t)/K is not cyclic then K(

√
−1) 6= K as K(ζ2t)/K(

√
−1) is cyclic. Therefore α ∈ (K(

√
−1)×)n.

Let β ∈ K(
√
−1) such that α = βn in which case taking norms one gets α2 = (NK(

√
−1)/Kβ)n and the

conclusion follows.

The following section was not covered in lecture
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I include, without proof, the full Grunwald-Wang theorem.

Theorem 5.3 (Strong Grunwald-Wang). For r ≥ 1 let ηr = ζr + ζ−1
r . Let K be a number �eld and S a

�nite set of places of K. Let r be the largest integer such that ηr ∈ K. Then X1
S(K,µn) = 1 unless:

1. −1, 2 + ηr and −(2 + ηr) are non-squares in K and

2. v2(n) > r and

3. S contains the set SK of all the places v | 2 such that −1, 2 + ηr and −(2 + ηr) are non-squares in Kv.

End of section not covered in lecture

5.2 Characters with prescribed �nite order local behavior

Let K be a number �eld and S a �nite set of places of K.

Lemma 5.4. For every �nite index open subgroup P0 of P =
∏
v∈S K

×
v there exists an open subgroup U of

A×K/K× such that U ∩ P = P0.

Proof. This proof has some missing topological details. See [AT09, Chapter 10, Lemma 4]. Let CK =
A×K/K×. First, for n > 1, P0C

n
K and PCnK are closed subgroups of CK and P0C

n
K is open in PCnK .

Therefore there exists V ⊂ CK open such that PCnK ∩ V ⊂ P0C
n
K . Let U = V P0C

n
K . Then P ∩ U =

P ∩ PCnK ∩ P0C
n
KV = P ∩ P0C

n
K(PCnK ∩ V ) = P ∩ P0C

n
K = P0(P ∩ CnK).

Now P0 is �nite index in P and so for some integer n one has Pn ⊂ P0 in which case we take the open
U of CK such that P ∩ U = P0(P ∩ C2n

K ). Now suppose α ∈ P ∩ C2n
K . Then there exists (αv) ∈ P ⊂ A×K

and x ∈ K× such that (αv)x ∈ (A×K)2n. Since αv = 1 if v /∈ S it follows that x ∈ (K×v )2n for v /∈ S. Now
Theorem 5.2 implies that x ∈ (K×)n and so (αv) ∈ (A×K)n so (αv) ∈ Pn. Thus P ∩C2n

K ⊂ Pn and therefore
P ∩ U = P0(P ∩ C2n

K ) = P0 as desired.

Theorem 5.5. Let K be a number �eld and S a �nite set of (not necessarily �nite) places. For each v ∈ S
let χv : K×v → C× be a continuous character of �nite order nv. Then there exists a continuous �nite order
character χ : K×\A×K → C× such that χ|K×v = χv when v ∈ S.

Proof. Let P =
∏
v∈S K

×
v . Have a character ⊗v∈Sχv : P → C× and let P0 = ker⊗χv be a �nite index

subgroup of P . Lemma 5.4 provides an open subgroup U of A×K such that P ∩ U = P0. But then PU/U ∼=
P/P ∩ U ∼= P/P0 and therefore the character χS = ⊗v∈Sχv : P/P0 → S1 extends to a character χS :
PU/U → S1. Finally, PU ⊂ CK is �nite index and so χS extends to a character χS : A×K/K×U → S1 which
is a global �nite order Hecke character.

5.3 Characters with prescribed local behavior at in�nite places

Write | · | for the usual absolute value on C× and | · |C for its square.

Lemma 5.6. Continuous characters of R× are of the form x 7→ sign(x)ε|x|t for ε ∈ {0, 1} and tv ∈ C.
Continuous characters of C× are of the form x 7→ (x/|x|)m|x|tC for some m ∈ Z and t ∈ C.

Proof. All continuous homomorphisms from R to C are obtained by scalar multiplication and so all continuous
homomorphisms from (0,∞) to C× are of the form x 7→ xt for t ∈ C. The result then follows from the fact
that R× ∼= {−1, 1} × (0,∞) and C× ∼= S1 × (0,∞).

De�nition 5.7. A Hecke character ψ : A×K/K× is unitary if for each v | ∞ one has ψv(x) = (x/|x|)mv |x|itvv
where tv ∈ R. The character ψ is said to be algebraic of type A0 if tv = 0 for all v | ∞. The character ψ is
algebraic of type A if

19



Proposition 5.8. Let K be a number �eld and for each v | ∞ let mv ∈ Z (0 or 1 if v | R) and tv ∈ R.
There exists a Hecke character χ : A×K/K× → C× such that for v | ∞, χv(x) = (x/|x|v)mv |x|itvC if and only
if ∏

v|∞

(
ιv(α)

|ιv(α)|v

)mv
|ιv(α)|itvC = 1

for α in a �nite index subgroup of O×K .

Proof. If χ is a global Hecke character let U be the �nite index open subgroup of
∏
v-∞O×v such that

χ|U = 1, i.e., U is the conductor of χ. Then for every α ∈ O×K ∩ U one has
∏
v-∞ χv(α) = 1 and therefore

since
∏
v χv(α) = 1 one also has

∏
v|∞ χv(α) = 1.

Reciprocally, let V ⊂ O×K be a �nite index subgroup. There exists a �nite index subgroup U ⊂
∏
v-∞O×v

such that V ⊃ O×K ∩ U . There is an exact sequence

1→ K×∞U/(O×K ∩ U)→ A×K/K
× → Cl(U)→ 1

where Cl(U) is a �nite group.
De�ne χ on K∞U by letting χv as required when v | ∞ and χv = 1 when v -∞. The hypothesis implies

that χ factors through K×∞U/(O×K ∩ U). Choosing a section to the exact sequence above, since Cl(U) is
�nite, one may extend to a Hecke character χ. (Such a section exists because to an ideal I ∈ Cl(U) one may

attach
∏
v-∞$

v(I)
v which is a homomorphism.)

Lecture 9
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Lemma 5.9. Let K be a number �eld. A continuous Hecke character has �nite order if and only if it is
trivial on K×,0∞ .

Proof. If v | ∞ then φv(x) = (x/|x|)m|x|tC for m ∈ Z and t ∈ C. If v = R then on K×,0v = (0,∞) this
is φv(x) = |x|tC and if this is �nite order then t = 0 and so φv|K×,0v

= 1. If v = C then on K×,0v = C×

this is φv(re
iθ) = eimθrt. If φv is �nite order then necessarily t = 0 and, since for θ irrational the set {mθ

mod 2π} ⊂ [0, 2π) is dense, also m = 0 which gives again φv|K×,0v
= 1.

Reciprocally, suppose φ|K×,0∞ = 0. Since φ is continuous there exists an open subgroup U ⊂ Af,×K such

that U ⊂ kerφ. But then φ factors through A×K/K×K×,0∞ U which is �nite, thereby showing that φ has �nite
order.

Theorem 5.10 (Weil-Artin). Let K be a number �eld and KCM ⊂ K be the maximal CM sub�eld (where
KCM = Q if K has no CM sub�elds). Let ψ : A×K/K× → C× be an algebraic Hecke character of type A0.
Then there exists an algebraic Hecke character ψCM of KCM of type A0 and a �nite order character χ of K
such that ψ = χ · ψCM ◦ NK/KCM

. In particular every algebraic Hecke character of type A of a totally real
�eld is the product of a �nite order character and | · |mAK for some integer m.

Proof. By Lemma 5.9 a continuous Hecke character has �nite order if and only if it is trivial on K×,0∞ .
Therefore it su�ces to show that ψ and ψCM ◦NK/KCM

agree on K×∞ for some algebraic character ψCM.
First, assume K/Q is Galois with Galois group G. Since G = GK/Q acts transitively on places of K

above a place of Q, the in�nite places of K are either all real or all complex.
Suppose that K is totally real. Then for v | ∞, ψv(x) = (x/|x|)mv = (signx)mv which is trivial on K×,0v

and so ψ readily has �nite order and the theorem follows.
Suppose that K is totally complex. The character ψ is algebraic of type A0 and so for an in�nite place

v, ψv(x) = (x/|x|)mv and Proposition 5.8 implies the existence of an open subgroup U of O×K such that for

20



α ∈ U one has
∏
v|∞(ιv(α)/|ιv(α)|)mv = 1. Squaring we get

∏
v|∞

(
ιv(α)

|ιv(α)|

)2mv

=
∏
v|∞

(
ιv(α)

ιv(α)

)mv
= 1

Fixing an embedding τ : K ↪→ C, we have {ιv, ιv} = {τ ◦ g|g ∈ G} and for g ∈ G we write mg = mτ◦g if
τ ◦ g = ιv and mg = −mτ◦g if τ ◦ g = ιv. Then the equation above becomes∏

g∈G
τ ◦ g(α)mg = 1

and since τ is injective ∏
g∈G

g(α)mg = 1

For any complex embedding ι : K ↪→ C let cι be the (necessarily nontrivial) element of G induced by
complex conjugation on C, i.e., ι(x) = ι(cι(x)). Suppose ιv = τ ◦ g. Then ιv = ιv ◦ cιv = τ ◦ (cιvg) and so by
de�nition mcιv g = −mg.

The �eld KCM is the �xed �eld of {cιcι′ |ι, ι′ : K ↪→ C}. The equation above becomes∏
G/cι

g(α)mgcιg(α)mcιg = 1

for α ∈ U ⊂ O×K .
Note that |ι(g(α))|C = |ι(cιg(α))|C so taking logarithms get∑

G/cι

(mg +mcιg) log |ι(g(α))|C = 0

Theorem 2.1 implies that O×K and therefore the �nite index subgroup U of O×K have rank #∞−1 = |G|/2−1
which is also the rank of ∆∞ = ker

(
R#∞ → R

)
and so wι = mg +mcιg is independent of g. But wι|G|/2 =∑

g∈G/cι(mg + mcιg) =
∑
g∈Gmg is also independent of ι and so wι is independent of ι. Therefore for any

other ι′ : K ↪→ C one has mcιg +mc′ιcιg
= wι′ = wι = mg +mcιg and so mg = mc′ιcιg

. Thus mg is constant
on GK/KCM

-orbits and so ∏
g∈G

g(α)mg =
∏

g∈GKCM/Q

g(NK/KCM
α)mg = 1

and if α ranges over a �nite index subgroup of O×K then NK/KCM
α ranges over a �nite index subgroup U ′ of

O×KCM
. What we get is that for α ∈ U ′ ⊂ O×KCM

have∏
g∈GKCM/Q

g(α)mg = 1

and mcιg = −mg from the fact that over K have mcιv g
= −mg. Suppose τ : KCM ↪→ C is a complex

embedding. Then writing c for the unique complex conjugation on KCM we have

∏
g∈GKCM/Q/c

(
τ(g(α))

τ(g(α))

)mg
=

∏
g∈GKCM/Q/c

(
τ(g(α))

|τ(g(α))|

)2mg

= 1

and by restricting the �nite index subgroup U ′ a little more we conclude by Proposition 5.8 the existence of
an algebraic Hecke character ψCM of KCM such that at v | ∞ in KCM, ψCM,v(x) = (x/|x|)mv where mv = mg

if ιv = τ ◦ g. In that case ψ · ψCM ◦N−1
K/KCM

is trivial on K×∞ and so has �nite order.
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Now if K/Q is not Galois let L/K be its Galois closure and LCM the maximal CM sub�eld of L. Let
H1 = GL/K and H2 = GL/LCM

. By de�nition K ∩ LCM = KCM and so GL/KCM
= H1H2. Now ψ ◦NL/K is

a character on L which is Galois over Q and so ψ ◦NL/K = χ · η ◦NL/LCM
where η is an algebraic character

of LCM. As before we need to show that the integers {mv} where v | ∞ runs over places of L are constant
on orbits of GL/KCM

= H1H2. But the integers are constant along H1-orbits since they are attached to
ψ ◦NL/K and they are constant along H2 orbits because ψ ◦NL/K = χ · η ◦NL/LCM

.

Lecture 10
2013-04-22

Proposition 5.11. Let n > 1 be an integer not divisible by 8 and ω : µn(K)\µn(AK)→ S1 be a continuous
character such that ωv = 1 for v | C. Then there exists a �nite order character ω̃ : K×\A×K → S1 whose
restriction to µn(AK) is ω. Here S1 = {z ∈ C||z| = 1}.

Proof. We have an exact sequence

µn(K)\µn(AK)→ (A×K/K
×)[n]→X1

∅(K,µn)→ 1

as follows: if (αv) ∈ CK [n] then (αnv ) = x for some x ∈ K×. Let y be the image of x in X1
∅(K,µn). What

is the kernel of this map? If y = 1 then x ∈ (K×)n. But (αv)x
−1 = (αv) in CK and αvx

−1 ∈ µn(Kv) and
so (αv)x

−1 ∈ µn(AK). By Theorem 5.2 since 8 - n, X1
∅(K,µn) = 1 and so ω is a character of CK [n]→ S1.

For an abelian topological group G denote by G∨ = Hom(G,S1) the Pontryagin dual consisting of
continuous homomorphisms. Then (G/H)∨ ∼= H⊥, where H⊥ = {φ ∈ G∨|φ(H) = 1}, and G∨∨ ∼= G. Thus
(C∨K/nC

∨
K)∨ ∼= (nC∨K)⊥ ∼= {x ∈ CK |φ(xn) = 1,∀φ ∈ C∨K} = CK [n]. By duality get CK [n]∨ ∼= C∨K/nC

∨
K and

so we get an extension ω̃ : CK → S1 which is well-de�ned up to n-th power characters. We only need to
show that the lift can be chosen to have �nite order.

Theorem 5.10 implies that there exists an algebraic character η of KCM such that ω̃ and η ◦ NK/KCM

di�er by a �nite order character. Thus it su�ces to show that η can be chosen to have �nite order, i.e., to
be trivial on K×CM,∞. But we know that at v | C, ωv = 1 on µn and so n | mv which implies that n | mηv

for every (necessarily complex) place of KCM. Proposition 5.8 implies that there exists a Hecke character µ
of KCM such that µv(x) = (x/|x|)mηv/n (the condition of Proposition 5.8 is automatically satis�ed because
it is satis�ed for η) and in that case ηµ−n is �nite order and thus ω̃(µ ◦NK/KCM

)−n is �nite order with the
same restriction to µn(AK) as ω̃.

6 Projective Galois representations

6.1 A theorem of Tate

The setup of the �rst lemma is that K/Q` is a �nite extension such that µp(K) ⊂ K and we may choose

ζp ∈ µp(K) a primitive root of unity. Then the GK-cohomology sequence of 1→ Z/pZ→ Qp/Zp
p−→ Qp/Zp

gives

H1(K,Qp/Zp)
p−→ H1(K,Qp/Zp)

δ−→ H2(K,Z/pZ)

where H2(K,Z/pZ) ∼= H2(K,µp(K)) = H2(K,K
×

)[p] ∼= Br(K)[p]
∼=−→ 1

pZ/Z where the �rst isomorphism

is via the identi�cation of GK-modules Z/pZ ∼= µp(K) via x 7→ ζxp and the last map is the invariant map

invK . The local Artin map rK : K× ∼= W ab
K ⊂ Gab

K permits the identi�cation of continuous homomorphisms
φ : GK → Qp/Zp with continuous homomorphisms φ ◦ rK : K× → Qp/Zp.

Lemma 6.1. Let K/Q` be as above.

1. If φ ∈ H1(K,Qp/Zp) ∼= Hom(GK ,Qp/Zp) then δ(φ) only depends on (φ ◦ rK)|µp(K). In fact there

exists a ∈ Z/pZ, independent of φ, such that invK(δ(φ)) = aφ(rK(ζp)).
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2. The connecting homomorphism δ is an isomorphism, i.e., a 6= 0.

3. The constant a is independent of K/Q`.

4. If F is a number �eld such that ζp ∈ F and u1 and u2 are two �nite places of F then aFu1 = aFu2 .

Proof. Note that H1(K,Qp/Zp)
p−→ H1(K,Qp/Zp)

δ−→ H2(K,Z/pZ) is exact and so factors through

0→ H1(K,Qp/Zp)/pH1(K,Qp/Zp)
δ−→ H2(K,Z/pZ)

But H1(K,Qp/Zp) ∼= Hom(GK ,Qp/Zp) ∼= Hom(K×,Qp/Zp). The sequence 1 → µp(K) → K×
p−→ K×

is exact and so Hom(K×,Qp/Zp) → Hom(K×,Qp/Zp) → Hom(µp,Qp/Zp) is exact which means that
H1(K,Qp/Zp)/pH1(K,Qp/Zp) ↪→ Hom(µp,Qp/Zp). Therefore δ(φ) only depends on the restriction δ ◦
rK |µp(K).

Since µp ⊂ K it follows that µpn ⊂ K× for a maximal n > 0. Let φ : K× → Qp/Zp such that
φ(ζpn) = p−n; such a φ exists by the decompositionK× ∼= $Z

K×µ∞(K)×(O×K)TF where TF stands for torsion
free. If there exists ψ : K× → Qp/Zp such that φ = pψ then pψ(ζpn) = p−n and so ψ(ζpn) = a

pn+1 for a ∈ Z×p .
But then pnψ(ζpn) = a

p 6= 0 in Qp/Zp whereas pnψ(ζpn) = ψ(1) = 0. We conclude that Hom(K×,Qp/Zp) 6=
pHom(K×,Qp/Zp) and so 0 6= Hom(K×,Qp/Zp)/pHom(K×,Qp/Zp) ↪→ Hom(µp,Qp/Zp) ∼= Z/pZ and so
Hom(K×,Qp/Zp)/pHom(K×,Qp/Zp) ∼= Z/pZ.

Then invK ◦δ is a homomorphism Z/pZ → Z/pZ and it follows that there exists a ∈ Z/pZ such that
invK(δ(φ)) = aφ(rk(ζp)) for all φ.

To check that δ is an isomorphism simply note that δ injects Hom(K×,Qp/Zp)/pHom(K×,Qp/Zp) ∼=
Z/pZ ↪→ H2(K,µp) and so δ is injective which implies that a 6= 0 and so δ is an isomorphism.

Let L/K be a �nite extension. Under µp ⊂ K× ⊂ L×, rL(ζp) = cor∨ ◦rK(ζp) and for φ : L× → Qp/Zp
one has

invK(δK(corφ)) = aK corφ(rK(ζp))

invL(δL(φ)) = aLφ(rL(ζp))

= aLφ(cor∨ rK(ζp))

= aL corφ(rK(ζp))

But invK(δK(corφ)) = invL(δL(φ)) and so aK = aL.
Consider the number �eld K = Q(ζp). It su�ces to show that if u1 and u2 are �nite places of K then

aKu1 = aKu2 . Let φ ∈ Hom(GK ,Qp/Zp) ∼= H1(K,Qp/Zp)
δ−→ H2(K,µp) ∼= H2(K,K

×
)[p] ∼= Br(K)[p].

Then
∑
v invv δ(φ) = 0 because 0 → Br(K) → ⊕Br(Kv) → Q/Z → 0. Therefore

∑
aKvφ(rKv (ζp)) = 0.

Since rK : A×K → Gab
K is trivial on K× it follows that φ(rK(ζp)) =

∑
v φ(rKv (ζp)) = 0. Suppose one

may choose φ such that φ(rKv (ζp)) is nonzero at exactly u1 and u2. Then the equations φ(rKu1 (ζp)) +
φ(rKu2 (ζp)) = 0 and aKu1φ(rKu1 (ζp)) + aKu2φ(rKu2 (ζp)) = 0 give aKu1 = aKu2 as desired.

We now show the existence of such a global character φ. Let η : µp → Z/pZ be a nontrivial character.
Since for v �nite have Hom(K×v ,Qp/Zp)/pHom(K×v ,Qp/Zp) ∼= Hom(µp(Kv),Qp/Zp) one may extend η to a
character η : K×v → Qp/Zp and be restriction get a character η : K× → Qp/Zp. Now K× ⊂ K×v is dense and
so there exist φui : K×ui → Z/pZ such that φu1

|K× = η and φu2
|K× = η−1. Let S = {u1, u2}. Recall that

GK/KS is generated by the inertia groups IKu1 and IKu2 and so Gab
K,S
∼= A×K/K×K×∞

∏
v/∈S O

×
Kv

. Consider
the exact sequence

1→ O×Ku1O
×
Ku2

/K× ∩ O×Ku1O
×
Ku2
→ Gab

K,S → Cl(K)→ 1

The character φ = φu1
⊗ φu2

on O×Ku1O
×
Ku2

will then be trivial on K× ∩O×Ku1O
×
Ku2

and, since the cokernel

Cl(K) is �nite, will extend to a character of Gab
K,S . Let's check that φ satis�es the requirements. For

v 6= u1, u2, rKv (ζp) ∈ IKv and so φ(rKv (ζp)) ∈ φ(IKv ) = 0. If v ∈ S then φ(rKv (ζp)) = η±1(ζp) 6= 0.
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Theorem 6.2. Let K be a number �eld. Then H2(K,Q/Z) = 0.

Proof. Since Q/Z = ⊕Qp/Zp it is enough to show that H2(K,Qp/Zp) = 0. In�ation-restriction gives

1→ H2(GK(µp)/K ,Qp/Zp)→ H2(K,Qp/Zp)→ H2(K(µp),Qp/Zp)

Since GK(µp)/K ⊂ (Z/pZ)× and Qp/Zp is pro-p it follows that H2(GK(µp)/K ,Qp/Zp) = 0. Therefore to show
that H2(K,Qp/Zp) = 0 it is enough to do the same for K(µp). We now assume that µp ⊂ K.

Consider the exact sequence

H1(K,Qp/Zp)
δ−→ H2(K,Z/pZ)→ H2(K,Qp/Zp)

p−→ H2(K,Qp/Zp)

The group H2(K,Qp/Zp) is p-power torsion so to show it is trivial it is enough to show that multiplication
by p is injective, i.e., the connecting homomorphism δ is surjective. Note that H2(K,Z/pZ) ∼= H2(K,µp) =

H2(K,K
×

)[p] ∼= Br(K)[p] so we need to show that H1(K,Qp/Zp)→ Br(K)[p] is surjective.
In other words we need to show that for every torsion Brauer class α ∈ Br(K)[p] there exists a φ : Gab

K →
Qp/Zp such that δφ = α. We know that 0→ Br(K)→ ⊕Br(Kv)→ Q/Z→ 0 and so α ∈ Br(K)[p] projects
injectively to a collection (αv) with αv ∈ Br(Kv)[p]. By Lemma 6.1 there exists φv : GKv → Qp/Zp such
that δφv = αv and some a ∈ Z/pZ such that invv αv = aφ(rKv (ζp)). For all but �nitely many v, αv = 0 and
so φv(µp(Kv)) = 0 and therefore we get a character φ =

∑
φv : µp(AK)→ Qp/Zp. Also for ζp ∈ µp(K×) we

have φ(ζp) =
∑
φv(rKv (ζp)) = a−1

∑
invv αv = 0 and so φ factors through φ : µp(K)\µp(AK)→ Qp/Zp.

Since Br(C) = 0, for v | C one has φv = 0. Moreover, as pαv = 0 it follows that pφ = 0 and so
Imφ ⊂ 1

pZ/Z. Writing ψ(x) = exp(2πix) we get Φ = ψ ◦ φ : µp(K)\µp(AK) → C× having �nite order p

and such that Φv = 1 for v | C. Proposition 5.11 implies the existence of a �nite order extension of Φ from
µp(K)\µp(AK) to A×K/K×. As Φ has �nite order it is necessarily trivial on K×,0∞ and so Φ factors through

A×K/K×K
×,0
∞ ∼= Gab

K . As Φ has �nite order, its image lies in ψ(Q/Z) and so composing with logarithm we
get an extension φ : Gab

K → Q/Z and composing again with projection to Qp/Zp gives φ : Gab
K → Qp/Zp. By

construction δφ = α as desired.

6.2 Lifting projective Galois representations

Lemma 6.3. Let Γ be a pro�nite group and let H ⊂ G be topological groups such that H ⊂ Z(G). Let
ρ : Γ → G/H be a homomorphism. For each g ∈ Γ let ag be an arbitrary lift of ρ(g) to G. Then c(g, h) =
agha

−1
h a−1

g is well-de�ned in H2(Γ, H) and there exists a homomorphism ρ : Γ → G such that the image of
ρ(g) in G/H is ρ(g) if and only if c is cohomologically trivial.

Proof. Since the image of c(g, h) in G/H is ρ(gh)ρ(h)−1ρ(g)−1 = 1 it follows that c(g, h) ∈ H. Moreover, as
c(g, h) ∈ Z(G) it follows that we also have c(g, h) = a−1

h a−1
g agh = a−1

g agha
−1
h . Using these and the fact that

c(g, h) ∈ Z(G) one may check that (dc)(g, h, i) = c(h, i)c(gh, i)−1c(g, hi)c(g, h)−1 = 1 and so c ∈ Z2(Γ, H),
where H has trivial Γ action.

Also note that if a′g is any other lift of ρ(g) to G then writing φ(g) = a′ga
−1
g one has φ(g) ∈ H.

Writing c′(g, h) = a′gh(a′h)−1(a′g)
−1 one gets c′(g, h) = φ(gh)φ(g)−1φ(h)−1c(g, h) and so c′ and c are equal

in H2(Γ, H). Certainly the lift a′g comes from a homomorphism ρ : Γ → G if and only if c′ = 1 if and only
if c = c′ is cohomologically trivial in H2(Γ, H).

Theorem 6.4. Let K be a number �eld and ρ : GK → PGL(n,Qp) be a continuous homomorphism. Then

there exists a continuous representation ρ : GK → GL(n,Qp) such that the image of ρ(g) in PGL(n,Qp) is
ρ(g) for any g.
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Proof. Note that Hm = SL(n,Qp)µnm(Qp)→→ PGL(n,Qp) via the natural projection and that the kernel is

1→ µnm(Qp)→ Hm →→ PGL(n,Qp).
Let cm ∈ H2(GK , µmn) be the cohomology class associated by Lemma 6.3 to an arbitrary lift of ρ to

Hm. The cohomology classes are compatible under the maps H2(GK , µnm)→ H2(GK , µnm′) if m | m′ and
so we get a cohomology class

c = lim−→ cm ∈ lim−→H2(GK , µmn(Qp)) = H2(GK ,Q/Z) = 0

where the last equality if the content of Theorem 6.2. But then c = 0 implies that cm = 0 for some m and
therefore ρ lifts to a homomorphism ρ : GK → Hm ⊂ GL(n,Qp).

Lecture 12
2013-04-26

Proposition 6.5. Suppose K is a number �eld and ρ : GK → PGL(n,Qp) is a projective Galois represen-

tation which is unrami�ed almost everywhere. Let ρ : GK → GL(n,Qp) be a lift of ρ. Then ρ is unrami�ed
almost everywhere.

Proof. Let F/Qp be a �nite extension such that ρ : GK → GL(n, F ) (standard Baire category theory
argument). The representation ρ is continuous and so there exists L/K �nite such that ρ(GL) ⊂ 1 +
p2Mn×n(OF ) (the composition of ρ with projection to the discrete group GL(n, F )/(1 + p2Mn×n(OF )) has
open kernel). Note that log : 1 + p2Mn×n(OF )→ p2Mn×n(OF ) and exp : p2Mn×n(OF )→ 1 + p2Mn×n(OF )
are inverses to each other and satisfy the Baker-Campbell-Hausdor� formula. Thus the log map is injective
and has the property that log((1 + p2X)n) = n log(1 + p2X). Therefore log ρ(GL) is a pro-p torsion-free
group.

Let v be a place such that v - p, Lw/Kv is unrami�ed at w | v and ρ(IKv ) = 1. This implies that
IKv = ILw and so it su�ces to show that ρ(ILw) = 1. But ρ(ILw) ⊂ F× = ker(GL(n, F ) → PGL(n, F ))
is abelian and so ρ(ILw) = ρ(Iab

Lw
). Now Iab

Lw
∼= O×Lw ∼= k×Lw × µp∞(Lw) × (1 + ($w))TF where TF stands

for torsion-free and µp∞(Lw) is �nite because the rami�cation of Lw(µpn)/Lw grows with n. Since ρ(ILw)
is torsion-free it follows that ρ(µ∞(Lw)) = 1 and so ρ(ILw) = ρ((1 + ($w))TF). But (1 + ($w))TF, being a
subgroup of 1 + ($Lw), is pro-qw-group whereas its image is in 1 + p2Mn×n(OF ) which is pro-p with p - qw.
All subgroups of pro-p groups must be pro-p and so ρ((1 + ($w))TF) = 1 and it follows that ρ(ILw) = 1.

6.3 Local Galois representations in the �tame� case

Theorem 6.6. Let K/Qp be a �nite extension and ρ : GK → GL(n,C) be an irreducible continuous repre-
sentation. If p - n (the �tame� case) then there exists an order n extension L/K and a continuous character
χ : L× → C× such that ρ ∼= IndKL χ.

Before proving the theorem we give two results of Cli�ord.

Proposition 6.7. Let G be a pro�nite group and let N CG be an open normal subgroup. Let (ρ, V ) be an
irreducible representation of G over a �eld K and let (ρ,W ) ⊂ V |N be an irreducible component. Then

1. V =
∑
g∈G/N ρ(g)W and there exist g1, . . . , gn such that V = ⊕ρ(gi)W as representations of N .

2. If U is an irreducible representation of N write V [U ] be the U -isotypical component in V , i.e., the set
of v ∈ V lying in the image of some N -equivariant map U → V . Then the set of U such that V [U ] 6= 0
is �nite, G acts transitively on it and V = ⊕V [U ].

3. Let U be an irreducible representation of N such that V [U ] 6= 0 and write H = {g ∈ G|gV [U ] = V [U ]}.
Then V ∼= IndGH V [U ] as representations of G.
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Proof. Clearly
∑
g∈G/N ρ(g)W ⊂ V is G-invariant and must be equal to V since V is an irreducible G-

representation. Now since N is normal in G, ρ(g)W is also a (necessarily irreducible) representation of N
and thus ρ(g)W ∩ ρ(g′)W is either 0 or equal to ρ(g)W and therefore V becomes a direct sum of ρ(gi)W for
�nitely many gi.

That the set of U with V [U ] 6= 0 is clear from the fact that V is �nite dimensional. Next, let U ⊂ V |N
irreducible, then U ⊂ ⊕ρ(gi)W and since each ρ(gi)W is irreducible it follows that U = ρ(gi)W for some
gi. Finally V [U ] = ⊕U ′ where U ′ ⊂ V |N such that U ∼= U ′ as N -representations and so V = ⊕V [U ] as
N -representations.

Finally, let U = U1, U2, . . . , Um be the �nitely many irreducible representations of N such that V =
⊕V [Ui] and let gi such that Ui = ρ(gi)U . It follows that G/H = {g1, . . . , gm}. Any v ∈ V can be represented
uniquely as v =

∑
ρ(gi)vi where vi ∈ U . The map V → K[G] ⊗K[H] V [U ] given by v 7→

∑
[gi] ⊗ vi is an

isomorphism of vector spaces which can easily be checked to be G-equivariant and therefore is an isomorphism
of G-representations. Finally, K[G] ⊗K[H] V [U ] ∼= IndGH V [U ] via the G-equivariant map sending [g] ⊗ v to
the function sending g to v and every coset other than gH to 0.

Lecture 13
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Proposition 6.8. Let G,N, V and W as in Proposition 6.7 such that K is algebraically closed and V =
V [W ] (in which case immediately dimW | dimV ). Then there exist irreducible projective representations
σ : G → PGL(dimW,K) and τ : G → PGL(dimV/ dimW,K) with τ trivial on N , such that ρ = σ ⊗ τ in
PGL(dimV,K).

Proof. The group N acts on ρ(g)W via ρ(n)ρ(g)w = ρ(g)ρg(n)w which makes sense since N is normal in
G. Recall that V = ⊕ρ(g)W as N -representations where ρ(g)W has the action ρ|gW (n)w = ρ|W (g−1ng)w.
Since ρ(g)W ∼= W as V is isotypic there exist matrices Ag such that ρ|gW (n) = Agρ|W (n)A−1

g for all n ∈ N ,
where Ag is de�ned up to scalars. Let σ(g) = Ag : G→ PGL(W ) be the �rst projective representation; the
fact that this is a homomorphism is straightforward to check.

Proposition 6.7 shows that V = ⊕ρ(gi)W for �nitely many gi in which case dimW | dimV as desired.
Let r = dimV/ dimW and let U be a vector space spanned by u1, . . . , ur, let w1, . . . , wm be a basis of
W and let wij = ρ(gi)wj be a basis of ρ(gi)W . For g ∈ G write ρ(gig)wj =

∑
βijkl(g)wkl (the order

really is gig!) which can be done since wkl is a basis for V . De�ne U ⊗K W as a G-representation by
µ(g)(ui⊗wj) =

∑
k,l βijkl(g)uk⊗wl which exhibits U⊗W ∼= V as G-representations. It su�ces to construct

the projective representation τ on PGL(U) such that ρ ∼= σ ⊗ τ .
Note that for n ∈ N one has ρ(gin)wj = ρ(gi)ρ|W (n)wj ∈ ρ(gj)W and so µ(n) = 1⊗ ρ|W (n). For every

g ∈ G one has that ρ|gW (n) = Agρ|W (n)A−1
g and therefore get that

µg(n) = 1⊗ ρg|W (n)

= (1⊗A−1
g )(1⊗ ρ|W (n))(1⊗Ag)

µg(n) = µ(g)−1µ(n)µ(g)

= µ(g)−1(1⊗ ρ|W (n))µ(g)

So µ(g)(1⊗Ag) commutes with 1⊗ρ|W (n) for all g ∈ G. For g ∈ G let F (g) = µ(g)(1⊗Ag) ∈ End(U ⊗W ).
Since every element of U⊗KW can be written uniquely as a linear combination of ui⊗vi for some vi ∈W and
the basis vectors ui of U , one can write F (g)(ui⊗w) as

∑
uj ⊗Fij(g)(w) for linear maps Fij(g) ∈ End(W ).

Since F (g) commutes with 1 ⊗ ρ|W (n) it follows that Fij(g) commutes with ρ|W (n). But (ρ|N ,W ) is
irreducible and so Fij(g) ∈ Z(EndN (W )) ∼= K× by Schur's lemma. Therefore Fij(g) = αij(g) for scalars
αij(g) ∈ K×. Writing τ(g)ui =

∑
αij(g)uj it follows that τ(g) ∈ End(U) giving a projective representation

τ : G → PGL(U) (since Ag is de�ned up to scalars only). That τ is trivial on N follows from the fact that
for n ∈ N , µ(n) = 1⊗ ρ|W (n).

Finally, σ and τ are irreducible because otherwise V would be reducible, which it is not.
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De�nition 6.9. A supersolvable �nite group is a �nite group G with a descending �ltration G = G0 ⊃
G1 ⊃ · · · ⊃ Gn = 1 such that Gi CG and the successive quotients Gi/Gi+1 are cyclic.

Proposition 6.10. If (ρ, V ) is an irreducible representation of the supersolvable group G over an alge-
braically closed �eld K then there exists a subgroup H ⊂ G and a character χ : H → K× such that
ρ ∼= IndGH χ.

Proof. If G is abelian then ρ is a character to begin with. We will prove the result by induction on |G|.
If ρ : G → GL(V ) is not faithful, i.e., if ker ρ = H C G then ρ factors through ρ : G/H → GL(V ) where
|G/H| < |G| and so by induction ρ is induced from a character. Suppose therefore that ρ is faithful.

The group G/Z(G) is supersolvable with �ltration G/Z(G) = H0 ⊃ H1 ⊃ · · · ⊃ Hm = 1 with Hi C
G/Z(G) and Hi/Hi+1 cyclic. Let H = Hm−1Z(G) which will be proper in G if G is not abelian. Since
Hm−1 = Hm−1/Hm is a cyclic normal subgroup of G/Z(G), H C G is abelian. Since H 6⊂ Z(G) and ρ is
injective it follows that ρ(H) 6⊂ Z(ρ(G)) = K× where the last equality follows from the irreducibility of ρ.

Now Proposition 6.7 implies, since H is normal in G that if U ⊂ V |H is a (necessarily one dimensional)
irreducible then V [U ] is irreducible as a representation of HU = {g ∈ G|gV [U ] = V [U ]} and that V ∼=
IndGHU V [U ]. If V 6= V [U ] then by the inductive hypothesis V [U ] ∼= IndHUT χ for T ⊂ HU and χ a character

in which case V ∼= IndGT χ. If V = V [U ] then as representations of H, V ∼= U⊕d where U is one-dimensional
and so ρ(H) consists of scalar matrices contradicting the construction of H.

Lemma 6.11. Let G→ H be a surjection of �nite groups with abelian kernel and let ρ : H → GL(V ) be a
�nite dimensional representation. Suppose F ⊂ H is a subgroup and E ⊂ G is its preimage in G. Suppose
ρ̃ : G → GL(V ) is the composition of G → H → GL(V ) and that there exists τ : E → GL(W ) such that
ρ̃ ∼= IndGE τ . Then ρ ∼= IndHF σ for a representation σ.

Proof. Let π : G → H. If k ∈ kerπ then k ∈ ker ρ so ρ̃(k) = 1. But at the same time kerπ ⊂ E
and so ρ̃(k) = ⊕g∈G/Eτg(k) which implies that τ is trivial on kerπ. Thus τ descends to a representation

σ : E/ kerπ ∼= F → GL(W ). The map π gives G/H ∼= E/F and so IndGE τ
∼= (IndHF σ) ◦ π which, since π is

surjective, gives ρ ∼= IndHF σ as desired.

Lemma 6.12. Let G be a �nite group and H C G a normal subgroup such that G/H is supersolvable. If
(ρ, V ) is an irreducible representation of G that cannot be written as the induction from a subgroup of G,
then V |H is irreducible.

Proof. Suppose V |H is reducible and let W an irreducible H-subrepresentation. Proposition 6.7 implies
that unless V is isotypic, i.e., V = V [W ], V can be written as an induction. Therefore V = V [W ] and so
V = ⊕ρ(gi)W where all the ρ(gi)W are isomorphic to W . We may therefore apply Proposition 6.8. We
obtain σ : G → PGL(W ) and τ : G → PGL(U) where U has dimension dimV/ dimW > 1, τ |H = 1 and
σ|H ∼= ρ|H . Since τ |H = 1, the projective representation τ factors through G/H → PGL(U). For simplicity
denote G′ = G/H supersolvable.

Recall from �6.2 that attached to τ : G′ → PGL(U) is a cohomology class c ∈ H2(G′, µN ) for some
integer N in which case one get a genuine representation τ̃ : G′ o µN → GL(U) as follows: let τ̃ be a �xed
lifting of τ to G′ → GL(U) (not necessarily a homomorphism) and de�ne G′ o µN by letting multiplication
be given by (g, α)(h, β) = (gh, αβc(g, h)) in which case setting τ̃(g, α) = τ̃(g)α is in fact a homomorphism.
Indeed, τ̃(g, α)(h, β) = τ̃(gh)αβc(g, h) = τ̃(g, α)τ̃(h, β). Now G′ o µN is also supersolvable because if
G′ = G′0 ⊃ . . . ⊃ G′i ⊃ . . . ⊃ 1 is such that G′i CG′ and G′i/G

′
i+1 is cyclic then G′ o µn = G′0 o µN ⊃ . . . ⊃

G′i o µN ⊃ . . . ⊃ 1 o µN ⊃ 1 is such that G′i o µN CG′ o µN and G′i o µN/G
′
i+1 o µN ∼= G′i/G

′
i+1 is cyclic

while µN/1 is also cyclic. As τ̃ is irreducible and G′ o µN is supersolvable it follows that τ̃ ∼= IndG
′oµN

H′ χ
for a character χ : H ′ → K× by Proposition 6.10. The group 1 o µN CG′ o µN and so Mackey1 gives

τ̃ |1oµN = ⊕g∈G′oµN/H(1oµN )(Ind1oµN
H′∩1oµN χ)g

1If H ⊂ G, V is a representation of G and N CG then

(IndGH V )|N = ⊕g∈G/HN (IndNH∩N V )g
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But evaluating τ̃(1, α) = (IndG
′oµN

H′ χ)(1, α) we get a scalar matrix and so χ is in fact a character of
H ′(1 o µN ) as all 1 o µN/H

′ ∩ (1 o µN ) conjugates of χ are equal. If 1 o µN 6⊂ H ′ then this would imply

that τ̃ ∼= IndG
′oµN

H′ χ would be reducible. Thus 1 o µN ⊂ H ′. Writing H ′′ = {(g, 1)|(g, α) ∈ H ′} gives

H ′ = H ′′ o µN . Note that composing τ̃ with the projection G → G/H gives τ̃ = IndGoµN
H′′HoµN χ where χ

extends to H ′′H by its action on H ′′.
For some integer M a lift to GL(dimW ) of σ(g, α) de�ned as σ(g) will give an actual homomorphism

σ̃ : GoµN oµM → GL(dimW ) whereas τ̃ lifts to GoµN oµM → GL(dimV/ dimW ) by sending (g, α, β) to

τ̃(g, α). Then as a representation of GoµN oµM have τ̃ ∼= IndGoµNoµM
H′′HoµNoµM χ where χ on H ′′H oµN oµM

is de�ned via the projection to H ′′H o µN .
Let ρ̃ = σ̃ ⊗ τ̃ ∼= IndGoµNoµM

H′′HoµNoµM (σ̃ ⊗ χ). Let ρ̃′ be the composition of the representation ρ with the
projection Go µN o µM → G. Then ρ̃ and ρ̃′ are representations of Go µN o µM whose projectivisations
agree. Therefore they di�er by a character ψ of G o µN o µM . Therefore ρ̃′ is an induced representations
which implies that ρ is induced by Lemma 6.11.

Lecture 14
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Proof of Theorem 6.6. First, ρ is a continuous representation and thus factors through GL/K for some

�nite Galois extension L/K. Next, write ρ ∼= Ind
GL/K
GL/M

ρ′ such that ρ′ cannot be written as an induction.

Since ρ is irreducible it follows that ρ′ is irreducible and p - dim ρ′ | dim ρ. Therefore it su�ces to show that
if ρ cannot be written as an induction then ρ has dimension 1.

Let PL/K = G1
L/K be the wild inertia. Note that G0 = GL/K/PL/K contains G1 = IL/K/PL/K as a

normal subgroup and G0/G1
∼= GkL/kK which is cyclic. Moreover, IL/K = IK/IK∩GL and PL/K = PK/PK∩

GL by the Herbrandt quotient theorem and so IL/K/PL/K ∼= IK/PK(IK ∩GL). But IK/PK ∼=
∏

Zp(1) and
so IL/K/PL/K is a �nite quotient of an abelian group which must therefore be supersolvable. Lemma 6.12
then shows that ρ|PL/K is irreducible.

But PL/K is a p-group and so dim ρ | |PL/K | must be a power of p. But p - dim ρ and so dim ρ = 1 as
desired.

7 Iwasawa theory for Zp-extensions
The main result of this section is the following theorem of Iwasawa on Zp-extensions. The main reference is
[Was97, �13].

Theorem 7.1. Suppose p > 2 is a prime. Let K∞/K be any Zp extension of the number �eld K. Then
there exist integers λ, µ ≥ 0 and ν depending only on K such that vp(hKn) = λn+ µpn + ν for n >> 0.

7.1 Zp-extensions and Leopoldt's conjecture

Proposition 7.2. Let K be a number �eld. There exists a tower of extensions K = K0 ⊂ K1 ⊂ . . . such
that K∞ = ∪Kn is Galois over K with Galois group GK∞/K

∼= Zp and GK∞/Kn
∼= pnZp.

Proof. The extension Q(µpn+1)/Q is abelian with Galois group (Z/pn+1Z)× ∼= (Z/pZ)× × Z/pnZ. Let
Qn be the sub�eld of Q(µpn+1) �xed under (Z/pZ)×. Then GQn/Q

∼= Z/pnZ. Writing Q∞ = ∪Qn gives
GQ∞/Q

∼= lim←−Z/pnZ ∼= Zp.
Now let K∞ = KQ∞ with Galois group GK∞/K

∼= GQ∞/Q∞∩K . But the latter is an open subgroup of

GQ∞/Q
∼= Zp and so is of the form pkZp for some k ≥ 0 giving GK∞/K

∼= pkZp ∼= Zp additively. This is the
cyclotomic Zp-extension. Writing Kn to be the sub�eld of K∞ �xed by pnZp produces the desired tower.

Having produced a Zp extension of K we would like to answer the question of how many such extensions
there exist. To answer such question we need the following result from group theory:
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Lemma 7.3. Let G be a pro-p group. Then G is generated by dimFp H
1(G,Fp) elements. The maximal

torsion free subgroup of G is generated by rankZp H
1(G,Zp) elements.

Proof. See [NSW08, Proposition 3.9.1].

Lemma 7.4. Let G be a pro�nite group and let H be the maximal abelian pro-p torsion-free subquotient of
G. Then

rankZp H
1(G,Zp) = rankZp H

1(H,Zp)

Proof. As G acts trivially on Zp it follows that H1(G,Zp) ∼= Hom(G,Zp) ∼= Hom(Gab,Zp) ∼= H1(Gab,Zp).
Let H = Gab/U for U open. Then in�ation-restriction gives

1→ H1(H,Zp)→ H1(Gab,Zp)→ H1(U,Zp)

so it su�ces to show that rankZp H
1(U,Zp) = 0. Now let V = U/N be the maximal pro-p quotient of U , in

which case V is torsion (by choice of U) and every �nite quotient of N will have cardinality coprime to p.
Again in�ation-restriction gives

1→ H1(V,Zp)→ H1(U,Zp)→ H1(N,Zp)

The group V is �nite soH1(V,Zp) is torsion and so rankZp H
1(V,Zp) = 0 which implies that rankZp H

1(U,Zp) =
rankZp H

1(N,Zp) so it su�ces to show that rankZp H
1(N,Zp) = 0. But

H1(N,Zp) = lim←−
M⊂N

(
lim−→

pnZp⊂Zp
H1(N/M,Z/pnZ)

)

where M is open normal in N . But N/M will be �nite with cardinality invertible in Z/pnZ and so
H1(N,Zp) = 0.

Proposition 7.5. Let M be a �nitely generated Zp-module.

1. If K/Qp is a �nite extension and M carries an action of GK then

χ(GK ,M) = rankZp H
0(GK ,M)− rankZp H

1(GK ,M) + rankZp H
2(GK ,M) = −[K : Qp] rankZpM

Moreover, rankZp H
i(GK ,M) = rankZp H

2−i(GK ,M
∗(1)).

2. If K/Q is a number �eld, S is a �nite set of places which includes the in�nite places, the places where
M is rami�ed and the places above p, and M carries an action of GK,S, then

χ(GK,S ,M) = rankZp H
0(GK,S ,M)− rankZp H

1(GK ,M) + rankZp H
2(GK ,M)

=
∑
v|∞

rankZpM
GKv − [K : Q] rankZpM

Proof. First note that ifM is a �nitely generated Zp-module and G is one of GK and GK,S then Propositions
3.6 and 3.8 imply that Hi(G,M) is a �nitely generated Zp-module. Next one may write M = Mtors ⊕MTF

whereMtors (the �nite torsion) is stable under G andMTF is torsion-free. As Hi(G,Mtors) is �nite it follows
that rankZp H

i(G,Mtors) = 0. Using the exact sequence Hi(G,Mtors) → Hi(G,M) → Hi(G,MTF) →
Hi+1(G,Mtors) we deduce that rankZp H

i(G,M) = rankZp H
i(G,MTF) so for the rest of the argument we

may assume that M is in fact torsion-free.
For any �nitely generated Zp module X one has that rankZp X = dimFp(X/pX)− dimFp X[p]. Applying

this observation to X = Hi(G,M) get that

rankZp H
i(G,M) = dimFp H

i(G,M)/pH1(G,M)− dimFp H
1(G,M)[p]
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Since M is a free Zp module get an exact sequence 0 → M
p−→ M → M/pM → 0 which gives the exact

sequence
0→ Hi(G,M)/pHi(G,M)→ Hi(G,M/pM)→ Hi+1(G,M)[p]→ 0

We deduce that

χ(G,M) = rankZp H
0(G,M)− rankZp H

1(G,M) + rankZp H
2(G,M)

= dimFp H
0(G,M)/pH0(G,M)− dimFp H

0(G,M)[p]

− (dimFp H
1(G,M)/pH1(G,M)− dimFp H

1(G,M)[p])

+ dimFp H
2(G,M)/pH2(G,M)− dimFp H

2(G,M)[p]

= dimFp H
0(G,M/pM)− dimFp H

1(G,M/pM) + dimFp H
2(G,M/pM)

− dimFp H
0(G,M)[p]− dimFp H

3(G,M)[p]

= dimFp χ(G,M/pM)− dimFp H
0(G,M)[p]− dimFp H

3(G,M)[p]

= dimFp χ(G,M/pM)− dimFp H
3(G,M)[p]

where for the last equality note that H0(G,M) ⊂M is torsion-free and so H0(G,M)[p] = 0.
If G = GK for K/Qp then dimFp χ(G,M/pM) = −[K : Qp] dimFp(M/pM) = −[K : Qp] rankZpM by

Theorem 3.7 and H3(GK ,M) = 0. This concludes the proof of the �rst part.
If G = GK,S then by Theorem 3.9

dimFp χ(G,M/pM) =
∑
v|∞

dimFp(M/pM)GKv − [K : Q] dimFp(M/pM)

dimFp H
3(GK,S ,M)[p] =

∑
v∈∞

dimFp H
3(GKv ,M)[p]

It therefore su�ces to show that for v | ∞ one has

dimFp(M/pM)GKv − dimFp H
3(GKv ,M)[p] = rankZpM

GKv

If v | R then

H3(GC/R,M)[p] = H1(GC/R,M)[p]

= M [2][p] = 0

where the last line comes from Hodd(Z/nZ,Z) = 0. If v | C then trivially H3(GKv ,M) = 0.
When v | ∞ thenGKv is cyclic and soH

1(GKv ,M) = 0. But from the exact sequence 0→MGKv /pMGKv →
(M/pM)GKv → H1(GKv ,M)[p]→ 0 we deduce that dimFp(M/pM)GKv = dimFpM

GKv /pMGKv = rankZpM
GKv

as desired.

Proposition 7.6. Let K/Q` be a �nite extension and K∞/K be a Zp-extension. If p 6= ` then K∞/K is
the unique unrami�ed extension with Galois group Zp. If p = ` there are exactly [K : Q`] + 1 independent
such extensions K∞/K.

Proof. Certainly GKur/K
∼= Ẑ→→ Zp and so there exists a unique unrami�ed Zp-extension. Let Kp/K be the

composite of all Zp extensions, which will then be the maximal abelian pro-p extension of K with torsion-free
Galois group over K. The number of independent Zp extensions is equal to the Zp rank of the abelian pro-p
group GKp/K .

If p 6= ` thenKp ⊂ Kt the maximal tamely rami�ed extension ofK since PK = GK/Kt is pro-`. But recall

from local class �eld theory that Gab
Kt/K

∼= Gab
K /P

ab
K
∼= K̂×/(1+mK) ∼= FrobẐ

K ×O×K/(1+mK) ∼= FrobẐ
K ×k×K .

The largest torsion-free pro-p subquotient of this is Frob
Zp
K corresponding to the unique unrami�ed Zp
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extension. Another way of seeing this is by recalling from local class �eld theory that t : GKt/Kur =

IK/PK
∼=−→
∏
q 6=` Zq(1) and GKur/K

∼= Ẑ. If σ ∈ GKt/K and τ ∈ IK/PK then στσ−1 ∈ IK/PK since IK is

normal in GK and t(στσ−1) = σ(t(τ)) where σ acts on
∏
q 6=` Zq(1) via the Tate twist. Now GKt/Kp contains

the commutant [GKt/K , GKt/K ]. Let σ ∈ GKt/K and τ ∈ GKt/Kur in which case στσ−1τ−1 ∈ GKt/Kp .
But then t(στσ−1τ−1) = σ(t(τ))t(τ)−1 has to be trivial in GKp/K the maximal abelian torsion-free pro-p
subquotient of GKt/K and so σ(t(τ)) = t(τ) in this quotient which, since no nontrivial element of GKt/K

acts trivially on nontrivial Tate twists, implies that t(τ) = 0 in the quotient. But then IK/PK projects to 0
and so the maximal abelian torsion-free pro-p subquotient of GKt/K is also the maximal abelian torsion-free

pro-p subquotient of GKur/K
∼= Ẑ, i.e., Zp as desired.

Now suppose that p = `. The number of independent Zp extensions, by Lemma 7.3, is rankZp H
1(GKp/K ,Zp).

The group GKp/K is the maximal abelian pro-p torsion-free subquotient of GK and so Lemma 7.4 implies
that rankZp H

1(GKp/K ,Zp) = rankZp H
1(GK ,Zp).

Finally, Proposition 7.5 gives that rankZp H
2(GK ,Zp) = rankZp H

0(GK ,Zp(1)) = 0 and

rankZp H
0(GK ,Zp)− rankZp H

0(GK ,Zp) + rankZp H
0(GK ,Zp) = −[K : Qp]

from where immediately we get that rankZp H
1(GK ,Zp) = [K : Qp] + 1.

Lecture 15
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Lemma 7.7. 1. If K/Qp is a �nite extension then lim←−K
× ⊗ Z/pnZ ∼= K× ⊗ Zp.

2. If K is a number �eld and S is the set of places containing the in�nite places and the places above p
then

lim←−O
×
K,S ⊗ Z/pnZ ∼= O×K,S ⊗ Zp

Proof. For the �rst part write K× ∼= $Z
K × k

×
K × µp∞(K) × (1 + mK)TF. It su�ces to show that lim←−M ⊗

Z/pnZ ∼= M ⊗ Zp for each part separately. This is clear for $Z
K , k

×
K and µp∞(K) which is a �nite group.

The group (1+mK)TF is a �nitely generated torsion-free Zp-module (1+p2OK ∼= p2OK under the logarithm
map and the latter is a �nitely generated Zp-module; 1 + p2OK is �nite index in (1 + mK)TF and so the
latter is also �nitely generated) and therefore it is of the form Zrp. Finally the result is true for Zp and thus
also for K×.

For the second part supposeM is a �nitely presented abelian group with presentation Zr → Zs →M → 0.
Let K ⊂ Zr be the kernel of Zr → Zs in which case (Zr/K)⊗ (Z/pnZ) satis�es the Mittag-Le�er condition
and so R1 lim←−((Zr/K)⊗ (Z/pnZ)) = 0. But then we deduce that lim←−M ⊗Z/pnZ ∼= Zsp/Zrp ∼= M ⊗Zp. From
Theorem 2.1 it follows that O×K,S is a �nitely generated abelian group with rank |S| − 1. The group O×K,S
is therefore �nitely presented and the second part follows.

Proposition 7.8. Let K be a number �eld with r1 real places and r2 complex places. Let p be a prime.
Then the number of independent Zp extensions is 1 + r2 + δK where δK , called the Leopoldt defect, satis�es
0 ≤ δK ≤ r1 + r2 − 1. If K∞/K is a Zp-extension then K∞/K is unrami�ed outside of places above p.

Remark 1. One of the many equivalent formulations of Leopoldt's conjecture is that always δK = 0. In
particular, if K = Q or K/Q is quadratic imaginary then Leopoldt's conjecture is true. In the case of K = Q
the unique Zp extension is the cyclotomic one while in the case of quadratic imaginary �elds one has an
additional Zp extension called the anticyclotomic extension.

Proof of Proposition 7.8. First, let v | ` 6= p and let w be a place of K∞ above v. Then K∞,w/Kv is
abelian with Galois group a subgroup of Zp and so is a Zp extension as well. Thus K∞,w/Kv is unrami�ed
by Proposition 7.6.
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Let Kp/K be as before the composite of all the Zp extensions in which case Kp/K is the maximal abelian
pro-p torsion-free extension of K which is unrami�ed outside of p. Let S be the �nite set of places containing
the in�nite places and the places above p. Then Kp ⊂ KS and GKp/K is a quotient of GK,S . As before the
number Z of independent Zp extensions is Z = rankZp H

1(GKp/K ,Zp).
The group GKp/K is the maximal abelian pro-p torsion-free subquotient of GK,S and so by Lemma 7.4

it follows that
Z = rankZp H

1(GKp/K ,Zp) = rankZp H
1(GK,S ,Zp)

The set S contains the in�nite places and the places above p (Zp is everywhere unrami�ed as it carries
the trivial GK-action) and so Proposition 7.5 implies that

rankZp H
0(GK,S ,Zp)− rankZp H

1(GK,S ,Zp) + rankZp H
2(GK,S ,Zp) = (r1 + r2)− [K : Q] = −r2

giving
Z = rankZp H

1(GK,S ,Zp) = rankZp H
2(GK,S ,Zp) + r2 + 1

Let δK = rankZp H
2(GK,S ,Zp) ≥ 0 in which case Z = 1 + r2 + δK . To prove the inequality δK ≤ r1 + r2 − 1

we need to show that rankZp H
2(GK,S ,Zp) ≤ r1 + r2 − 1 = rankZO×K .

The Poitou-Tate sequence (Theorem 3.4) applied to Z/pnZ gives an exact sequence

H1(GK,S ,Z/pnZ)→ ⊕v∈SH1(Kv,Z/pnZ)→ H1(GK,S , µpn)∨ →

→ H2(GK,S ,Z/pnZ)→ ⊕v∈SH2(Kv,Z/pnZ)→ H0(GK,S , µpn)∨ → 0

Dualizing and using Tate duality to write Hi(Kv,Z/pnZ)∨ ∼= H2−i(Kv, µpn) we get

⊕v∈SH0(Kv, µpn)→ H2(GK,S ,Z/pnZ)∨ → H1(GK,S , µpn)→ ⊕v∈SH1(Kv, µpn)

Kummer theory gives H1(Kv, µpn) = K×v /(K
×
v )p

n

and taking projective limits one gets

⊕v∈S lim←−µpn(Kv)→ lim←−H
2(GK,S ,Z/pnZ)∨ → lim←−H

1(GK,S , µpn)→ ⊕v∈S lim←−H
1(Kv, µpn)

The projective maps in ⊕v∈Sµpn(Kv) are x 7→ xp and since µp∞(Kv) is �nite (eKv/Qp is �nite whereas
eQp(µp∞ )/Qp is in�nite) it follows that lim←−µpn(Kv) = 0. Using A/An ∼= A⊗Z/nZ and Lemma 7.7 we obtain

0→ lim←−H
2(GK,S ,Z/pnZ)∨ → lim←−H

1(GK,S , µpn)→ ⊕v∈SK×v ⊗ Zp

First, note that

lim←−H
2(GK,S ,Z/pnZ)∨ = (lim−→H2(GK,S ,Z/pnZ))∨ = H2(GK,S , lim−→Z/pnZ)∨ = H2(GK,S ,Qp/Zp)∨

and so
0→ H2(GK,S ,Qp/Zp)∨ → lim←−H

1(GK,S , µpn)→ ⊕v∈SK×v ⊗ Zp

For the next step, we need a little notation. Let ES = lim−→L⊂KS
O×L,S , JS = lim−→L⊂KS

∏
v|S L

×
v and let

CS = lim−→L⊂KS

∏
v|S L

×
v /O×L,S . It is a classical computation in global class �eld theory (see [NSW08, 8.3.8]

or [Mil13, Theorem 5.1]) that H0(GK,S , CS) = A×K/K×
∏
v/∈S O

×
Kv

. The GK,S cohomology sequence for
1→ ES → JS → CS → 1 gives

H0(GK,S , JS)→ H0(GK,S , CS)→ H1(GK,S , ES)→ H1(GK,S , JS)

Hilbert 90 gives H1(GK,S , JS) = 0 and so

H1(GK,S , ES) ∼= A×K/K
×
∏
v∈S

K×v
∏
v/∈S

O×Kv ∼= ClS(K)
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Since S contains the places of K above p the sequence

1→ µpn → ES → ES → 1

is exact. Indeed, if α ∈ ES then α ∈ O×L,S for some L ⊂ KS and K( pn
√
α)/K will be unrami�ed at places

away from S and so M = K( pn
√
α) ⊂ KS . Necessarily then pn

√
α ∈ O×M,S where M ⊂ KS .

Now Kummer theory gives

0→ O×K,S/(O
×
K,S)p

n

→ H1(GK,S , µpn)→ H1(GK,S , ES)[pn]→ 0

where H1(GK,S , ES)[pn] = ClS(K)[pn]. Taking projective limits as n→∞ one gets

0→ lim←−O
×
K,S ⊗ Z/pnZ→ lim←−H

1(GK,S , µpn)→ lim←−ClS(K)[pn]

and since lim←−A[pn] = 0 for any �nite group A it follows that, using Lemma 7.7,

O×K,S ⊗ Zp ∼= lim←−H
1(GK,S , µpn)

Plugging this back into the exact sequence above yields

0→ H2(GK,S ,Qp/Zp)∨ → O×K,S ⊗ Zp → ⊕v∈SK×v ⊗ Zp

Consider the exact sequence

0→ O×K → O
×
K,S → ⊕v∈S−∞K

×
v /O×v → Cl(K)→ ClS(K)→ 0

Since Zp is �at over Z we get after tensoring

0→ O×K ⊗ Zp → O×K,S ⊗ Zp → ⊕v∈S−∞K×v /O×v ⊗ Zp

Now c ∈ H2(GK,S ,Qp/Zp)∨ maps via O×K,S⊗Zp to 0 in ⊕v∈SK×v ⊗Zp and so to 0 in ⊕v∈S−∞K×v /O×v ⊗Zp.
But then the image of c in O×K,S ⊗ Zp lies in fact in O×K ⊗ Zp.

Now

rankZp H
2(GK,S ,Qp/Zp)∨ ≤ rankZp O×K ⊗ Zp

≤ rankZO×K
= r1 + r2 − 1

but at the same time if we writeH2(GK,S ,Zp) = Zrp⊕X whereX is �nite torsion and r = rankZp H
2(GK,S ,Zp)

then

rankZp H
2(GK,S ,Qp/Zp)∨ = rankZp(H2(GK ,Zp)⊗Qp/Zp)∨

= rankZp((Qp/Zp)r ⊕ (X ⊗Zp Qp/Zp))∨

= rankZp H
2(GK,S ,Zp)

since X ⊗Zp Qp/Zp = 0 and (Qp/Zp)∨ ∼= Zp. Therefore rankZp H
2(GK,S ,Zp) ≤ r1 + r2 − 1 as desired.

Remark 2. Given that δK = rankZp H
2(GK,S ,Zp) another formulation of Leopoldt's conjecture is that

rankZp H
2(GK,S ,Zp) = 0.
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7.2 Class groups and Galois modules

Lemma 7.9. Let K∞/K be a Zp extension of a number �eld. There exists m ≥ 0 such that K∞/Km is
totally rami�ed at all places of rami�cation.

Proof. We already know from Proposition 7.8 that K∞/K can ramify only at the places v1, . . . , vr of K
above p. Fixing a place wi of K∞ above vi (since K∞/K is Galois any will do) let Ii = IK∞,wi/Kvi . Now
∩Ii is an open subgroup of GK∞/K

∼= Zp and so is of the form pmZp ∼= GK∞/Km for some m. Suppose that
w | t | v are places of K∞,Km,K. Then GK∞,w/Km,t ⊂ GK∞/Km ⊂ Iv. But then Herbrandt's theorem gives
IK∞,w/Km,t = Iv ∩GK∞,w/Km,t = GK∞,w/Km,t and so K∞,w/Km,t is totally rami�ed.

Remark 3. If K0 = Q(
√
−6) and K1 ⊂ K∞, the Z2-extension, with GK1/K0

∼= Z/2Z then K1 = K0(
√

2) is
unrami�ed over K0. (This is [Was97, Exercise 13.3].)

De�nition 7.10. Let Ln/Kn be the maximal abelian extension of Kn which is unrami�ed at all �nite
places and has p-power order. This is a subextension of the Hilbert class �eld �xed by the prime to p part
of Cl(Kn). Let L∞ = ∪Ln. In this case

vp(hKn) = vp([Ln : Kn]) = logp[Ln : Kn]

Lemma 7.11. The Galois group Xn = GLn/Kn
∼= Cl(Kn) carries an action of GKn/K by letting g·σ = g̃σg̃−1

for g ∈ GKn/K , σ ∈ Xn and g̃ any lift of g to GLn/K .

Proof. First, any other lift of g to GLn/K is of the form g̃h for h ∈ GLn/Kn ⊂ GLn/K . Then

g̃hσ(g̃h)−1 = g̃hσh−1g̃−1

= g̃σg̃−1

since h, σ ∈ Xn which is an abelian group by de�nition. Therefore the action is independent of the choice of
lift. Finally, if g, h ∈ GKn/K then g̃h̃ is a choice of lift of gh and so

g · (h · σ) = g̃h̃σh̃−1g̃−1

= g̃h̃σ(g̃h̃)−1

= g̃hσg̃h
−1

= (gh) · σ

and so this is indeed a group action.

Lemma 7.12. Let v1, . . . , vs be the places of Km above p that ramify (necessarily totally) in K∞ and let
wi | vi be any place of L∞. If Im,i = IL∞,wi/Km,vi then GL∞/Km

∼= X∞Im,i for all i.

Proof. Since L∞/K∞ is unrami�ed it follows that Im,i ∩ X∞ = 1. Therefore Im,i ↪→ GL∞/Km/X∞
∼=

GK∞/Km . Denote by Im,i as well the image of Im,i in GK∞/Km . The subextension Km was chosen
such that IK∞,ui/Km,vi = GK∞,ui/Km,vi where ui is the place of K∞ below wi. The decomposition group
GK∞,ui/Km,vi ⊂ GK∞/Km is an open subgroup and so it is of the form GK∞/Kni for some ni ≥ m. But
by choice of Km, GK∞/Km = ∩Im,i and so GK∞,Km = ∩GK∞/Kni which implies that minni = m. But
GK∞/Km acts transitively on the places vi and so ni = m for all i proving that Im,i ∼= GK∞/Km . Finally
this implies that GL∞/Km

∼= X∞Im,i.

Lemma 7.13. Let γ0 be a topological generator of GK∞/K
∼= Zp in which case γm = γp

m

0 is a topological
generator of GK∞/Km

∼= pmZp. Then

[GL∞/Km , GL∞/Km ] = (γm − 1) ·X∞

where the action of GK∞/Km on X∞ = lim←−Xn = GL∞/K∞ is de�ned in Lemma 7.11.
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Proof. Identify Im,1 ∼= GK∞/Km in which case we denote by γm the lift to Im,1 as well. Then γm·x = γmxγ
−1
m .

If g1, g2 ∈ GL∞/Km = Im,1X∞ then may write gi = hixi for hi ∈ GK∞/Km and xi ∈ X∞ and it is easy to
check (using that Im,1 and X∞ are abelian) that

g1g2g
−1
1 g−1

2 = ((1− h2)h1 · x1)((h1 − 1)h2 · x2)

Taking h1 = γm and h2 = 1 gives (γm − 1) · x2 = g1g2g
−1
1 g−1

2 and so (γm − 1) ·X∞ ⊂ [GL∞/Km , GL∞/Km ].
Going in the other direction, if γ ∈ GK∞/Km then γ = γαm for some α ∈ Zp. Then

γ − 1 = ((γm − 1) + 1)α − 1 =
∑
n≥1

(
α

n

)
(γm − 1)n

and so (1− h2)h1 · x1, (1− h1)h2 · x2 ∈ (γm− 1) ·X∞. We deduce that [GL∞/Km , GL∞/Km ] ⊂ (γm− 1) ·X∞
and equality follows.

Lemma 7.14. Let σm,i ∈ Im,i be the image of γm ∈ GK∞/Km ∼= Im,i. Since Im,i ⊂ GL∞/Km = X∞Im,i there
exists gm,i ∈ X∞ such that σm,i = gm,iσm,1. Let Ym ⊂ X∞ be the Zp-submodule generated by gm,2, . . . , gm,s
and (γm − 1)X∞. Then

Xn = X∞/νn,m · Ym
where νn,m = 1+γ2

m+ · · ·+γp
n−m−1
m . (Here the action of νn,m on Ym ⊂ X∞ is that de�ned in Lemma 7.11.)

Proof. By de�nition Ln is the maximal abelian unrami�ed p-extension of Kn while L∞ is some p-extension
of Kn. Therefore Ln is the maximal abelian unrami�ed subextension of L∞. Translating to Galois groups,
GL∞/Ln is generated by the commutant [GL∞,Kn , GL∞/Kn ] (to make Ln/Kn abelian) and In,i (to make
Ln/Kn unrami�ed).

Note that σn,i = σp
n−m

m,i so

σn,i = σp
n−m

m,i

= (gm,iσm,1)p
n−m

=

pn−m−1∏
k=0

(σkm,1gm,iσ
−k
m,1)σp

n−m

m,1

=

pn−m−1∏
k=0

(γkm · gm,i)σ
pn−m

m,1

= (νn,m · gm,i)σn,1
where the fourth equality is by de�nition of the action γm · − since σm,1 is a lift of γm to GL∞/K . We
conclude that gn,i = νn,m · gm,i.

Now

Xn = GLn/Kn
= GL∞/Kn/GL∞/Ln
= X∞In,1/〈[GL∞/Kn , GL∞/Kn ], In,1, . . . , In,s〉
= X∞In,1/〈[GL∞/Kn , GL∞/Kn ], In,1, gn,2, . . . , gn,s〉
= X∞/〈[GL∞/Kn , GL∞/Kn ], gn,2, . . . , gn,s〉
= X∞/〈(γn − 1) ·X∞, gn,2, . . . , gn,s〉

where the third equality uses Lemma 7.12 and the sixth equality uses Lemma 7.13. Finally, Yn is generated
by (γn − 1) ·X∞ = νn,m(γm − 1) ·X∞ and gn,i = νn,m · gm,i and so Yn = νn,m · Ym giving

Xn = X∞/νn,m · Ym
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7.3 The Iwasawa algebra

Recall that our goal is Theorem 7.1 where we study vp(|Xn|) where Xn is a quotient of X∞. To study the
cardinality of Xn as n→∞ we need to study X∞ as a module over GK∞/K . In fact we will show that X∞
is a module over Zp[[T ]], we will study �nitely generated modules over Zp[[T ]] and we will deduce the theorem
from a structure theorem.

We begin by collecting some facts, with brief sketches of proofs, about power series rings. Throughout
L/Qp is a �nite extension.

Lemma 7.15 (Division with remainder). If f, g ∈ OL[[T ]] such that f(T ) = a0 + a1T + · · · with ai ∈ mL for
0 ≤ i ≤ n− 1 and an ∈ O×L then one may uniquely write

g = qf + r

for a power series q ∈ OL[[T ]] and a polynomial r ∈ OL[T ] of degree < n.

Proof. Write U(T ) = an +an+1T + · · · and for a uniformizer $L of L, let P = $−1
L (f −UTn), a polynomial

of degree < n. Consider the linear operator

τ(

∞∑
i=0

biT
i) =

∞∑
i=n

aiT
i−n

and the multiplication by P/U operator mP/U . If

q(T ) = U(T )−1
∞∑
i=0

(−1)i$i
L(τ ◦mP/U )i ◦ τ(g)

then one may check that this series converges and that g = qf + r for a polynomial r of degree < n. For
details see [Was97, Proposition 7.2].

De�nition 7.16. A polynomial P ∈ OL[T ] is said to be distinguished if it is of the form P (T ) = Tn +
an−1T

n−1 + · · ·+ a0 with ai ∈ mL.

Lemma 7.17 (Weierstrass preparation). Let f ∈ OL[[T ]] such that f(T ) = a0 + a1T + · · · with ai ∈ mL for
0 ≤ i ≤ n − 1 and an ∈ O×L . Then one may write f uniquely as f(T ) = P (T )U(T ) where U ∈ (OL[[T ]])×

and P ∈ OL[T ] is a distinguished polynomial of degree n.

Proof. By Lemma 7.15 it follows that Tn = q(T )f(T ) + r(T ) for a polynomial r of degree < n. Modulo mL
have f(T ) ≡ anTn +O(Tn+1) and so

Tn − r(T ) = q(T )f(T ) ≡ q(T )(anT
n +O(Tn+1)) (mod mL)

which implies that r(T ) ≡ 0 (mod mL). Let P (T ) = Tn − r(T ) of degree n and distinguished. Reducing
modulo the ideal (mL, T

n+1) the above equation becomes Tn ≡ anq(0)Tn and so q(0) 6= 0 which means that
q ∈ (OL[[T ]])× and let U(T ) = q(T )−1. Finally f(T ) = P (T )U(T ).

If f = PU then Tn = U(T )−1f(T ) + r(T ) and uniqueness of P and U follows from the uniqueness
statement of Lemma 7.15.

Corollary 7.18. If f ∈ OL[[T ]] then (f) = ($n
LP ) for a distinguished polynomial P .

Proof. Let n be the largest exponent such that f ≡ 0 (mod mnL). Then P = f$−nL will satisfy the hypothesis
of Lemma 7.17 and so f = $n

LPU for a unit U .
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De�nition 7.19. If G is a pro�nite group and L/Qp a �nite extension then the completed group ring OL[[G]]
is de�ned as

OL[[G]] = lim←−OL[G/H]

where H ⊂ G runs through the open normal subgroups of G. The ring OL[[G]] is called the Iwasawa algebra
of G.

Proposition 7.20. Let G ∼= Zp be topologically generated by γ and let L/Qp be a �nite extension. Then
γ 7→ 1 + T yields an isomorphism

OL[[G]] ∼= OL[[T ]]

Proof. The open normal subgroups of G are of the form H = pnZp so we have OL[G/H] = OL[Z/pnZ] ∼=
OL[T ]/((1 + T )p

n − 1) by sending the generator of Z/pnZ to 1 + T . Therefore

OL[[G]] ∼= lim←−OL[T ]/((1 + T )p
n

− 1)

It su�ces to show that
OL[[T ]] ∼= lim←−OL[T ]/((1 + T )p

n

− 1)

Let Pn(T ) = (1+T )p
n−1. It is easy to see that Pn+1/Pn ∈ (mL, T ) and so Pn ∈ (mL, T )n+1 by induction.

Let f ∈ OL[[T ]]. Lemma 7.15 produces a power series qn and a polynomial fn of degree < pn such that

f(T ) = qn(T )Pn(T ) + fn(T )

in which case fm ≡ fn (mod Pn) for allm ≥ n. This provides a map f 7→ (fn) fromOL[[T ]] to lim←−OL[T ]/(Pn(T )).

Finally, ∩(Pn(T )) ⊂ ∩(mL, T )n+1 = 0 and so this map is injective.
Now for surjectivity, suppose that (fn) ∈ lim←−OL[T ]/(Pn(T )). Since (Pn(T )) ⊂ (mL, T )n+1, it follows

that for m ≥ n we have fm ≡ fn (mod (mL, T )n+1). But OL[[T ]] is complete for the (mL, T )-adic topology
and so there exists f ∈ OL[[T ]] such that f ≡ fn (mod (mL, T )n+1). It remains to show that in fact f ≡ fn
(mod Pn(T )). By de�nition there exists qm,n ∈ OL[T ] such that fm − fn = qm,nPn. In the (mL, T )-adic
topology of OL[[T ]] we have

f − fn
Pn

= lim
m

fm − fn
Pn

= lim
m
qm,n

which, being a limit of polynomials, must be a power series in OL[[T ]] if the sequence converges. (Here we
may use that OL[[T ]] is closed in its fraction �eld. Writing qn = limm qm,n get f = qnPn + fn as desired.

Lecture 18
2013-05-13

7.4 Modules over the Iwasawa algebra

De�nition 7.21. The Iwasawa algebra is Λ = OL[[T ]].

Lemma 7.22 (Nakayama). Suppose X is a compact topological Λ-module. Then X is �nitely generated if
and only if X/(mL, T )X is �nite.

Proof. See for instance [Was97, Lemma 13.16].

De�nition 7.23. Let M,N be two Λ-modules. Say M ∼ N if there exists a morphism of modules M → N
with �nite kernel and cokernel.

Lemma 7.24. Let L/Qp be a �nite extension.

1. If f, g ∈ Λ are coprime then (f, g) is �nite index in Λ.

2. The prime ideals of Λ are 0, mL, (mL, T ) and (P (T )) where P ∈ OL[T ] is irreducible and distinguished.
The prime ideal (mL, T ) is the unique maximal ideal.
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3. If f ∈ Λ such that f is not a unit then Λ/(f) is in�nite.

4. If M is a �nitely generated Λ module then

M ∼ Λr ⊕

(
s⊕
i=1

Λ/($ni
L )

)
⊕

 t⊕
j=1

Λ/(fj(T )mj )


for distinguished irreducible polynomials fj.

Proof. The �rst part. Corollary 7.18 implies that we may choose f, g to be products of powers of $L and
distinguished polynomials or else (f, g) = Λ. Since f, g are coprime, without loss of generality assume
$L - f . Let h ∈ (f, g) be a polynomial of minimal degree. Write h = $n

L` with ` either 1 or a distinguished
polynomial. If ` 6= 1 then f = q` + r for deg r < deg ` = deg h gives $n

Lr ∈ (f, g) a polynomial of smaller
degree than h. Thus h = $n

L ∈ (f, g). Now ($n
L, f) = (h, f) ⊂ (f, g) and so Λ/(f, h) →→ Λ/(f, g). But

Λ/(f, h) = Λ/($n
L, f) ∼= (OL/mnL)[[T ]]/(f) which consists of polynomials of degree < deg f and coe�cients

in OL/mnL and therefore is �nite.
The second part. The ideals listed are prime. Suppose p is a proper prime ideal. By Corollary 7.18 every

non-unit in p is a polynomial. Let f ∈ p be a polynomial of minimal degree. If $L ∈ p then p/$L is a prime
ideal of kL[[T ]] which is a PID with maximal ideal T and so p = ($L) or p = ($L, T ). Suppose $L /∈ p. If
p 6= (f) then there exists g ∈ p− (f) necessarily coprime to f . Then p ⊃ (f, g) will have �nite index in Λ by
the �rst part. But then $n

L ∈ p for some n contradicting the assumption that $L /∈ p.
The third part. Since we care about the ideal (f), by Corollary 7.18, (f) = ($n

Lg) where g = 1 or g is
a distinguished polynomial. If n > 0 then (f) ⊂ ($L) and so Λ/(f) →→ kL[[T ]] which is in�nite. If n = 0
then g 6= 1 is a distinguished polynomial and no two elements in OL can be equal in Λ/(f) so the quotient
is in�nite.

The fourth part is a big exercise in linear algebra in the style of the classi�cation of �nitely generated
modules over PIDs. See for instance [Was97, Theorem 13.12].

Lemma 7.25. Let M ∼ N as Λ-modules and let fn ∈ Λ such that each M/fnM is �nite. Then each N/fnN
is �nite and

vp(|M/fnM |) = vp(|N/fnN |) + C(1)

where the notation C(1) is taken to mean constant for n >> 0.

Proof. Unenlightening exercise in using the snake lemma. See [Was97, Lemma 13.21].

7.5 Class numbers in Zp-extensions

Lemma 7.26. Let K∞/K be a Zp extension of a number �eld K. Let X∞ be as de�ned in Lemma 7.13.
Then Ym and X∞ are �nitely generated Zp[[T ]]-modules.

Proof. The groupXn carries an action of Zp[GKn/K ] and thusX∞ = lim←−Xn carries an action of lim←−Zp[GKn/K ] =
Zp[[GK∞/K ]] ∼= Zp[[T ]] by Proposition 7.20.

Recall that Zp[[GK∞/K ]] ∼= Zp[[T ]] sending γ0 7→ T + 1. Let m be as in Lemma 7.9. By de�nition for
n > m we have

νn,m =
γn − 1

γm − 1
=

pn−m−1∑
i=0

(1 + T )ip
m

∈ (p, T ) ⊂ Λ

and so by Lemma 7.14
Ym/(p, T )Ym ∼= Ym/νn,m · Ym ⊂ X∞/νn,m · Ym ∼= Xn

is �nite. By Lemma 7.22 we deduce that Ym is �nitely generated. Finally, X∞/Ym ∼= Xm is �nite and so
X∞ is �nitely generated.
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Proof of Theorem 7.1. We will show that there exist nonnegative integers µ, λ, ν such that for n >> 0

vp(hKn) = vp(|Xn|) = λn+ µpn + ν

in other words that
vp(|Xn|) = λn+ µpn + C(1)

Note that 0 → Ym → X∞ → X∞/Ym → 0 where X∞/Ym ∼= Xm is �nite; therefore Ym ∼ X∞ which shows
that Ym/νn,m · Ym ∼ X∞/νn,m · Ym ∼= Xn. By Lemma 7.25 it su�ces to show that

vp(|Ym/νn,mYm|) = λn+ µpn + C(1)

Lemma 7.26 shows that Ym is a �nitely generated Λ-module and so by Lemma 7.24 implies that

Ym ∼= Λr ⊕
(⊕

Λ/(pni)
)
⊕
(⊕

Λ/(f
mj
j )

)
First, note that Ym/νn,mYm is �nite but νn,m ∈ (p, T ) it is not a unit and therefore Λ/νn,m is in�nite by

Lemma 7.24. This implies that r = 0.
Now

vp(|Ym/νn,mYm|) =
∑

vp(|Λ/(pni , νn,m)|) +
∑

vp(|Λ/(f
mj
j , νn,m)|)

is a �nite sum so it is enough to show that for each direct summand M of Ym one has

vp(|M/νn,mM |) = λMn+ µMp
n + C(1)

where λM , µM ∈ Z≥0.
Suppose M = Λ/(pk). Then M/νn,mM = Λ/(pk, νn,m) consists, using the division algorithm of Lemma

7.15 as deg νn,m = pn − pm, of polynomials of degree < pn − pm with coe�cients in Z/pkZ. Therefore
|M/νn,mM | = pk(pn−pm) and so vp(|M/νn,mM |) = kpn + C(1) as desired.

Now suppose that M = Λ/(fr) where f is distinguished and therefore g = fr of degree d is also
distinguished. If k ≥ d, the division algorithm gives T k = q(T )g(T ) + r(T ) with deg r < d. Modulo p,
g =≡ T d and so T k ≡ qT d + r which implies that r ≡ 0 (mod p) and so T k ≡ pZp[T ] (mod g). If pn > d

then (1 + T )p
n ≡ 1 + pZp[T ] (mod g) and so by induction (1 + T )p

n+k ≡ 1 + pkZp[T ] (mod g). Let n0 ≥ m
such that pn > d. If n ≥ n0, p

n > d and k ≥ 1 then

Pn+k+1 = Pn+k

(
p−1∑
i=0

(1 + T )p
n+ki

)
≡ Pn+k

p−1∑
i=0

(1 + pkZp[T ])i (mod g) ≡ Pn+kp(1 + pZp[T ]) (mod g)

where recall that Pk(T ) = (1 + T )p
k − 1. But 1 + pZp[T ] is invertible in Λ and so in Λ/(g), νn+k+1,n+k =

Pn+k+1/Pn+k acts (up to a unit) by multiplication by p.
Now g is distinguished so p - g and therefore multiplication by p is injective on M = Λ/(g). Therefore

|M/νn,mM | = |M/νn,n−1 · · · νn0+2,n0+1νn0+1,mM |
= |M/pn−n0−1νn0+1,mM |
= |M/pn−n0−1M ||pn−n0−1M/pn−n0−1νn0+1,mM |
= |M/pn−n0−1M ||M/νn0+1,mM |
= |Λ/(pn−n0−1, g)||M/νn0+1,mM |
= |(Z/pn−n0−1Z)[T ]/(g)||M/νn0+1,mM |
= pd(n−n0−1)|M/νn0+1,mM |

This implies that

vp(|M/νn,mM |) = d(n− n0 − 1) + vp(|M/νn0+1,mM |) = dn+ C(1)
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Remark 4. It is a theorem of Ferrero and Washington that if K/Q is abelian Galois then µ = 0. In general,
if K∞/K is the cyclotomic Zp-extension then it is expected that µ = 0.
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2013-05-15

8 Hecke theory for GL(1)

Hecke theory refers to the study of L-functions attached to various arithmetic or analytic objects and their
functional equations. It is worth spending a little time understanding what the point is, as the results are
fairly technical.

Suppose K is a number �eld and ρ : GK → GL(n,C) be a continuous Galois representation. One de�nes
the L-function of ρ as

L(ρ, s) =
∏
v-∞

det(1− ρ(Frobv)q
−s
v |ρIKv )−1

which is an analytic function for Re s >> 0. However, a priori, it is not known what kind of behavior L has
on C. Is it meromorphic? Analytic? Does it have a functional equation?

The strategy for tackling these questions is to �nd an analytic construction of the L-function in a context
where these questions can be answered naturally using Fourier transforms. Hecke theory for GL(1) is the
topic of Tate's thesis, whose main results we explain, without detailed proofs.

8.1 Fourier analysis

8.1.1 Measures

Let G be a locally compact topological abelian group and let µG be a Haar measure. Let Ĝ = Hom(G,S1)

be the space of continuous characters. Then G is compact if and only if Ĝ is discrete and
̂̂
G ∼= G. If H ⊂ G

is a closed subgroup then Ĝ/H ∼= H⊥ = {φ ∈ Ĝ|φ(H) = 1} and Ĝ/H⊥ ∼= Ĥ. There exists a unique Haar
measure µG/µH on G/H such that for every φ ∈ Cc(G) with compact support∫

G

φ(g)dµG,g =

∫
G/H

(∫
H

φ(gh)dµH,h

)
d(µG/µH)g

If G =
∏′
{Uv}Gv is a restricted product with respect to the open subgroups Uv ⊂ Gv then Ĝ ∼=

∏′
{U⊥v }

Ĝv.

If µv is a Haar measure for Uv such that for almost all v, µv(Uv) = 1 then µ = ⊗µv is a Haar measure for∏′
{Uv}Gv.

8.1.2 Fourier transforms for abelian groups

For a Haar measure µ on G the Fourier transform Fµ : L1(G,µ)→ C(Ĝ) de�ned by

Fµ(φ)(χ) =

∫
G

φ(g)χ(g)dµg

extends by continuity to Fµ : L2(G,µ)→ L2(Ĝ, µ̂) for the unique (dual) Haar measure µ̂ on Ĝ such that for
every φ ∈ Cc(G), ∫

G

|φ|2dµ =

∫
Ĝ

|Fµ(φ)|2dµ̂

Then Fµ̂Fµφ = φ under the canonical identi�cation
̂̂
G ∼= G.

Suppose Γ ⊂ G is a discrete subgroup such that G/Γ is compact. Poisson summation states that∑
γ∈Γ

φ(γ) =
∑

γ⊥∈Γ⊥

Fµ(φ)(γ⊥)

40



8.1.3 Fourier transforms for vector spaces

If G is R, C, a �nite extension of Qp or AK/K where K is a number �eld and ψ ∈ Ĝ is nontrivial then

a 7→ (x 7→ ψ(ax)) gives a noncanonical identi�cation G ∼= Ĝ. Write S(G) for the space of Schwarz functions:
when G = R or C these are functions all of whose derivatives decay faster than polynomials, when G = K/Qp
is a �nite extension then these are locally constant functions with compact support.

Choosing φ ∈ Ĝ as above gives a Fourier transform Fµ,ψ : S(G)→ S(G). Via the identi�cation G ∼= Ĝ,
the explicit formula is

Fµ,ψ(φ)(h) =

∫
G

φ(g)ψ(hg)dµg

Write µ∗ψ for the transfer of the dual measure µ̂ from Ĝ to G using ψ.

Lemma 8.1. If K = R let ψ(x) = exp(2πix) and µ([0, 1]) = 1. If K = C let ψ(x) = exp(2πiRex)
and µ([0, 1] × [0, i]) = 2. If K/Qp is a �nite extension let λ : Qp → Z[1/p] be such that λ(x) + x ∈ Zp.
Then λ(x) is well-de�ned up to Z and ψ(x) = exp(2πiλ(TrK/Qp(x)) is a well-de�ned character. Suppose

µ(OK) = [D−1
K/Qp : OK ]−1/2.

In all three cases, µ∗ψ = µ.

Proof. [Tat67, Theorem 2.2.2].

Let K be a number �eld. For each place v �x ψv ∈ K̂v such that for almost all v, kerψv = Ov.
Then ψ = ⊗ψv ∈ ÂK =

∏′
{O⊥v }

K̂v. Using ψv to identify Kv
∼= K̂v get Ov ∼= O⊥v . Thus AK ∼= ÂK via

a 7→ (x 7→ ψ(ax)). Under this identi�cation K⊥ ⊂ ÂK is simply K ⊂ AK and ÂK/K ∼= K.
If µ is the Haar measure on AK inducing the discrete measure on the discrete subgroup K ⊂ AK/K and

inducing µ(AK/K) = 1 on the compact group AK/K then µ∗ψ = µ.
Let S(AK) = ⊗′vS(Kv) consist of φ = ⊗φv where φv = charOv for almost all v. If φ = ⊗φv ∈ S(AK)

then
Fµ,ψφ = ⊗Fµv,ψvφv

with Fourier inversion Fµ,ψ−1Fµ,ψφ = φ.
The Poisson summation formula for K ⊂ AK states that

|a|AK
∑
α∈K

φ(aα) =
∑
α∈K
Fµ,ψ(φ)(a−1α)

8.2 Local zeta integrals

Suppose K = R,C or a �nite extension of Qp. For a continuous character χ : K× → C× we would like to
de�ne �analytically� an L-function. The idea is to de�ne for each test function φ ∈ S(K) and Haar measure
ν on K×

ζ(φ, χ, ν, s) =

∫
K×

φ(x)χ(x)|x|sKdνx

and recover the L-function as a common denominator as the test function φ varies.
If K = R and χ(x) = (x/|x|)ε|x|tR de�ne

L(χ, s) = π−(s+t+ε)/2Γ((s+ t+ ε)/2)

If K = C and χ(x) = (x/|x|)m|x|tC de�ne

L(χ, s) = 2(2π)−(s+t+|m|/2)Γ(s+ t+ |m|/2)

If K/Qp then

L(χ, s) =

{
1 χ(O×K) 6= 1

(1− χ($K)q−sK )−1 χ(O×K) = 1

41



Proposition 8.2. There exists a test function φχ such that ζ(φ, χχ, ν, s) = L(χ, s). For every test function

φ ∈ S(K),
ζ(φ, χ, ν, s)

L(χ, s)
is holomorphic.

1. If K = R, ν = dx/|x| and χ = (x/|x|)ε|x|tR then φχ = xεe−πx
2

.

2. If K = C, ν = 2dxdy
π(x2+y2) and χ(x) = (x/|x|)m|x|tC then φχ = xne−2π|x|C if n ≥ 0 and φχ = x−ne−2π|x|C

if n < 0.

3. If K/Qp is a �nite extension, ν(O×K) = 1 and χ is unrami�ed then φχ = charOK ; if χ is rami�ed of

conductor f ≥ 1 then φχ = ν(1 + mfK)−1 char1+mfK
.

Proof. See [Tat67, �2.5] �the corresponding functions of z� on page 316 for K = R, on page 318 for K = C
and on page 320 for K/Qp.
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8.3 Local functional equation and local ε-factors

Now that we have de�ned L-functions analytically we should remark that they do not contain much infor-
mation about the characters. In fact, for every rami�ed character χ, one has L(χ, s) = 1, and more generally
the L-function of a Galois representation does not take into account the rami�ed part of the representation.
To study the rami�ed part one needs the ε-factor which arise naturally in the context of functional equations.

Suppose K = R,C or a �nite extension of Qp and χ : K× → C×. Let ψ ∈ K̂ nontrivial identifying K̂
with K, µ a Haar measure on K and ν a Haar measure on K×.

Proposition 8.3. For every φ ∈ S(K)

ζ(φ, χ, ν, s)γ(χ, ψ, µ, s) = ζ(Fµ,ψφ, χ−1, ν, 1− s)

for γ(χ, ψ, µ, s) not depending on φ and ν.

Proof. [Tat67, Theorem 2.4.1].

Theorem 8.4. The function

ε(χ, ψ, µ, s) = γ(χ, ψ, µ, s)
L(χ, s)

L(χ−1, 1− s)

is of the form A ·Bs where A,B ∈ K.
Let ψ and µ as in Lemma 8.1. If K = R and χ(x) = (x/|x|)ε|x|tR then ε(χ, ψ, µ, s) = iε. If K = C and

χ(x) = (x/|x|)m|x|tC then ε(χ, ψ, µ, s) = i|m|.
Finally suppose K/Qp is a �nite extension and ψ is any nontrivial character of K. Let f be the conductor

of χ, i.e., the smallest integer such that χ(UfK) = 1 and let −d be the conductor of ψ, i.e., the smallest integer

such that ψ(m−dK ) = 1. (For example if ψ is as in Lemma 8.1 then d = vK(DK/Qp).) Then

ε(χ, ψ, µ, s) =

µ(m−dK )
∑

x∈O×K/U
f
K

ψ

(
x

$d+f
K

)
χ−1

(
x

$d+f
K

) q
−(d+f)s
K

Proof. See [CF86, �2.5] �explicit expressions for ρ(c)� on page 317 for K = R, on page 319 for K = C and
on page 322 for K/Qp.
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Corollary 8.5. Have

ε(χ, ψ(a · −), µ, s) = χ(a)|a|s−1
K ε(χ, ψ, µ, s)

ε(χ, ψ, rµ, s) = rε(χ, ψ, µ, s)

Proof. The second equality is immediate. For the �rst equality note that the conductor of ψ(a · −) is equal
to −d− vK(a) and so

ε(χ, µ, ψ(a · −), s) =

µ(m
−d−vK(a)
K )

∑
x∈O×K/U

f
K

ψ

(
ax

$
d+vK(a)+f
K

)
χ−1

(
x

$
d+vK(a)+f
K

) q
−(d+vK(a)+f)s
K

=

χ(a)|a|−1
K µ(m−dK )

∑
x∈O×K/U

f
K

ψ

(
ax

$
d+vK(a)+f
K

)
χ−1

(
ax

$
d+vK(a)+f
K

) q
−(d+vK(a)+f)s
K

= χ(a)|a|s−1
K

µ(m−dK )
∑

y∈O×K/U
f
K

ψ

(
y

$d+f
K

)
χ−1

(
y

$d+f
K

) q
−(d+f)s
K

= χ(a)|a|s−1
K ε(χ, ψ, µ, s)

where we used that µ(m
−d−vK(a)
K )/µ(m−dK ) = [m

−d−vK(a)
K : m−dK ] = q

vK(a)
K = |a|−1

K as µ is a Haar measure

and we denoted y = xa$
−vK(a)
K .

Proposition 8.6. Let K/Qp be a �nite extension, ψ a nontrivial character of K and η : K× → C× a
continuous character of conductor f ≥ 1.

1. For 0 ≤ a ≤ f/2 there exists ca ∈ K such that η(1 + x) = ψ(cax) for vK(x) ≥ f − a.

2. If χ1, χ2 : K× → C× are continuous characters of conductors f1 and f2 such that f1, f2 ≤ a then

ε(χ1η, ψ, µ, s)χ1(ca) = ε(χ2η, ψ, µ, s)χ2(ca)

Proof. Let χ : K× → C× be any continuous character of conductor f ≥ 1. First, if vK(x), vK(y) ≥ f − a
then (1 + x)(1 + y) = (1 + x + y)(1 + xy

1+x+y ) where 1 + xy
1+x+y ∈ U

2f−2a
K ⊂ UfK = kerχ. Therefore

χ((1 + x)(1 + y)) = χ(1 + x+ y) and so x 7→ χ(1 + x) is an additive character which case then be recovered
as ψ(cax) for some ca ∈ K. Applying this to χ = η yields the �rst result.

Recall that ker(ψ(ca · −)) = c−1
a ker(ψ) = mfK as χ has conductor f . But then vK(ca) = −d − f . In

particular, in the formula of Theorem 8.4

ε(χ, ψ, µ, s) =

µ(m−dK )
∑
O×K/U

f
K

ψ(xca)χ−1(xca)

 q
−(d+f)s
K

where we replace the sum over x with a sum over xca$
d+f
K .

Writing x = y(1 + z) gives∑
x∈O×K/U

f
K

ψK(cax)χ−1(cax) =
∑

y∈O×K/U
f−a
K

∑
z∈mf−aK /mfK

ψ(cay(z + 1))χ−1(cay(z + 1))

=
∑

y∈O×K/U
f−a
K

ψ(cay)χ−1(cay)
∑

z∈mf−aK /mfK

ψ(cayz)χ
−1(1 + z)

=
∑

y∈O×K/U
f−a
K

ψ(cay)χ−1(cay)
∑

z∈mf−aK /mfK

ψ(caz(y − 1))
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where the last line follows from the fact that χ(1 + z) = ψ(caz) as vK(z) ≥ f − a.
If u = $f−a

K then ∑
z∈℘f−aK /℘fK

ψ(caz(y − 1)) =
∑

z∈mf−aK /mfK

ψ(ca(z + u)(y − 1))

= ψ(cau(y − 1))
∑

z∈mf−aK /mfK

ψ(caz(y − 1))

and therefore
∑

z∈mf−aK /mfK

ψ(caz(y−1)) = 0 unless ψ(cau(y−1)) = 1, which can only happen if vK(cau(y−1)) ≥

−d. But vK(c) = −d− f and vK(u) = f − a and therefore the sum vanishes unless y ∈ UaK . If y ∈ UaK then
ψ(caz(y − 1)) = 1 and so ∑

z∈mf−aK /mfK

ψ(caz(y − 1)) = |mf−aK /mfK | = qaK

We get ∑
x∈O×K/U

f
K

ψK(cax)χ−1(cax) = qaK
∑

y∈UaK/U
f−a
K

ψ(cay)χ−1(cay)

which gives

ε(χ, ψ, µ, s) = q
−(d+f)s
K µK(m−dK )qaK

 ∑
y∈UaK/U

f−a
K

ψ(cay)χ−1(cay)


We now apply the above to χ = χ1η and χ2η. Suppose for instance that χ = χ1η. Then χ has conductor

f and χ(1 + x) = χ1(1 + x)η(1 + x) = η(1 + x) = ψ(cax) for every x ∈ Uf−aK as f1 ≤ a ≤ f − a. Therefore

ε(χ1η, ψ, µ, s) = q
a−(d+f)s
K µK(m−dK )

 ∑
y∈UaK/U

f−a
K

ψ(cay)(χ1η)−1(cay)


= χ−1

1 (ca)q
a−(d+f)s
K µK(m−dK )

 ∑
y∈UaK/U

f−a
K

ψ(cay)η−1(cay)


because if y ∈ UaK ⊂ kerχ1 then χ−1

1 (cay) = χ−1
1 (ca).

The conclusion follows from the fact that ε(χ1η, ψ, µ, s)χ1(ca) does not depend on χ1.
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8.4 Global zeta integrals

Suppose χ : A×K/K× → C× is a continuous Hecke character, ν is a Haar measure on A×K and φ ∈ S(AK).
De�ne

ζ(φ, χ, ν, s) =

∫
A×K

φ(x)χ(x)|x|sAKdνx

Since Â× ∼=
∏′
{O×,⊥v } K̂

×
v we may write χ = ⊗χv where χv : K×v → C× is unrami�ed at all but �nitely

many v. By de�nition φ = ⊗φv and write ν = ⊗νv where νv is a Haar measure on K×v with the property
that νx(O×v ) = 1 for almost all v. Then

ζ(φ, χ, ν, s) =
∏

ζ(φv, χv, νv, s)
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which converges for Re s > t+ 1 where |χv| = |x|tvKv for tv ≤ t a real number. Such a t can always be found

if χ(K×) = 1, i.e., χ : A×K/K× → C× is a continuous Hecke character.

Theorem 8.7. The integral ζ(φ, χ, ν, s) satis�es the functional equation

ζ(φ, χ, ν, s) = ζ(Fµ,ψφ, χ−1, ν, 1− s)

It has analytic continuation to C unless χ = | · |s0AK in which case it has a simple pole at s = −s0 with residue

−ν1(A1
K/K

×)φ(0) and a simple pole at s = 1 − s0 with residue ν1(A1
K/K)Fµ,ψ(φ)(0). Here ν1 on A1

K is
the Haar measure such that the quotient measure on A×K/A1

K
∼= (0,∞) is the measure dt/t, while the Haar

measure on A1
K/K

× is the quotient measure by the discrete Haar measure on K×.

Proof. See [Tat67, Main Theorem 4.4.1].

Corollary 8.8. If K is a number �eld and χ : A×K/K× → C× is a continuous Hecke character then∏
v

γ(χv, ψv, µv, s) = 1.

Proof. This is immediate from Theorem 8.7 and Proposition 8.3.

8.5 Global L-functions and ε-factors

Let χ : A×K/K× → C× be a continuous Hecke character and write χ = ⊗χv. De�ne

L(χ, s) =
∏
v

L(χv, s)

Write
ε(χ, s) =

∏
ε(χv, ψv, µv, s)

which does not depend on ψ or µ. Choose ν such that νv = dx
|x| if v | R, νv = 2dxdy

π
√
x2+y2

for v | C and

νv(O×v ) = 1 for v -∞. Choose µv as in Lemma 8.1.

Theorem 8.9. The function L(χ, s) has analytic continuation to C unless χ = | · |s0AK in which case it

has a simple pole at s = −s0 with residue −ν1(A1
K/K

×) and a simple pole at s = 1 − s0 with residue

ν1(A1
K/K

×)
√
|DK |

−1
where DK is the discriminant of K/Q. Moreover

L(χ, s) = ε(χ, s)L(χ−1, 1− s)

Proof. Let S be the �nite set of places such that v | ∞ or χv is rami�ed or kerψv 6= Ov or µv(Ov) 6= 1
or ν(O×v ) 6= 1. For every place v choose φv such that ζ(φv, χv, νv, s) = L(χv, s). In particular, for v /∈ S,
φv = charOv by Proposition 8.2 and in this case we compute

(Fψv,µvφv)(x) =

∫
Kv

charOv (y)ψv(xy)dµv,y =

∫
Ov
ψv(xy)dµv,y

=

{
µv(Ov) ψv(x) = 1

0 ψv(x) 6= 1

where kerψv = Ov since ψv is unrami�ed for v /∈ S by choice of S. Therefore Fψv,µvφv = µv(Ov)φv = φv.
Then for v /∈ S, Fµv,ψvφv = charOv , ζ(Fµv,ψvφv, χ−1

v , νv, 1− s) = L(χ−1
v , 1− s) and ε(χv, ψv, µv, s) = 1.

Thus

1 =
ζ(φ, χ, ν, s)

L(χ, s)
=
∏
v∈S

ζ(φv, χv, νv, s)

L(χv, s)

ζ(Fµ,ψφ, χ−1, ν, 1− s)
L(χ−1, 1− s)

=
∏
v∈S

ζ(Fψv,µvφv, χ−1
v , νv, 1− s)

L(χ−1
v , 1− s)
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and so

L(χ−1, 1− s)ε(χ, s)
L(χ, s)

=
ζ(Fµ,ψφ, χ−1, ν, 1− s)

∏
v∈S

L(χ−1
v ,1−s)

ζ(Fµv,ψvφv,χ
−1
v ,1−s)

∏
v∈S ε(χv, ψv, µv, s)

ζ(φ, χ, ν, s)
∏
v∈S

L(χv,s)
ζ(φv,χv,νv,s)

=
ζ(Fµ,ψφ, χ−1, ν, 1− s)

ζ(φ, χ, ν, s)

∏
v∈S

ζ(φv, χv, νv, s)

ζ(Fµv,ψvφv, χ−1
v , 1− s)

ε(χv, ψv, µv, s)L(χ−1
v , 1− s)

L(χv, s)

= 1

Since L(χ, s) = ζ(φ, χ, ν, s), L(χ, s) is analytic unless χ = | · |s0AK for some s0 in which case it has simple poles
at s = −s0 and s = 1− s0.

It remains to compute the residues. By Theorem 8.7 the residue at −s0 is −ν1(A1
K/K

×)φ(0) and the
residue at 1 − s0 is ν1(A1

K/K
×)Fµ,ψ(φ)(0) so it su�ces to compute φ(0) and Fµ,ψ(φ)(0). Recall from

Proposition 8.2 that for χv = 1 which is unrami�ed we can choose φv = charOv for all v - ∞. When v | R
then φv(x) = e−πx

2

and when v | C then φv(x + iy) = e−π(x2+y2). In particular φ(0) =
∏
φv(0) = 1 as

desired.
It remains to show that Fµ,ψ(φ)(0) =

√
|DK |

−1
. But for v | R we have chosen φv(x) = e−πx

2

, ψv(x) =
e2πix and µv = dx for which

Fµv,ψvφv(0) =

∫
R
e−πx

2

dx = 1

For v | C we have chosen φv(x+ iy) = e−2π(x2+y2), ψv(x+ iy) = e4πix and µv = 2dxdy for which

Fµv,ψvφv(0) =

∫
C
e−2π(x2+y2)2dxdy = 1

For v -∞ we only need to look at χv(x) = |x|s0v which is unrami�ed and since ν(O×v ) = 1 we have φv = charOv
and we have already computed the Fourier transform

Fµv,ψvφv(0) = µv(Ov) = [D−1
Kv/Qp : Ov]−1/2

where the last equality follows from Lemma 8.1. Therefore

Fµ,ψ(φ)(0) =
∏
v-∞

[D−1
Kv/Qp : Ov]−1/2

=
∏
v-∞

(NKv/QpDKv/Qp)−1/2

=
√
|DK |

−1

as desired.

8.6 Applications

Theorem 8.10 (Analytic class number formula). Let K be a number �eld and let 1 denote the trivial Hecke
character of K. Show that L(1, s) has a simple pole at s = 1 with residue

lim
s→1

(s− 1)L(1, s) =
2nhKRK

wK
√
|DK |

where n is the number of in�nite places of K, hK = |Cl(K)|, RK is the regulator of K (de�ned as the
absolute value of the rank of the matrix (log(|ui|v))i,v as ui ranges through a set of generators of O×K and
v | ∞), wK = |µ∞(K)| and DK is the discriminant of K/Q.
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Proof. Theorem 8.9 shows that L(1, s) has a simple pole with residue ν1(A1
K/K

×)
√
|DK |

−1
so we just need

to compute this volume. Recall from Theorem 2.1 the exact sequence

0→ K1
∞

∏
v-∞

O×v /O×K → A1
K/K

× → Cl(K)→ 0

and that ν1 is the quotient measure on A1
K/K

× induced from the Haar measure on A1
K coming from ν on

A×K by the discrete measure on K× ⊂ A1
K . This gives

ν1(A1
K/K

×) = ν1(K1
∞

∏
v-∞

O×v /O×K)ν1(Cl(K)) = hKν
1(K1

∞

∏
v-∞

O×v /O×K)

Also recall the exact sequence

0→
∏
v|R

{±1}
∏
v|C

S1
∏
v-∞

O×v /µ∞(K)→ K1
∞

∏
v-∞

O×v /O×K → ∆∞/ logO×K → 0

Writing ν1 for the measure on

K1
∞

∏
v-∞

O×v /O×K ⊂ A1
K/K

×

and for the subset measure on
∏
v|R{±1}

∏
v|C S

1
∏
v-∞O×v /µ∞(K) we get the quotient measure ν1 on

∆∞/ logO×K which gives

ν1(K1
∞

∏
v-∞

O×v /O×K) = ν1(
∏
v|R

{±1}
∏
v|C

S1
∏
v-∞

O×v /µ∞(K))ν1(∆∞/ logO×K)

What are the measures on the kernel and image? If v | R then we have

0→ {±1} → R× → R→ 0

via x 7→ log |x|. The measure on R× is νv = dx/|x| = d log |x| and so the measure on the image R is dx. If
v | C then

0→ S1 → C× → R→ 0

via z 7→ log |z|C. Recall that νv = 2dxdy
π(x2+y2) which in polar coordinates x = r cos θ and y = r sin θ becomes

νv = 2rdrdθ
πr2 = 2drdθ

πr = dθd log r2

π and so we can put the measure dθ/π on S1 yielding the measure dx on the
quotient R.

This produces the standard Lebesgue measure on ∆∞ and so the volume of ∆∞/ logO×K is precisely
RK . The volume of

∏
v|R{±1}

∏
v|C S

1
∏
v-∞O×v is 2n where n is the number of in�nite places. Putting

everything together gives

ν1(A1
K/K

×) =
2nhKRK
wK

The following section was not covered in lecture

Corollary 8.11. Let ζK be the Dedekind ζ-function of K. Show that

lim
s→1

(s− 1)ζK(s) =
2r(2π)shKRK

wK
√
|DK |

where r, hK , RK and wK are as in Theorem 8.10, 2s is the number of non-real embeddings K ↪→ C,
hK = |Cl(K)| and DK is the discriminant of K/Q.
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Proof. Note that if r1 is the number of real places and r2 is the number of complex places then

L(1, s) =
(
π−s/2Γ(s/2)

)r1 (
2(2π)−sΓ(s)

)r2
ζK(s)

and the result follows from Theorem 8.10 and the fact that

ress=1 L(1, s) = π−r2 ress=1 ζK(s)

Theorem 8.12 (Strong multiplicity one for characters). Let K be a number �eld and χ1, χ2 : A×K/K× → C×
be two continuous Hecke characters such that χ1,v = χ2,v for almost all v. Then χ1 = χ2.

Proof. Let χ = χ1χ
−1
2 such that χv = 1 for v /∈ S where S is a �nite set of places which, by assumption,

does not include the in�nite places. Then

L(χ, s) =
∏
v∈s

L(χv, s)
∏
v/∈S

L(1v, s)

= L(1, s)
∏
v∈S

L(χv, s)

L(1v, s)

If χv is unrami�ed let αv = χv($v) and otherwise let αv = 0. Then L(χv, s) = (1− αvq−sv )−1 and so

L(χ, s) = L(1, s)
∏
v∈S

1− q−sv
1− αvq−sv

But each
1−q−sv

1−αvq−sv
is nonzero at s = 0 and s = 1. Thus L(χ, s) has a pole at s = 0 and s = 1 which implies,

by Theorem 8.9, that χ = 1.

End of section not covered in lecture

Lecture 22
2013-05-22

9 Hecke theory for Galois representations

9.1 Global theory

Let K/Q be a �nite extension and ρ : GK → GL(n,C) be a continuous Galois representation. We have
already de�ned

L∞(ρ, s) =
∏
v-∞

det(1− ρ(Frobv)q
−s
v |ρIKv )−1

Lemma 9.1. Let K be a number �eld and L/K a �nite extension.

1. The function L∞(−, s) extends to virtual representations. In particular, if ρ is a virtual representation
such that ρ = 0 then L∞(ρ, s) = 1.

2. If ρ : GL → GL(n,C) then
L∞(IndKL ρ, s) = L∞(ρ, s)
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Proof. For the �rst part, note that ρ being continuous will have open kernel of the form GL for L/K �nite
Galois. Thus ρ : GL/K → GL(n,C). Maschke's theorem then implies that ρ is completely reducible and
so we only need to check that L∞(ρ1 ⊕ ρ2, s) = L∞(ρ1, s)L

∞(ρ2, s) which is immediate from the fact that
det(1− ρ1 ⊕ ρ2(Frobv)X|(ρ1 ⊕ ρ2)Iv ) = det(1− ρ1(Frobv)X|ρ1) det(1− ρ1(Frobv)X|ρ1).

The second part requires some work. See for example [Neu99, Chapter VII, Proposition 10.4 (iv)]. The
idea is to use the decomposition (IndKL ρ)|GKv = ⊕w|v IndKvLw(ρ|GLw ) and then to express the action of Frobv
on the inertial invariants of this space as a matrix in terms of the action of Frobw on the inertial invariants
of the ρ|GLw .

Theorem 9.2. There exists L∞(ρ, s), and ε(ρ, s) of the form A ·Bs such that if L(ρ, s) = L∞(ρ, s)L∞(ρ, s)
then

L(ρ, s) = ε(ρ, s)L(ρ∗, 1− s)

where ρ∗ = Hom(ρ,C) with action (ρ∗(g)f)(v) = f(ρ(g−1)(v)).

Proof. If χ : GK → C× is a continuous character then χ factors through Gab
K
∼= A×K/K×K

×,0
∞ and therefore

get χ : A×K/K× → C×. It is easy to see that L∞(χ, s) with χ a Galois character is L∞(χ, s) with χ a Hecke
character. By Theorem 8.9 L(χ, s) = ε(χ, s)L(χ−1, 1− s).

As ρ is continuous, there exists a �nite Galois extension L/K such that GL ⊂ ker ρ and so ρ factors
through GL/K → GL(n,C). Brauer's theorem implies the existence of cyclic extensions L/Li/K and charac-

ters χi : GL/Li → C× such that ρ =
∑
mi IndKLi χi in the Grothendieck group of continuous representations

of GK .
Let L∞(ρ, s) =

∏
L∞(IndKLi χi, s)

mi in which case L(ρ, s) =
∏
L(χi, s)

mi . Let ε(ρ, s) =
∏
ε(χi, s)

mi .
Then

L(ρ, s) =
∏

L(χi, s)
mi

=
∏

ε(χi, s)
miL(χ−1

i , 1− s)mi

= ε(ρ, s)L(ρ∗, 1− s)

as desired.
It remains to show that L(ρ, s) (and therefore ε(ρ, s)) is well-de�ned, i.e., if

∑
ni IndKLi χi = 0 as a

virtual representation, then
∏
L(χi, s)

ni = 1. By Lemma 9.1,
∏
L∞(χi, s)

ni = L∞(
∑
ni IndKLi χi, s) = 1.

Therefore it su�ces to show that
∏
i L∞(χi, s)

ni = 1. We will, in fact, show that for each place v | ∞ of K,∏
i

∏
wi|v L∞(χi,wi , s)

ni = 1 where wi are places of Li lying above v.

First, note that the characters χi are (�nite order) characters of GL/Li and so χi,wi = 1 or σ where σ is

the sign character for real places wi. Next, from
∑
ni IndKLi χi = 0 restricting to GKv we get∑

i

∑
wi|v

ni IndKvLi,wi
χi,wi =

∑
i

∑
wi|v

ni IndKvLi,wi
1 = 0

If v | C then wi | C for all wi and so we deduce that
∑
i ni

∑
wi|v 1 =

∑
i ni[Li : K]1 = 0 which is

equivalent to
∑
ni[Li : K] = 0. At the same time L(χi,wi , s) = L(1, s) = 2(2π)−sΓ(s) and we compute∏

i

∏
wi|v

L(χi,wi , s)
ni =

∏
i

∏
wi|v

(2(2π)−sΓ(s))ni

= (2(2π)−sΓ(s))
∑
i ni[Li:K]

= 1

If v | R denote by I the set of (i, wi) with wi | R and χi,wi = 1, by J the set of (i, wi) such that wi | R
and χi,wi = σ and by H the set of (i, wi) such that wi | C and (necessarily) χi,wi = 1. Then the formula
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∑
i

∑
wi|v ni IndKvLi,wi

1 = 0 becomes∑
(i,wi)∈I

ni · 1 +
∑

(i,wi)∈J

ni · σ +
∑

(i,wi)∈H

ni(1 + σ) = 0

as IndR
C 1 = 1⊕ σ. We deduce that

∑
I ni +

∑
H ni = 0 and

∑
J ni +

∑
H ni = 0. We compute∏

i

∏
wi|v

L(χi,wi , s)
ni =

∏
(i,wi)∈I

L(1R, s)
ni

∏
(i,wi)∈J

L(σ, s)ni
∏

(i,wi)∈H

L(1C, s)
ni

= L(1R, s)
∑
I niL(σ, s)

∑
J niL(1C, s)

∑
H ni

= L(1R, s)
−

∑
H niL(σ, s)−

∑
H niL(1C, s)

∑
H ni

=

(
L(1C, s)

L(1R, s)L(σ, s)

)∑
H ni

= 1

where we used the identity(
π−s/2Γ(s/2)

)(
π−(s+1)/2Γ((s+ 1)/2)

)
= 2(2π)−sΓ(s)

in other words L(1R, s)L(σ, s) = L(1C, s).

9.2 Deligne's local ε-factors

Having settled the issue of the existence of ε(ρ, s) for a global ρ : GK → GL(n,C) one is left with the natural
question of de�ning ε(ρv, ψ, µ, s) for ρv : GKv → GL(n,C). Such an ε-factor would encode information about
the rami�cation of ρv and appears naturally in the statement of the local Langlands correspondence.

Theorem 9.3. Let K/Qp be a �nite extension, ψ ∈ K̂ nontrivial and µ a Haar measure on K. There exist
ε(ρ, ψ, µ, s) (of the form A ·Bs) attached to �nite dimensional continuous representations ρ of GK such that:

1. If χ : GK → C× is a character then ε(χ, ψ, µ, s) = ε(χ ◦ rK , ψ, µ, s) as de�ned for characters of K×.

2. ε(ρ1⊕ρ2, ψ, µ, s) = ε(ρ1, ψ, µ, s)ε(ρ2, ψ, µ, s) so ε(−, ψ, µ, s) is multiplicative on the Grothendieck ring.

3. For r ∈ (0,∞), ε(ρ, ψ, rµ, s) = rdim ρε(ρ, ψ, µ, s).

4. For a ∈ K×, ε(ρ, ψ(a · −), µ, s) = det ρ(rK(a))|a|(s−1) dim ρ
K ε(ρ, ψ, µ, s).

5. If L/K is a �nite extension and ρ is a representation of virtual dimension 0 (i.e., ρ =
∑
miρi in the

Grothendieck ring with
∑
mi dim ρi = 0) then ε(IndKL ρ, ψ, µ, s) = ε(ρ, ψ ◦ TrL/K , µ

′, s) for any Haar
measure µ′ of L.

6. Have
ε(ρ, ψ, µ, s) = ε(ρ, ψ, µ, 0) · q−s(cond ρ−dim ρ condψ)

K

7. There exists fρ such that if χ is a character of conductor f ≥ fρ then

ε(ρ⊗ χ, ψ, µ, s) = det ρ(c)−1ε(χ, ψ, µ, s)dim ρ

where c is such that χ(1 + x) = ψ(cx) for vK(x) ≥ df/2e.
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In principle this should follow from the Brauer induction theorem. Indeed ρ trivializes GL for some �nite
Galois extension L/K and thus factors through GL/K . There exist L/Mi/K subextensions and character
χi : GL/Mi

→ C× such that in the Grothendieck ring

ρ− dim ρ · 1 =
∑

ni IndLMi
(χi − 1)

where ni ∈ Z. Thus
ε(ρ− dim ρ · 1, ψ, µ, s) =

∏
ε(χi − 1, ψ ◦ TrMi/K , µi, s)

ni

giving ε(ρ, ψ, µ, s). However, the challenge is to show that this de�nition does not depend on Mi, χi and ni.
In fact there is no current local proof of this fact.

The actual proof will use the global ε-factors of Theorem 9.2 which are known to exist. To do this we
need to go from the local to the global setting and in the process prove results that ensure that choices do
not a�ect the outcome.

Lemma 9.4. Let L/K be a �nite Galois extension of p-adic �elds. There exists a �nite Galois extension
of number �elds E/F , a �nite place v0 of F and a unique place u0 of E such that Fv0 = K and Eu0

= L.
Moreover, GE/F ∼= GL/K .

Proof. Since Q ⊂ Qp one may choose a number �eld E0 ⊂ L which is dense in L. Let E be the composite
of {σ(E0)|α ∈ GL/K} and let F = E ∩K. Since E ⊂ L and F ⊂ K are dense, GE/F = GL/K . The dense
embedding F ⊂ K de�nes a �nite place v0 of F with Fv0 = K and the dense embedding E ⊂ L de�nes a
�nite place u0 of E with Eu0

= L. Now u0 is �xed by GL/K = GE/F and so u0 is the only place of E above
v0.

Lemma 9.5. Let L/K be a �nite Galois extension of p-adic �elds and let e = eL/K be the rami�cation
index. Then for x ∈ OL one has

NL/K(1 + x) ≡ 1 + TrL/K(x) (mod m
d2vL(x)/ee
K )

Proof. If σ ∈ GL/K then vK(σ(x)) = vK(x) = e−1vL(x) and therefore if I ⊂ GL/K is a set of cardinality i

then vK(
∏
σ∈I σ(x)) = i

evL(x). If i ≥ 2 then

vK(
∑

I⊂GL/K ,|I|=i

∏
σ∈I

σ(x)) ≥ i

e
vL(x) ≥

⌈
2vL(x)

e

⌉
and so

NL/K(1 + x) =
∏

σ∈GL/K

(1 + σ(x))

= 1 + TrL/K(x) +

[L:K]∑
i=2

∑
I⊂GL/K ,|I|=i

∏
σ∈I

σ(x)

≡ 1 + TrL/K (mod m
d2vL(x)/ee
K )

Lecture 23
2013-05-24

Lemma 9.6. Let L/K/Qp be �nite extensions. Let `L/K be the smallest integer such that G
`L/K
K ⊂ GL.

Then for y ≥ `L/K ,

φ−1
L/K(y) = eL/Ky − vL(DL/K)

where recall that φL/K is the rami�cation function de�ned as φL/K(x) =

∫ ∞
0

[GL/K,0 : GL/K,u]−1du when

L/K is Galois, and φL/K = φE/K ◦ φ−1
E/L where E is the Galois closure of L/K in the non-Galois case.
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Proof. Start with L/K Galois. The graph of the function φL/K is piece-wise linear with in�ection points at

the jumps in the rami�cation �ltration. In particular, for x ≥ φ−1
L/K(`L/K), the slope of the graph of φL/K

is e−1
L/K . This implies that for y = φL/K(x) ≥ `L/K ,

φ−1
L/K(y) = eL/Ky + φ−1

L/K(`L/K)− eL/K`L/K

Let k = φ−1
L/K(`L/K) ∈ Z. The we need to show that eL/KφL/K(k)− k = vL(DL/K). But

eL/KφL/K(k)− k =

∫ k

0

eL/Kdu

[GL/K,0 : GL/K,u]
− k

=

∫ k

0

|GL/K,u|du− k

=

k∑
i=1

(|GL/K,i| − 1)

= vL(DL/K)

Now suppose L/K is not Galois and let E be the Galois closure. For y >> 0 one has

y = φ−1
E/L(φE/L(y)) = eE/LφE/L − vE(DE/L)

and so

φ−1
L/K(y) = φE/L(φ−1

E/K(y))

=
φ−1
E/K(y) + vE(DE/L)

eE/L

=
eE/Ky − vE(DE/K) + vE(DE/L)

eE/L

= eL/Ky − vL(DL/K)

where the last equality follows from DE/K = DE/LDL/K . To show that φ−1
L/K(y) = eL/Ky − vL(DL/K) for

y ≥ `L/K it su�ces to show that (φ−1
L/K)′(`L/K) = eL/K where ()′ means right derivative. Using the chain

rule we get

(φ−1
L/K)′(`L/K) = (φE/L ◦ φ−1

E/K)′(`L/K)

=
φ′E/L(φ−1

E/K(`L/K))

φ′E/K(φ−1
E/K(`L/K))

=
[IE/K : GE/K,φ−1

E/K
(`L/K)]

[IE/L : GE/L,φ−1
E/K

(`L/K)]

=
eL/K |GE/L,φ−1

E/K
(`L/K)|

|GE/K,φ−1
E/K

(`L/K)|

as φ′L/K(x) = 1/[IL/K : GL/K,x] by de�nition. Thus it is enough to show that

|GE/K,φ−1
E/K

(`L/K)| = |GE/L,φ−1
E/K

(`L/K)|
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But GE/K,φ−1
E/K

(`L/K) = G
`L/K
E/K while GE/L,φ−1

E/K
(`L/K) = G

φE/L(φ−1
E/K

(`L/K))

E/L = G
φ−1
L/K

(`L/K)

E/L . But Herbrand

implies that

G
φ−1
L/K

(`L/K)

E/L = G
φL/K(φ−1

L/K
(`L/K))

E/K ∩GE/L = G
`L/K
E/K ∩GE/L = G

`L/K
E/K

where the last equality follows from the fact that by de�nition of `L/K we have G
`L/K
E/K ⊂ GE/L.

Lemma 9.7. Let L/K be a �nite extension of p-adic local �elds and let α : K× → C× be a continuous
character of conductor cond(α) > `L/K . Then

cond(α ◦NL/K) = φ−1
L/K(cond(α))

Proof. Let m = cond(α◦NL/K) the smallest integer such that α◦NL/K vanishes on UmK . Via the local Artin

map m is the smallest integer such that α ◦ NL/K ◦ r−1
L vanishes on GmL . But α ◦ NL/K ◦ r−1

L = α ◦ r−1
K

which would then have to vanish on GmL with m smallest with this property. Herbrand's theorem says

that GuL = G
φL/K(u)

K ∩ GL and so m is the smallest integer such that α ◦ r−1
K is trivial on G

φL/K(m)

K ∩
GL = G

φL/K(m)

K ∩ G`L/KK = G
max(φL/K(m),`L/K)

K . This implies that max(φL/K(m), `L/K) ≥ cond(α). Since
cond(α) > `L/K we get that φL/K(m) ≥ cond(α) and m is minimal with this property. The result follows

since φ−1
L/K(`L/K) ∈ Z from the previous lemma.

Lecture 24
2013-06-05

Lemma 9.8. Let L/K be a �nite Galois extension of p-adic �elds. There exists an integer nL/K which
depends only on L/K with the following property. Suppose α : K× → C× is a continuous character of
conductor n ≥ nL/K and a = bn/2c − vL(DL/K). Let ψ be a nontrivial additive character of K and let
ca ∈ K from the proof of Proposition 8.6 such that α(1 + x) = ψ(cax) for x ∈ K with vK(x) ≥ n − a. If
L/M/K is a subextension and χ is any character of GL/M then

ε(χ · α ◦NM/K , ψ ◦ TrM/K , µ, s) = χ(ca)−1ε(α ◦NM/K , ψ ◦ TrM/K , µ, s)

for any Haar measure µ on M .

Proof. We will apply the stability Proposition 8.6 for χ1 = χ, χ2 = 1 and η = α ◦NM/K . Denote by ca,η,ψ
such that η(1 + x) = ψ(ca,η,ψx) for vK(x) ≥ cond(η)− a where a ≤ cond(η)/2.

Let
nL/K ≥ max(`M/K , 2(vL(DL/K) + vK(DM/K) + `L/M/eM/K))

as M varies among the subextensions L/M/K. We will show that if χ is a character of GL/M then for
b = eM/Ka − vM (DM/K) we have cond(χ), cond(1) ≤ b ≤ cond(α ◦NM/K)/2. Then Proposition 8.6 would
imply that

ε(χ · α ◦NM/K , ψ ◦ TrM/K , µ, s) = χ(cb,α◦NM/K ,ψ◦TrM/K )−1ε(α ◦NM/K , ψ ◦ TrM/K , µ, s)

and the Lemma would follow if we could check that

cb,α◦NM/K ,ψ◦TrM/K = ca,α,ψ

From n ≥ nL/K ≥ 2(vL(DL/K) + vK(DM/K) + `L/M/eM/K) we deduce that b ≥ `L/M . But if χ is a

character of GL/M it will be trivial on G
`L/M
M ⊂ GL and so cond(χ) ≤ `L/M ≤ b as desired. To check that

b ≤ cond(α ◦NM/K)/2 it su�ces to check that

b = eM/K(n/2− vL(DL/K))− vM (DM/K) ≤ cond(α ◦NM/K)/2 = φ−1
M/K(n)/2
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where the last equality follows from Lemma 9.7 as cond(α) = n ≥ nL/K ≥ `M/K . This inequality is
equivalent to

φ−1
M/K(n)/2 ≥ eM/K(n/2− vL(DL/K))− vM (DM/K)

(eM/Kn− vM (DM/K))/2 ≥ eM/K(n/2− vL(DL/K))− vM (DM/K)

eM/KvL(DL/K) + vM (DM/K)/2 ≥ 0

which is clear.
It remains to show that cb,α◦NM/K ,ψ◦TrM/K = ca,α,ψ. Let x ∈M such that vM (x) ≥ cond(α ◦NM/K)− b.

Then vM (x) ≥ eM/K(n − a) + vM (DM/K) and so vK(TrM/K(x)) ≥ vK(x) ≥ n − a > 0. By Lemma 9.5,
NM/K(1 + x) = 1 + TrM/K(x) + y where vK(y) ≥ 2vM (x)/eM/K ≥ 2(n− a) ≥ n. Therefore

α(NM/K(1 + x)) = α(1 + TrM/K(x))α

(
1 +

y

1 + TrM/K(x)

)
= α(1 + TrM/K(x))

= ψ(ca,α,ψ TrM/K(x))

= ψ(TrM/K(ca,α,ψx))

since 1+ y
1+TrM/K(x) ∈ U

n
K ⊂ kerα and vK(TrM/K(x)) ≥ n−a. By de�nition this implies that cb,α◦NM/K ,ψ◦TrM/K =

ca,α,ψ and the result of the lemma follows.

Proof of Theorem 9.3. Any continuous Galois representation ρ will be trivial on GL for some �nite Galois
extension L/K. For a �xed �nite Galois extension L/K and any representation ρ of GL/K we will construct
ε(ρ, ψ, µ, s).

Let E/F be the �nite Galois extension from Lemma 9.4. Since GL/K ∼= GE/F every representation ρ of
GL/K is also a representation ρ̃ of GE/F .

Let S be the �nite set of places of F containing the places where E/F rami�es and the place v0. For each
v ∈ S − v0 choose a �nite order character αv of F×v of conductor nv ≥ nEu/Fv for a (any) place u | v of E.

For v = v0 let αv = 1. By Theorem 5.5 there exists α a continuous character of A×F /F× such that α|Fv = αv

for v ∈ S. Choose ψF a nontrivial character in ÂF /F such that ψF,v0 = ψ and µF a Haar measure on AF
such that µF (AF /F ) = 1, µF,v0 = µ and µF,v(Ov) = 1 for v /∈ S. When v ∈ S − v0 let cv ∈ F×v such that
αv(1 + x) = ψv(cvx) for v(x) ≥ dnv/2e − v(DEu/Fv ) (see Lemma 9.8). When v /∈ S − v0 choose cv = 1 and

let c = (cv) ∈ A×F .
Suppose L/M/K is a subextension with corresponding global subextension E/H/F and ρ is a represen-

tation of GL/M giving ρ̃ a representation of GE/H . Let SH be the places of H over places in S and again we
denote by v0 the unique place of H over v0. Let µM be a Haar measure on M and let µH be a Haar measure
on AH giving volume 1 to AH/H and such that µH,v0 = µM . We will de�ne

ε(ρ, ψ◦TrM/L, µM , s) = ε(ρ̃·α◦NH/F , s) det ρ̃(rH(c))

( ∏
w∈SH−v0

ε(αv ◦NHw/Fv , ψF,v ◦ TrHw/Fv , µH,w, s)

)− dim ρ

where v denotes the place of F under w. A priori ε(ρ, ψ ◦ TrM/K , µM , s) depends on α. We will check the
following four facts:

1. if χ is a character of GL/M then ε(χ, ψ ◦ TrM/K , µM , s) = ε(χ ◦ rM ,Tr ◦TrM/K , µM , s) as de�ned for
characters,

2. ε(−, ψ ◦ TrM/K , µM , s) extends to the Grothendieck group,

3. if ρ has virtual dimension 0 then ε(ρ, ψ ◦ TrM/L, µM , s) does not depend on µM
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4. if L/M1/M2/K are subextensions and ρ is a virtual representation of GL/M1
of virtual dimension 0

then for any choices of µM1
and µM2

have ε(IndM2

M1
ρ, ψ ◦ TrM2/K , µM2

, s) = ε(ρ, ψ ◦ TrM1/K , µM1
, s).

Independence of α: Use Brauer induction to �nd L/Li/K, characters χi of GL/Li and integers ni such

that ρ− dim ρ · 1 =
∑
ni IndKLi(χi − 1). Using properties 2 and 5 we deduce

ε(ρ, ψ, µ, s)

ε(1, ψ, µ, s)dim ρ
=
∏(

ε(χi, ψ ◦ TrLi/K , µi, s)

ε(1, ψ ◦ TrLi/K , µi, s)

)ni
and independence of α is clear.

Lecture 25
2013-06-07

Property 1 and fact 1: We now check that if L/M/K is a subextension and χ is a character of GL/M
then ε(χ, ψ ◦ TrM/K , µM , s) = ε(χ ◦ rM ,Tr ◦TrM/K , µM , s). This implies property 1.

By construction

ε(χ, ψM , µM , s) = ε(χ̃ · α ◦NH/F , s)χ̃(rH(c))
∏

w∈SH−v0

ε(αv ◦NHw/Fv , ψH,w, µH,w, s)

where SH are the places of H over places in S and again we denote by v0 the unique place of H over v0;
here v is the place of F under w, and ψH = ψF ◦ TrH/F . Now SH contains all the places of rami�cation of
E/H and χ̃, being a character of GE/H , can only ramify at w ∈ SH . Therefore by de�nition

ε(χ̃ · α ◦NH/F , s) =
∏
w∈SH

ε(χ̃w · αv ◦NHw/Fv , ψH,w, µH,w, s)

where recall that αv0 = 1 and so αv0◦NHv0/Fv0 = 1 and cv0 = 1 by choice. Since χ̃(rH(c)) =
∏
w∈SH χ̃w(rHw(cv))

we need to check that

ε(χ̃v0 , ψH,v0 , µH,v0 , s) = ε(χ̃v0 , ψH,v0 , µH,v0 , s)χ̃v0(1)

×
∏

w∈SH−v0

ε(χ̃wαv ◦NHw/Fv , ψH,w, µH,w, s)χ̃w(cv)ε(αv ◦NHw/Fv , ψH,w, µH,w, s)
−1

for which is is enough to show that ε(χ̃wαv ◦NHw/Fv , ψH,w, µH,w, s)χ̃w(cv) = ε(αv ◦NHw/Fv , ψH,w, µH,w, s).
Since cond(αv) = nv ≥ nEu/Lv this is implied by Lemma 9.8.

Property 2 and fact 2: The fact that ε(ρ, ψ ◦ TrM/K , µM , s) extends to the Grothendieck group is
automatic from the fact that L(−, s), det and dim extend.

Property 3 and fact 3: We will show that ε(ρ, ψ ◦TrM/K , rµM , s) = rdim ρε(ρ, ψ ◦TrM/K , µM , s) which
also implies that if ρ has virtual dimension 0 then ε(ρ, ψ ◦ TrM/K , µM , s) does not depend on µM .

Recall that µH = ⊗µH,v gives volume 1 to AH/H. Let r > 0 and µH,r = ⊗µH,r,w with µH,r,v0 = rµH,v0 ,
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µH,r,u = r−1µH,u for some u ∈ SH − v0 above t and µH,r,w = µH,w for w 6= v0, u. Then

ε(ρ, ψ ◦ TrM/K , rµM , s)

ε(ρ̃α ◦NH/F , s) det ρ(rH(c))
=

( ∏
w∈SH−v0

ε(αv ◦NHw/Fv , ψF,v ◦ TrHw/Fv , µH,r,w, s)

)− dim ρ

=
(
ε(αt ◦NHu/Ft , ψF,t ◦ TrHu/Ft , r

−1µH,u, s)×

×
∏

w∈SH−{v0,u}

ε(αv ◦NHw/Fv , ψF,v ◦ TrHw/Fv , µH,w, s)

− dim ρ

= rdim ρ

( ∏
w∈SH−v0

ε(αv ◦NHw/Fv , ψF,v ◦ TrHw/Fv , µH,w, s)

)− dim ρ

=
rdim ρε(ρ, ψ ◦ TrM/K , µM , s)

ε(ρ̃α ◦NH/F , s) det ρ(rH(c))

by Theorem 8.4.
Property 4: We have seen that

ε(ρ, ψ(a · −), µ, s) = ε(1, ψ(a · −), µ, s)dim ρ
∏(

ε(χi, ψ ◦ TrLi/K(a · −), µi, s)

ε(1, ψ ◦ TrLi/K(a · −), µi, s)

)ni
= (|a|(s−1) dim ρ

K

∏
χi(rLi(a))ni)ε(1, ψ, µ, s)dim ρ

∏(
ε(χi, ψ ◦ TrLi/K , µi, s)

ε(1, ψ ◦ TrLi/K , µi, s)

)ni
= det ρ(rK(a))|a|(s−1) dim ρ

K ε(ρ, ψ, µ, s)

by Corollary 8.5 and the fact that if ρ− dim ρ · 1 =
∑
ni IndKLi(χi − 1) then

det ρ ◦ rK =
∏

χi(cor∨Li/K ◦rK)ni =
∏

(χi ◦ rLi)ni

Property 5 and fact 4: Suppose L/M1/M2/K corresponds to E/H1/H2/F and ρ is a virtual dimension
0 representation of GL/M1

giving ρ̃ of GE/H1
. Then

ε(IndM2

M1
ρ, ψ ◦ TrM2/K , µ, s) = ε(IndH2

H1
ρ̃ · α ◦NH2/F , s) det IndH2

H1
ρ̃(rH2

(c))

= ε(IndH2

H1
(ρ̃ · α ◦NH1/F ), s) det ρ̃(cor∨H1/H2

◦rH2
(c))

= ε(ρ̃ · α ◦NH1/F , s) det ρ̃(rH1
(c))

= ε(ρ, ψ ◦ TrM1/K , µM1
, s)

since dim IndM2

M1
ρ = [M1 : M2] dim ρ = 0 and det IndH2

H1
ρ̃ = ρ̃ ◦ cor∨H1/H2

and cor∨H1/H2
◦rH2 = rH1 .

Certainly global L-functions are inductive in that if ρ is a representation of GE/H1
then L(IndH2

H1
ρ, s) =

L(ρ, s) and therefore ε(IndH2

H1
ρ, s) = ε(ρ, s). Moreover, det IndH2

H1
ρ = and dim IndH2

H1
ρ = [H1 : H2] dim ρ.

Note that while the character ψ does not seem to appear in the formulae, it does as c is de�ned in terms of
ψ.

Property 6: Let n(ρ, ψ) be such that ε(ρ, ψ, µ, s) = ε(ρ, ψ, µ, 0)q
−n(ρ,ψ)s
K . We know from Theorem 8.4

that n(χ, ψ) = cond(χ)− cond(ψ). Also property 2 implies that n(ρ1 ⊕ ρ2, ψ) = n(ρ1, ψ) + n(ρ2, ψ) and so
n(−, ψ) extends to the Grothendieck group. Now suppose L/K is a �nite extension and χ is a character

of L×. Then property 5 gives n(IndKL (χ − 1), ψ) = fL/Kn(χ − 1, ψ ◦ TrL/K) since qL = q
fL/K
K . Thus if
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ρ− dim ρ · 1 =
∑
ni IndKLi(χi − 1) then

n(ρ, ψ) = (dim ρ)n(1, ψ) +
∑

nin(IndKLi(χi − 1), ψ)

= (dim ρ)n(1, ψ) +
∑

nifLi/Kn(χi − 1, ψ ◦ TrLi/K)

= −(dim ρ) cond(ψ) +
∑

nifLi/K cond(χi)

because n(1, ψ) = − cond(ψ)+cond(1) = − cond(ψ) and n(χ−1, ψ◦TrL/K) = cond(χ)−cond(1) = cond(χ).
The result now follows from the computation

cond(ρ) = cond(ρ− dim ρ · 1)

=
∑

ni cond(IndKLi(χi − 1))

=
∑

nifLi/K(cond(χi) + vLi(DLi/K)− cond(1)− vLi(DLi/K)

=
∑

nifLi/K cond(χi)

using the fact that cond(IndKL ρ) = fL/K(cond(ρ) + dim ρvL(DL/K)).

Property 7: As before if ρ− dim ρ · 1 =
∑
ni IndKLi(χi − 1) then

ε(ρ⊗ χ, ψ, µ, s) = ε(χ, ψ, µ, s)dim ρ
∏(

ε(χi · χ ◦NLi/K , ψ ◦ TrLi/K , µi, s)

ε(χ ◦NLi/K , ψ ◦ TrLi/K , µi, s)

)ni
If cond(χ) = f ≥ nL/K then Lemma 9.8 gives ε(χi · χ ◦NLi/K , ψ ◦ TrLi/K , µi, s) = χi(c)

−1ε(χ ◦NLi/K , ψ ◦
TrLi/K , µi, s). Thus

ε(ρ⊗ χ, ψ, µ, s) = ε(χ, ψ, µ, s)dim ρ
∏

χi(rLi(c))
−ni

= ε(χ, ψ, µ, s)dim ρ
∏

χi(cor∨Li/K ◦rK(c))−ni

= ε(χ, ψ, µ, s)dim ρ det ρ(rK(c))−1

as desired.
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