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1 Local Class Field Theory

1.1 Main results

(1.1.1) Have an upper ramification filtration GY% for « > —1 such that Gx' = G, G(K_l’o] = Ik, Gg?’l] =
Pg. If L/K is an algebraic extension then Gl k= G% /(GY% NGL).

(1.1.2) The invariant map is an isomorphism invg : Br(K) = HZ(GK,FX) >~ Q/Z such that if L/K then
invg ocor = invy, and invy ores = [L : K]invg.
(1.1.3) Tate duality. If M is a finite G x-module let M* = Hom(M,Q/Z). The Galois group Gk acts on
m* € M* via (gm*)(m) = m*(g~'m). Write M (1) = M ®qz ptoo. Write Hi(Gx, M) = H (G /I, M'%).
Then there exists a perfect pairing

H{(Gy, M) @ H*{(Gx,M*(1)) = H*(Gg,M @ M*(1)) = H*(Gr, jio) = H* (G, K ) — Q/Z
such that HE (G, M)+ = H2- (G, M*(1)).
(1.1.4) The Artin map. For K/Q, finite write Up' = KX, U). = O} and U} = 1 + ()" for n > 1.

There exists a homomorphism rx : K* = W2 such that rg @) = G%*". It has the property that
rr(Npgx) =rp(x) for x € L* and rg(z) = cor¥(rp(z)) for x € K* C L*.

1.2 Application

We will prove Kronecker-Weber for local fields.

Theorem 1.1. The mazimal abelian extension of Q, is Qp(too)-

Proof. Recall that G = Ic  Frob and Wic = Irc x Frob%. Thus G = (I8 )rrob,  Frob’ and I3} 2 Z
and so G&t; is a quotient of Z; x Z which we will show to be equal to G, (u.)/Q, under the reciprocity map.

First, recall Q)" = Q,(w(a)|a € F;) and since p?™ =1 (mod n) if p { n it follows that Q" = Qp(Calpt
n). Next Q,((p) is ramified over Q, and so (, f Q)" and therefore Q)" N Qp(pp=) = Qp. This gives

GQIJ(HOC)/QP = GQP(:“‘POC)/QP x GQEr/QP' 0



2 Glocal Class Field Theory

2.1 Adeles

(2.1.1) If K/Q is a finite extension then K., = K ®gR, KX is the connected component of 1 in KX . For
an embedding v : K < R write v [ R and v : K = C write v | C. Then Koo =[], Kv, KX = [],j00 K&
and K0 =[], (0, 0) [T, c C*.

2.1.2 rite A = » with the restricted product topology. For a finite set of places write
Write A (0,1 Ky with th icted prod logy. For a fini f places S wri
Ks =]],cq Ky and AY = H;gzs,{o,,} K, in which case A = Kg x A3.. Then the ring Ax = HT{O,,} K, has
the product topology, K C Ak is a discrete subgroup and A /K is compact.

v|oco

(2.1.3) Write A} = HT{OUX} K with the restricted product topology. As above A} = K§ x A, The
natural inclusion A% C A is not continuous and in fact the topology on A is the subset topology induced
by the map A% < Ax x Ax which takes z to (z,z71). Write |- |4, : A% — (0,00). Define A} C A% as the
kernel of | - |4,. Then K* C Al is a discrete subgroup, AL C Ak is continuous and AL /K> is compact.

(2.1.4) Strong approximation states that if S # () then K C A% is dense.

2.2 The Dirichlet unit theorem using adeles

Theorem 2.1. Let K/Q be a number field with r real embeddings and s complex embeddings. Then O is
a finitely generated abelian group of rank r 4+ s — 1.

Proof. For a finite set S of places which include the infinite places write Ok [1/5] = {x € K|v(z) > 0,v ¢ S}.
Note that if S = {v | co} then O[1/S]* = OF. We will show that Ok [1/S]* is a finitely generated abelian
group of rank |S| — 1.

Let Clg(K) be the class group of Ok[1/S], i.e., the set of ideals modulo the set of principal ideals. An
element a = (a,) of Ay gives the fractional ideal [T, ¢ 5(w,)?(@) of O [1/5] and the set of fractional ideals is
isomorphic to Ag/Kg [[,45 O, Write K§ = {2 € Ks|[],eg [2o]o = 1} in which case Af /Kg = AL /KL

It is easy to see that Clg(K) = AL /K* K} [1,¢s O which gives the exact sequence

1 K [] 05 /0k(1/8) — Aje/K* — Clg(K) — 1
vgS

Immediately one sees Clg(K) as a quotient of a compact group by an open subgroup and so Clg(K) is finite.

Define A as the kernel of the summation map @&,R — R and write Ag the kernel of ®,csR — R. Then
one has the map log : AL, /K* — A given by (a,) + (log|ayl|,). Clearly [Tgs OF KL — Ag is surjective
and so get an exact sequence

Ky [] 0X/0k[1/8)* = Ag/log Ok[1/8] — 0
vgS

which exhibits Ag/log Ok [1/5]* as the image via a continuous map of an open subgroup of a compact group,
therefore Ag/log Ok[1/S]* is compact. In particular log O [1/5]* is a lattice in the (]S]| — 1)-dimensional
Ag.

We would like to prove that Ok [1/5]* is a finitely generated abelian group of rank |S| — 1. To do this
it is enough to show that the intersection of the kernel of log with Og[1/5]* consists only of torsion. What
is the kernel? The kernel of log on Ak is {(a,) € Ak[lay|, = 1}, ie., [Toree OF x ILr{zl} x I, c St
This is compact and its intersection with K * is compact and discrete, therefore finite. Since it is finite this
intersection must be poo(K), i.e., torsion. O



2.3 Main results
(2.3.1) The global Brauer sequence

0 — Br(K) = @,Br(K,) > Q/Z — 0

is exact where the rightmost map is the sum of the local invariant maps.
Application: a global quaternion algebra over any number field must be nonsplit at an even number of
places. (Used to study Hilbert modular forms.)

(2.3.2) The Artin map rx : A% — G4 has the property that rx(1,...,1,2,1,...) = rk, (r) where z € K}
is placed in position v and rg, is the local Artin map. It gives
. AX X X0 ~ ab

such that 7 (z) = rx (N k(7)) and rx induces an isomorphism G‘Z‘E}K =~ Ag/K*Np kA7 .
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2.4 Conductors

(2.4.1) If K/Q, is a finite extension and V is a continuous complex finite dimensional representation of G
o0

define the conductor cond(V') = / codimy (VS )du. Since the Galois action is continuous, V is fixed by
~1

an open subgroup of Gk and so the integral is finite. For any V, cond(V) € Z>( and cond(V) = 0 if and
only if V' is unramified and cond(V) < 1 if and only if V' is tamely ramified.

(2.4.2) Let K/Q be a finite extension and V be a continuous complex finite dimensional representation of

Gk.
Proposition 2.2. The representation V is almost everywhere unramified.

Proof. By the Brauer induction theorem V = Y n; Indﬁ, x; for finite Galois extensions L; and characters
Xi : G, — C*. It suffices to show the proposition for V' a character x since then V will be unramified at
all finite places where no L; nor x; is ramified. Now x : G2 — C* is continuous and the kernel ker y will

be open in G§> = A% /K> K% and so will contain an open set of the form Ug [l,¢5 OF, where Us C Kg
is an open set. Then y will be unramified at v ¢ S. O

Define the conductor cond(V) = Hwoo(wv)cond(vav) as an ideal of O, the product being finite by
Proposition 2.2. The representation V' is unramified if and only if cond(V') = Ok and it is tamely ramified
if and only if cond(V) is square free.

Since V has a continuous action of Gk, one can find a finite Galois extension L/K such that G, acts
trivially on V. Thus the action of G factors through the discrete action of G k. For every finite place v
of K choose a place w of L. Then

cond(V) = H () 0ndVICGLy /5,

vfoo
where K, is chosen as containing L,,.

Proposition 2.3. Let L/K be a finite extension of number fields. Then L as a vector space over K has a
linear action of G,k and the discriminant Dy is equal to cond(L) as ideals of Ok.



Proof. For each place v of K fix an arbitrary place w of L. Recall that Dy x = Np/k(]], DL, /K,) where

Dy, /x, is the different and v(Dr, /x,) = [ (1 - ﬁ) du. Therefore
L /Ky

v(cond(L)) = cond(L|G1,, /K, )

= / codimp (LELw/x0 ) du

-1

- / (Gl = Gaxe G,y D

Sa T((l ~1/IGY e du

=[L: Kvk, (DL, /k,)
=v(Np/x (DL, /K,))

2.5 Hilbert, ray and ring class fields

A little classical notation. The class group CI(K), also known as the “wide” or “weak” class group, is the
set of fractional ideals of Ok modulo principal ideals, equal to Clg(K) as defined above when S = {v | co}.
The “narrow” or “strict” class group CI* (K) is the set of fractional ideals modulo principal ideals generated
by totally positive elements, i.e., z such that for every real emberdding 7 : K — R, 7(x) > 0.

Let K/Q be a number field. For any open subgroup U of A%, 7k (U) is an open subgroup of G and so
is of the form G3® for a finite extension Ly /K. In fact Ly = (K**)"%(Y) is an abelian extension and

Cro i = Aj /KX KU

2.5.1 The Hilbert class field

Suppose U = KX [[ 4o OF - Then Ly is called the (wide/weak) Hilbert class field Hx of K and G, /i =
AXJK* KX TIOF = CUK).

Suppose UT = KX° [Toroe OF. Then Ly+ is called the (narrow/strict) Hilbert class field H}t of K and
Gy 2 AR/KXELTO) = CI(K). Note that

Hf/Hx = K*KX/K*KX° ¢ [[{=1}
v|R
Two facts about Hilbert class fields: Hg /K is the maximal abelian extension which is unramified at
every place while H;( is the maximal abelian extension unramified at every finite place, and every ideal of
K becomes principal in H}.
We now give an example application.

Example 2.4. If m | n then hg,,.) | hog,)

Proof. Let H,, be the Hilbert class field of Q(u,,) and H,, be the Hilbert class field of Q(u,,). The extension
Q(ptn)/Q(ptm) (which is an extension since m | n) is totally ramified at every p | n/m and so Q(u,) N Hy, =
Q(¢m)- Now Q(pn)Hm /Q(pr) is unramified and abelian and so Q(uy,)Hy, C Hy,. Therefore

ho(u.) = [Hn 2 Q(pn)]
[Hn t HynQ(1n)) |G #0000 ) /00|
[Hn : (,Un)”GHm/Q um)|
= [Hy : HnQ(ptn )] P,
as desired. O



2.5.2 Ray class fields

Suppose m is an ideal of Of. Let K, = {z € K|z =1 (mod m)} and K} consist of totally positive z € K.
Let Cly, (K) be the set of ideals coprime to m modulo the principal ideals generated by Ky, and let CL(K)
be the set of ideals coprime to m modulo the principal ideals generated by K.

Let U = KXOT1 Z/[})((m) and Un = K [[ 1 L[f((m). Then Hg wm = Ly, is called the weak ray class

field and H;;,m = Ly;+ is the strict ray class field of conductor m.

vtoo

Proposition 2.5. Clf, = A%X/K*U} and Cly = A /KX Up,.

Proof. Let © = (z,) € Aj. The Chinese remainder theorem implies that there exists y € K such that
xy = (z,y) has the property that for v | m, 2,y € 1+ (@, )"™ = L[f((m) and z,y is positive for every v | R;
elements of K with this property are =1 (mod m) (and so in Ky,) and totally positive. Attach to x the ideal
]_[U,fm(wv)”@”w in which case A% /K*U;} becomes the set of ideals coprime to m modulo principal ideals
generated by totally positive x =1 (mod m). Similarly for Uy,. O

Then as before G, ,/x = Cln(K) and G+ pe = Cly (K).

Example 2.6. 1. If K = Q and m = nZ then CL}(K) = (Z/nZ)* and so the strict ray class field of
conductor n is Q(uy,).

2. If m = Ok then Hx = Hg m and HF :H;m.

Proposition 2.7. Let m be an ideal of O . Then H]t,m is the mazximal abelian extension H of K such that
TIEIW/KH =0 if n > v(m), where w | v is an arbitrary place of H. In particular, the strict Hilbert class field

H}E is the maximal abelian extension of K which is unramified at every finite place.

Proof. Let L/K be an abelian extension such that if v is a place of K and w | v is an arbitrary place of L
then G} . = 0. Recall Herbrandt’s theorem that G} . = G?(’jb/G?fb NWiP and so this is equivalent
to WEP D G?(‘jb. Via the inverse of the Artin map this is equivalent to rl_(i (WEE) D Uy, . Equivalently,
using the global Artin map, the component at v of the open subgroup rl_(l(G%b) of A% should contain Uy

That L is the largest abelian extension of K such that G7 = 0forn > v(m) is equivalent to the fact

that U = r}l (GaLb) is the largest open subgroup of G}*P such that the component in v is included in L{;{vm).
The largest such U is U
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Proposition 2.8. Let m be an ideal of Or. Then the discriminant of H = Hy  over K is

Hm[H:K](v(m)—F)

v

v|lm

Proof. For simplicity write H = H;f. Since (D k) = Nu/x (I] mZ(DH“’/K“)) it suffices to show that for each
finite place v of K (and an arbitrary choice w | v of H) we have v(Dg, /x,) = v(m) — qv—l_l. For this we
need to know the cardinality of G} . = G%‘b / GT}(’jb NWZP and via the inverse of the local Artin map
this is U’ /(U N Ny, sk, Hy - This is trivial if and only if n > v(m) which implies that U C Ny, /5, Hos if
and only if n > v(m). But H is maximal among such abelian extensions and so Ny /k, Hy = uy™ giving

ok, UL U™, Since O /(1+ (@) =2 kg, and (1+ (@,))/(1+ (w,)™") 2 kg, it follows that



Gl k| = ™" if n > 1 and 1GY k| = 2™ (g, — 1) as long as v | m. We compute the conductor

of H as a Gy, /k,-representation (see the proof of Proposition 2.3:

oo

cond(H) = [H : K]/ (1- 1/\G}§w/KU|)du

-1

v(m)

=[H:K]Y (1-1/|G%, /k,

)

The following section was not covered in lecture

2.5.3 Ring class fields

An order O C K in a number field K is a finitely generated Z-submodule of K such that O ®z Q = K.
Every order O is contained in Ok . The conductor of the order O is the cardinality of Ok /O.

If K = Q(v/—d) then every order is of the form O = Z + Ok f which has conductor f. An ideal I of O
is said to be proper if O = {z € K|zI C I}; I is said to be coprime to f if I 4+ (f) = O. An ideal is proper
if and only if it is equivalent to an ideal coprime to f. The ring class group Cl(O) is defined to be the set of
proper ideals of O modulo principal ideals. There is an isomorphism between ideals of Ok coprime to the
conductor f and proper ideals of O, the map from the first to the second being I — I N O and the inverse
being I — IOk. As such Cl(O) is the set of ideals of O coprime to f modulo principal ideals generated by
x such that x =n (mod fOf) for some integer n coprime to f.

Finally, C1(O) C Clso, (K) and so there is an open set Up D Uyo, such that Cl(O) = Ax/K*KZXUo
in which case Cl(O) = G,k where Lo is the ring class field of O. It shows up in the study of Heegner
points.

Proposition 2.9. Let K = Q(v/—d) with (wide) Hilbert class field Hy . For f > 2 consider O = Z + fOx
the order of conductor f. Let Ky be the ring class field of O. Then Ky is Galois over Hx and Gk, p, =

(Ok/fOx)*/(Z]fZ)".

Proof. The Galois group Gg,, ,/m, is isomorphic to the group of principal ideals of Ok coprime to f modulo
those principal ideals generated by z = ¢ (mod fOk) with ¢ coprime to f. O

End of section not covered in lecture

3 Selmer groups and applications

3.1 Selmer systems and Selmer groups

(3.1.1) Let K/Q be a number field and M a finite discrete Gg-module. Then M has trivial action of G,
for some finite extension L/K and so M will be unramified at all places v where L/K is unramified.

A Selmer system is a collection £ = {£,} of £, C H(Gk,, M) such that £, = H. (Gk,, M) for
almost all v.



Proposition 3.1. Define L+ C H'(Gk,, M*(1)) as the annihilator of L, under the local Tate pairing.
Then L+ = {LL} is also a Selmer system, called the dual Selmer system of L.

Proof. This follows from the fact that H. (Gk,, M)+ = HL (Gg,, M*(1)). O
Definition 3.2. The Selmer group is H:(K,M) = {z € H (G, M)|res, x € Ly}

Proposition 3.3. Let L be a Selmer system and let S be a set of places containing the infinite places, finite
places v such that L, # H.(Gk,, M) and finite places v such that I, does not act trivially on M. Let
Ks/K be the largest extension which is unramified outside S and let Gk s = Ggz/x- Then

0— Hp(K,M)— H (Gg.s,M) = ®uesH (Gg,, M)/ L,

15 exact.

Proof. By definition H}:(K, M) is the kernel of the map H'(Gx, M) — [[, H'(Gk,, M)/L,. If v ¢ S then
L, = H! (K,, M) is the kernel of the restriction map H'(K,, M) — H'(I,, M) = Hom(I,, M). Therefore
Hv Hl(GKw M)/'Cv - @UESHl(GKwM)/CU & Hv¢S Hom(Iv’ M)

Suppose ¢ € H'(K, M) is the image of some class in H}:(K, M). Then c|;, is the trivial map I, — M
when v ¢ S. The Galois group G is generated by I, for v ¢ S and so c|g, is the trivial class. But then
by inflation-restriction ¢ € H' (G s, M) since Gk acts trivially on M. O

3.2 Global duality and dual Selmer groups

This section is about the Tate-Poitou nine-term exact sequence, which is a global version of local Tate duality,
and its application to Selmer groups.

3.2.1 Tate-Poitou duality

Let K be a number field and let S be a finite set of places containing the infinite places. Let M be a finite
G -module and suppose that S contains all the finite places v such that I, acts nontrivially on M and all
the finite places v such that v(|A]) > 0. Then M is naturally a Gk s-module.

Define
MG v{oo
HO(K,, M) = MC%u [Nz o M v | R
0 v|C

If A is an abelian group write AV = Hom(A, Q/Z). If M is a finite G x-module write M* = Hom(M, Q/Z)
with the action (g¢)(m) = ¢(g~tm).

Theorem 3.4. Suppose M is a finite G 5 module as above. Then

1. There is an exact sequence

0= H(Gr.5,M) = ®esH (K, M) = H*(Gg5, M*(1))" —
— HY (G 5, M) = @pesH (K, M) — H (G5, M* (1)) —
— H*(Gg.5,M) = ®pesH*(K,, M) - H*(Gg 5, M*(1))Y — 0

2. If i > 3 then Hi(GK,S,M) = @UesHi(KU,M).
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3.2.2 Dual Selmer groups

Suppose L is a Selmer system and £+ is the dual Selmer system for the cohomology of a finite G -module
M.

Proposition 3.5. There is an exact sequence

0— H(Gr.5,M) = ®pesH (K,, M) — H* (G5, M*(1))" —

— Hp (K, M) = @yesly - H' (Gg 5, M*(1))Y — H}. (K, M*(1))¥ =0

Proof. Tate-Poitou implies that

0— H(Gg,5, M) = ©uesH(K,, M) — H*(Grg,5, M*(1))" —

— H' (G5, M) = GpesH' (K,, M) - H' (Gx 5, M*(1))"
is exact. Since £, C H'(K,, M) is sequence gives the exact sequence
0 — H(Gr,5, M) = @pesHO(K,, M) — H* (G5, M*(1))" = K = @yesly — H (Gr,5, M*(1))"

where K is the preimage of @®,csL, under the restriction map H'(Gg s, M) — @®,esH' (K,,M). By
definition K = H}:(K, M) and so get an exact sequence

0= H(GK,s5, M) = ®uesH(K,,, M) — H*(Gx 5, M*(1))Y — HE(K, M) = ®yesL, — H' (G5, M*(1))"
Proposition 3.3 replacing M by M*(1) and £ by £+ gives
0= Hp (K, M*(1) = H' (G5, M*(1)) = @ues H' (K, M7 (1)) /L5
which after dualizing and using (H'(K,, M*(1))/Ls)Y = L, gives
®ueslo = H' (Gr.s, M*(1)" = Hpu (K, M*(1))Y — 0

Putting everything together gives the proposition. O

3.3 Euler characteristics and sizes of Selmer groups
3.3.1 The Euler characteristic formulae

Proposition 3.6. If K/Q, is a finite extension and M is a finite G -module then H'(K, M) is finite for
i > 0. Moreover, H (K, M) =0 fori > 3.

Theorem 3.7. Let K/Q, be a finite extension and M a finite Gk -module. Then

_ HY(K, M)[|H?(K, M)|

Proposition 3.8. If M is a finite Gk s-module then H (G s, M) is finite for i > 0.

Proof. This is clear when i = 0 as H°(Gk s, M) C M. When i > 3 then H(Gg s, M) = ®yes H (K,, M)
by Theorem 3.4 and finiteness follows from Proposition 3.6. Again by Theorem 3.4 we get exactness for
HY (Gg.s,M*(1))V — H*(Gk 5, M) = ®yesH*(K,, M) and finiteness of H?(Gk s, M) follows from Propo-
sition 3.6 if we assume finiteness of H'(Gg g, M*(1))V. Therefore it suffices to treat the case of i = 1 and
show that H'(Gk, s, M) is finite for M finite.

Since M is a Gk s-module there exists a finite Galois subextension L/K of Kg/K such that Gk, acts
trivially on M. Inflation-restriction gives 0 — H'(L/K,M) — H'(Gk,5,M) — H' (Ggy/,M). Let Sp
for the set of places of L lying above places of K in S in which case Ls, = Kgs and so Gg,/ = G s, -



Therefore to show finiteness of Hl(GK,S, M) it suffices to treat the case when Gk g acts trivially on M in
which case
H'(Gk,s, M) = Hom(Gg,s, M) = Hom(G3 g, M)

It is unfortunate that we use Kg as both the maximal extension of K which is unramified outside S and
as [[,cg Ko but it should be clear which one we mean from context. So GK ¢ AR /KXKX [Togs OF
We have already seen in the proof of Theorem 2.1 that we have an exact sequence

0— K5 /Ok[1/S]* = AR /K> [ 05 — Cls(K) =0
vgS

Since Clg(K) is finite to show that Hom(G5 g, M) is finite is suffices to show that Hom(Kg /Ok[1/S]*, M)
is finite. But Hom(Kg /Og[1/S]*,M) — [],cqHom(K), M) and Hom(K),M) = Hom(Gk,, M) =
H'(K,, M) is finite by Proposition 3.6. O

Theorem 3.9. Let K/Q be a number field, M a finite G x-module and S as in Theorem 3.4. Then

(M) = [HO(Ge,5, M)|[H (G5, M)| _ Tlyjoc [H (Ko, M)
|HY (G ks, M) | M |10

3.3.2 Sizes of Selmer groups and a theorem of Wiles

Lemma 3.10. Let K/Q be a number field and M finite, £ and S as in Proposition 3.3. Then H}(K, M) is
finite.

Proof. Proposition 3.3 implies that H} (K, M) C H'(Gk s, M) which we know is finite by Theorem 3.4. [
Theorem 3.11. Let K/Q be a number field and M, L and S as in Proposition 3.3. Then

[Hp (K, M)| _ |[HY(K, M) H £o]
[H o (K, ML) [HO(K, M=(1))] L4 [HO (K, M)

Example 3.12. Let p > 2 be a prime and S be a finite set of places of Q containing p and co. What is the
number of abelian extensions of Q of degree p™ which are unramified at all places ¢ ¢ S?

Proof. Recall that Gé = Gab’v and so every continuous homomorphism ¢ : Gg — Q/Z has open kernel
ker¢ = G, for a finite abelian extension L/Q. If [L : Q] = m then for every g € Gg, ¢" € G and
so mo(g) = #(g™) € ¢(Gr) = 0 and so ¢ : Gg — Z/mZ. The map taking ¢ to L is not injective, as
Aut G, /g acts on the set of ¢. Reciprocally, every L/Q cyclic of degree m produces ¢(m) = | Aut(Z/mZ)|
homomorphisms ¢.

Every ¢ : Gg - M = Z/p"Z (with trivial Gg-action produces a cyclic extension of degree dividing p™.
Therefore we need to study Hom(Gg, M) = HY(Q, M). If L/Q is as above then L is unramified at ¢ ¢ S if
and only if ¢(Iy) = 0 if and only if ¢|g,, € H! (Qg, M). Therefore L/Q is unramified outside S if and only
if p € H:(Q,Z/p"Z) where Ly = H. (Q, M) for £ ¢ S and £, = H'(Q,, M) when v € S. The problem
now becomes to compute h, = |H£(Q Z/p™Z)|. The number of ¢ with image Z/p"Z is exactly h, — hp_1
and Aut(Z/p™Z) acts on this giving (h,’;) L extensions L/Q cyclic of order p™ unramified outside S.

Note that £;- = 0 for v € S and £ = H}(Q,, M) for £ ¢ S. Suppose ¢ € H}, (Q,M*(1)). Here
M*(1) = ppn and so ¢ € HY(Q, p,n ) such that clg, € L7 C HL.(Qq, ppn) for all £.
g(n\/@ where a € Q*/(Q*)?", since HY(Q, ppn) = Q*/(Q*)?". Since

o
c is unramified at all primes £ it follows that c is trivial in H'(Ig,, upn) = Q)" /(Q;")P". Therefore
a € (Q;")P". In particular, ve(a) € p"ue(Q)"*) = p"Z. Let a = +[[,¢* in which case we just
showed p” | a;. Therefore a = (£[], %P ")P" € (Q*)?" since p > 2. This shows that c is trivial and
so H}, (Q,M*(1)) = 0.

By Kummer theory c(g) =

n

10
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By Theorem 3.11 it follows that
|H°(Q, Z/P"Z | 1Ly
H;(Q,Z/p"Z
QLD = "5, el LL @, 275

[H( QU,Z/p"Z)I
1l [H®(Qu, Z/p"Z)]

veS

since H°(Q,Z/p"Z) = Z/p"Z and H°(Q, u,») = 0. The second line in the equation above comes from the
first paragraph of the proof of Theorem 3.11. Now H(R,Z/p"Z) = {0} and H°(R,Z/p"Z) = Z/p"7Z while
for ¢ a prime, Theorem 3.7 implies that

|H®(Qe, Z/p"Z)|| H*(Q¢, Z/p"Z)|

x(Qe.2/p"T) = [H(Qe, Z/p L)

= |Z/p"Zlg, = |P"la,

Therefore L )

| (Qu, Z/p"Z)| _ |H(Qu, Z/p"2)|

|H(Qu, Z/p"Z)| p"|q
But by local Tate duality |H2(Qr, Z/p"Z)| = [H(Q, jipn)”| = [HO(Q, pipn)| = |1t (Q2)] = |pign (F)| =
(p™, ¢ —1). Finally,

m@zpz) = [ Ytz

tes—ce Pl
ho=p" [ @"¢-1)
feS—oo

Finally the number of L/Q cyclic of order p™ unramified outside of S is then

By — 1 X <p{2680o|p"|e1} _ 1)
—n—Tnol P l—1)+ n=l g 1)
pnfl(p_ ]_) H ( H p— 1

leS—oo leS—oo
O
Proof of Theorem 3.11. First note that if v ¢ S then M is an unramified Gx,-module and so H*(K™/K,, M) —
M T A s HY (K, M) = 0 s exact. Therefore |HL (K, M)| = [HO(KY/K,, M)| = |[H°(K,, M)|. In

partlcular the product in the theorem is finite.
Proposition 3.5 then implies that
|Hz (K, M) |H*(Gk,s, M*(1))" IIHO(GKS, )| I Lo
|Hp . (K, M*(1))]| |H' (G ks, M*(1 |HO(K,, M)|

veES

If A is a finite abelian group then |A| = |AY|. Note that M is unramified outside S and so M%ks = M.
Thus HY(K, M) = M®x = (M%xs)Cxs = HO(G . g, M). This gives
|Hz (K, M)
|H o (K, M*(1))]

= (5 M (1) U )] |H 1£0]

|[HO(K, M*(1 |HO(K,, M)
But Theorem 3.9 implies that

[, joc HO (Ko, M*(1))|

X(K,M*(l)) = |M*(1)|[KQ]

11



and so, since |M| = |M*(1)],

A M) Tl H M) O(K, M) I .|
AL (KA~ e [, )] L o, an)

so we only need to show that

H'u|oo |‘PI0(‘K—’U7]\4>k H |HO )|
MR LLIE0(E, )]
But
H |HO (K H |HO(K,, M) |
s |HO(K. |H0 K,, M)|
HIH 17(@71\4|1—[|15f0 M)|
|HO(Ky, M)| X2 |HO(K,, M)|
|MGa1 C/R)/NC/RM| |M\*1
|MGal(C/R)| H
v|R
and

HO(K,, M*(1
HM||M(|[K;@] ())|—H|M| HO (K, M (1 |H|M| SHO (K, M (1))
v|R

=1 1171 EO (K, M (1 IHIMI '

v|R
Write Gal(C/R) = {1,¢}. Then it suffices to show that

(Mt (e+ M| [(M*(1)) ]
| Mt | M]

and this follows from
[(M*(1))° ] = [ker(e — 1 : M*(1) — M*(1))|
= |ker(c+1: M* — M™)|
= |coker(c+1: M — M)]
=|M|/|Im(c+1: M — M)|

Lecture 6
2013-04-12

4 Rational points on elliptic curves

4.1 Facts about elliptic curves

Definition 4.1. Let K be a field. An elliptic curve over K is a smooth curve y?z = 2° + az2? + b2® in P%
whose solutions E(A) = {(z : y : 2) € P?(A)|y*2 = 23 +ax2?+bz3} form an abelian group with 0 = (0: 1: 0)
the point at infinity for any K-algebra A.

12



Theorem 4.2. If K/Q is a number field and E/K is an elliptic curve then E(K) is a finitely generated
abelian group. The rank of E is defined as the rank of E(K).

To prove this theorem we need to collect some facts about elliptic curves.

(4.1.1) First if M/L/K are field extensions then E(M) has an action of G/, which commuted with the
group law. Moreover, E(M)%m/1 = E(L).

(4.1.2) If n > 1 is an integer there is a map [n] : E(A) — E(A) given by P +— P + --- + P exactly n times.
Write E(A)[n] = ker([n]). If E is defined over a field K and L/K is an extension then E(L)[n] is a finite

group. Note that G,k acts on E(L)[n]. The map [n] on E(K) is surjective.

(4.1.3) Let K be a number field. If one clears denominators in the equation of £ and v is a place of K such
that the equation y2z = 23 + axz? + bz? is still smooth over the residue field k, then E is said to have good
reduction at v. If n is an integer such that v t n then

E(K)[n] — E(ky)
(4.1.4) Let K be a number field. Consider the function H : P?(K) — [1,00) defined by

1/[K:Q]
H(zx:y:z2)= (Hmax(|x|y, Ylo, |Z|v)>

This is well-defined because if A\ € K* then [[, [A\], = 1. Moreover, H(z : y : z) does not depend on
the number field K over which (x : y : 2) is defined. That H(x : y : z) > 1 follows from the fact that
Hia:y:2) > (I, lolo) /9 = 1.

Consider h : E(K) — [0,00) defined by h(P) = log H(P). Then

1. for any C > 0, {P € E(K)|h(P) < C} is a finite set,

2. for any @ € E(K) there exists a constant Cg g such that h(P + Q) < 2h(P) + Cg,g for all P € E(K)
and

3. there exists a constant Cg ,, such that h([n]P) > n?h(P) — Cg .

4.2 Cohomology of elliptic curves over finite fields
In this section k represents a finite field with ¢ elements.

Lemma 4.3. Let C' be a smooth projective curve of genus 1 over k. If C' has a rational point over some
finite extension of k then it has a rational point over k.

Proof. Riemann-Roch for curves shows that the zeta function of C' has the form

1—aX +qgX?
(I-X)(1 —gX)

2(0,X) =

where

Z(C,X)=exp [ Y |C(Fgr)| X" /r

r>1

If C(F,) =0 then Z(C,X) =1 (mod X?) by definition. The formula above then gives a = ¢ + 1 in which
case Z(C,X) = 1. But the C(F,~) = 0 for all r contradicting the hypothesis. O

Proposition 4.4 (Lang). Let k be a finite field and let E/k be an elliptic curve. Then H'(k, E(k)) = 0.

13



Proof. Let ¢ € H'(k, E(k)). Embed E(k) — Aut(E(k)) of automorphisms over k by sending P to t,(Q) =
P + Q. The Galois cohomology group H'(k, Aut(E(k))) represents forms of E over k. Let C be the form of
FE over k represented by the cohomology class —c. In other words C is a smooth projective curve of genus 1
over k with a k-isomorphism ¢ : C/k = E/k such that ¢9¢~ =t_.(,) where ¢9(z) = g(¢(g~'2)).

Lemma 4.3 implies that C has a point P € C(k) and let Q = ¢(P). Then ¢9¢1Q = ¢9(P) = g(¢(P)) =
g(Q) since P is defined over k. But ¢9¢~1Q = t_o(q)@ = Q — ¢(g) which gives c(g) = Q — ¢g(Q). Thus c is
trivial in H'(k, E(k)). O

4.3 Descent for rational points

Lemma 4.5 (Descent). Let K be a number field and E/K an elliptic curve. If for some integer m,
E(K)/mE(K) is finite, then E(K) is finitely generated.

Proof. Let E(K)/mFE(K) be represented by Q1,...,Q, with Q1,...,Q, € E(K). We will show by descent
that there exists a constant C' such that Q1,...,Q, and the finitely many points {P € E(K)h(P) < C}
generate E(K).

Indeed, let C; = maxCg,_q, and C = 1 + (Cg,n + C1)/2. Let P € E(K). We would like to express P
as a sum of (); and points of height at most C. Write P = mP; + Q;,, and for n > 1 let P, = mP,+1 + Q;,,.
Then

h(Pn) S 7(h([m]Pn) + OE,HL)

= — (M(Puo1 = Qi,) + Cem)

IN
|

(Qh(Pn_l) + CE,m + CE»—Qin)

1
W(Qh(Pnfl) + CE,m + Cl)

IN

Inductively we get

n

h(Py) < <£2>n h(P) + <Z fn;) (Com +Ch)

<27"h(P)+C —1

Now if 2" > h(P) it follows that h(P,) < C and P = [m"|P, + Y7, [m’~]Q;;. O

4.4 Selmer groups for elliptic curves
Lemma 4.6. Let n > 1 be an integer, K a field and E an elliptic curve over E. Then
0 — E(K)/nE(K) 2% HY(K, B(K)[n]) 25 H'(K, E(K))[n] — 0

Proof. This is Kummer theory for elliptic curves. Take the Gx-cohomology of the short exact sequence
0 — E(K)[m] — E(K) [, (K) — 0 and get the long exact sequence

E(K) - B(K) - HYK,E(K)[n]) - H'(K,E(K)) = H'(K, E(K))

e 0 — B(K)/nE(K) - H'(K, E(K)[n]) — H' (K, E(K))[n] - 0

14



Definition 4.7. Let K be a number field and E an elliptic curve over K. The n-Selmer group of F is
Sel"(E/K) = ker (HI(K, E(K)[n]) — HHl(K, E(Kﬁ)[n])

where the map to H'(K, E(K,))[n] is restriction to G, followed by jg, .

The purpose of this section is to express Sel”(E/K) as the Selmer group H} (K, E(K)[n]) for a suitable
Selmer system L.

Proposition 4.8. Let L, be the image of E(K,)/nE(K,) via 6k, in H*(K,, E(K,)[n]). Then £ = {L,}
is a Selmer system and o
Sel"(E/K) = Hp(K, E(K)[n])

Lecture 7

2013-04-15

Proof. The equality Sel"(E/K) = H:(K, E(K)[n]) follows from the fact that

Sel"(E/K) = {c € HY(K,E(K)[n])|ix, oresg, c =0}
={cec H'(K,E(K)[n])|resk, ¢ € kerig, }
={ce H'(K,E(K)[n])|resk, c € Im g, }
={ce H'(K,E(K)[n])|resk, c € L,}

Il
=
=
[
g
B

To show that £ is a Selmer system we only need to check that for v ¢ S for some finite set S one has
L, = H..(K,, E(K)[n]). We will do this by showing that each group is contained in the other whenever
v ¢ S where S is an explicit finite set of places. Define S to be the set of places consisting of infinite places,
of finite places where E has bad reduction and finite places above n.

Let v ¢ S. Consider ¢ € £, with ¢ = Jg, (P) for some P € E(K,). Kummer theory gives that for any
Q € E(K,) such that [n]Q = P then g, P is the cochain (6P)(g) = g(Q) — Q € E(K,)[n]. Suppose M/K,
is the smallest finite extension such that @ € E(M).

There exists a reduction map E(M) — E(kys) as follows: if z = (a:b: ¢) € E(M) there exists A € M *
such that Aa, \b, \¢ € Ops and at least one of them is in Oy;. Then T = (Aa : A\b : A¢) € E(kp). The
projection map E(M) — E(ka) is Galois equivariant where the Galois group Gk, acts on E(kyr) via the
projection to Gk, /vy i, = Gry ke, -

Let Q € E(ka) be the reduction of Q. Let o € Iy k, . Then 0(Q)—Q € E(M)[n] because [n](9(Q)—Q) =

g(P) — P = 0. Moreover, 0(Q) —Q = 0 as o is trivial in Gy,, /,. But E(M)[n] injects into E(ky) (E has
good reduction at v and v { n as v ¢ S) and so, since o(Q) — Q projects to o(Q) — @ = 0, it follows that
o(Q) = Q. But then Q € E(M)!m/xe = E(M N K™) and since M is the smallest extension of K, such that
Q € E(M) it follows that M /K, is unramified and so Ix, = Ip;. Finally for o € Iy, = Iy C Gpr, 0(Q) = Q
and so c(o) = 0 which implies that ¢ = §,P € H} (K,, E(K,)[n]). Therefore £, C H}.(K,, E(K,)[n]).

Reciprocally, suppose ¢ € HL (K,, E(K,)[n]). By definition H} (K,, E(K,)[n]) = H'(kk,, E(kx,)[n])
which, by Lemma 4.6, stays in the exact sequence

0 — E(kk,)/nE(kk,) — H'(kk,, E(kk,)[n]) = H' (kg,, E(kx,))[n] — 0
But Proposition 4.4 implies that H' (kg , E(kx,)) = 0 and therefore F(kg,)/nE(kk,) = H' (kk,, E(kg,)[n]).
s

Thus there exists P € E(kg,) such that ¢ = §P. Now Hensel’s lemma allows one to find P € E(K,) such
that its image in E(kg,) is P. Then ¢ = §P and so H}.(K,, E(K,)[n]) C L,. O
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4.5 Mordell-Weil
We are now ready to prove the Mordell-Weil Theorem

Proof of Theorem 4.2. Proposition prop:selmer elliptic shows that Sel"(E/K) = H} (K, E(K)[n]). We

know that F(K)[n] is finite and therefore Lemma 3.10 implies that Sel”(E/K) is finite. We have a commu-
tative diagram

0 — E(K)/nE(K) — HY(K, E(K)[n])

| -

0 —— E(K,)/nE(K,) — H'(K,, E(K,)[n]) — H'(K,, E(K,))[n]

and therefore the image of E(K)/nE(K) in H'(K,, E(K,))[n] is trivial for every v. By definition, the image
of E(K)/nE(K) in H'(K, E(K)[n]) is included in Sel”(E/K) and therefore E(K)/nE(K) is finite.
Now Lemma 4.5 implies that F(K) is finitely generated. O

The following section was not covered in lecture

4.6 Standard proof of Mordell-Weil
I include here the proof from Silverman’s book, for comparison.

Lemma 4.9. Suppose E is an elliptic curve over a number field K and L/K is a finite Galois extension. If
E(L)/mE(L) is finite then E(K)/mE(K) is finite.

— —. [m] —

Proof. Consider the G g-cohomology sequence attached to 1 — E(K)[m| — E(K) — E(K) — 1:

[m]

1 — E(K)m] = E(K) — E(K) - H' (K, E(K)[m]) - H' (K, E(K)) Il HY(K,E(K))
which gives the Kummer isomorphism
1 — E(K)/mE(K) — H'(K, E(K[m])) » H' (K, E(K))[m]
Kummer and inflation restriction gives the following diagram

0 —— E(L)/mE(L) —— H'(L, E(K)[m]) —— H'(L, E(K))[m]

0 —— E(K)/mE(K) HY(K, E(K)[m]) —— H'(K, E(K))[m]

ker —— Hl(GL/K,E(L)[m]) E— Hl(GL/K,E(L))[m]

0 0 0

From the diagram it is clear that the map ker — H' (G, x, E(L)[m]) is injective. We know that E(L)[m]
is finite and G,k is a finite group and so ker injects into a finite group and thus it is finite. Now
E(K)/mE(K) — E(L)/mE(L) is a map with finite kernel and image and so E(K)/mE(K) is finite. O

We are not ready to prove Theorem 4.2.
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Proof of Theorem 4.2. By Lemma 4.5 it suffices to show that E(K)/mE(K) is finite. By Lemma 4.9 to

show this we may replace K by any finite extension. In particular we may assume that E(K)[m]) C E(K),

which we may do since E(K)[m] is finite. This implies that F(K)[m]| = E(K)[m] has trivial Gx-action and
so HY (K, E(K)[m]) =2 Hom(G g, E(K)[m]).

If P € E(K) let K(P) be the finite extension of K generated by the coordinates of P. The Kummer
sequence now implies that F(K)/mE(K) — Hom(Gg,E(K)[m]). This map is described explicitly as
attaching to P € E(K) the map ¢p : Gx — E(K)[m] given by ¢p(g) = g(Q) — Q for any Q € F(K) such
that [m]Q = P. What is the kernel of ¢p? It is K(Q) for the chosen Q with [m]Q = P. Let L be the
compositum of all K(Q) such that [m]Q € E(K). Thus ¢p vanishes on G, C Gk.

Moreover, E(K)/mE(K) x Gp/x — E(K)[m] defined by (P,g) — ¢p(g) is a perfect pairing. Since
E(K)[m)] is finite to show that E(K)/mFE(K) is finite is is enough to show that L/K is a finite extension.
First, note that ¢p(g™) = m¢p(g) =0 and so g™ =1 in G/ and so L/K has exponent m.

Second, let S be a finite set of places containing the places where E has bad reduction, places v dividing
m and the infinite places of K. We now show that L/K is unramified outside S. Since the compositum of
unramified extensions is unramified it suffices to show that if [m]Q € E(K) then K(Q) is unramified at v ¢ S.
We know that E(K)[m] — E(k,) as v{m and E has good reduction at v. We need to show that Ik, acts
trivially on Q. Let o € I, . Recall that [m]Q = p € E(K) and so [m](c(Q) — Q) = o(P) — P = 0. Therefore
o(Q)—Q € E(K)[m] = E(K)[m] = E(k,). But Gk, acts on E(k,) via the projection G}, = G, /Ix, and
so 0(Q) — Q =0 in E(k,). Therefore 0(Q) = Q in E(K) and so Ik, acts trivially on K(Q) as desired.

Finally, K(Q)/Q is an abelian extension because G appears as the kernel of the map ¢p : Gx —
E(K)[m] and E(K)[m] is abelian. Therefore L/K is an abelian extension of exponent m which is unramified
outside S. We want to show that L/K is finite. The inverse of the global Artin map gives an injection

Gr/k <= AR /KX KX° H ()™ H Oy
vES—o00 vgS

and Ap/K*KX° [],co oo (K0)™ Iues O C Ilyes oo Ko /(K)™. This is so because K* is dense in

A%® and so for every (a,) € A% there exists 2 € K* such that a,z~' € O when v ¢ S and a,z~! € KX
when v | co.

Therefore it suffices to show that K¢ /(KX )™ is finite. But by Kummer theory KX /(K)™ = HY (K, ptm (K )
which is finite because j,, (K,) is finite. O

End of section not covered in lecture

5 Characters with prescribed behavior

5.1 Grunwald-Wang

Let K be a number field. The Grunwald-Wang problem asks whether if 2z € K* is an n-th power in almost
all K then z is also an n-th power in K*. Another way of putting this problem is to study the kernel of
the map

KX ()" — [] KX/ (55"

vgS
where S is some finite set of places of K. Since k*/(k*)" = H'(k, u,,) for any field k this kernel is

Hl}@(Kv .Un) = ker (Hl(Ka l‘n) - H Hl(Kva,Un)>
vgS

Lemma 5.1. Let L/K be a Galois extension of number fields. If all but finitely many places v of K split
completely in L then L = K.
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Proof. Suppose S is a finite set of places of K, containing the infinite places, such that if v ¢ S then
v = wi - - - Wy, splits completely in L. For each v € S — oo and w | v a place of L let n,, € Z>( be an integer
such that Ug" C Ni, /K, L, which is an open subgroup of K. Let n, = max(n.,).

For each a = (a,) € Aj one may find z € K such that a,z™! € Uy forallv € S—oo and a,z™! € K0
for v | co. Indeed, choosing u ¢ S strong approximation states that K is dense in A%} . Therefore there

exists * € K* whose image in A%}’X is in the open subset

HaUK;’O H a Uy’ H oy

v|oo vES—00 vgSU{u}

Then if v | co one has a,2™! € N, /i, L = K0, if v € S—oo one has a,a™" € Uy C Ny, /k, LS by choice
of n, and if v ¢ S and w | v then L,, = K, so trivially a,a™ € Ny kL. Therefore axz™" € Np A} and
soa € K*Np/gAj. We deduce that

Giik = Ag/K*NyycAf =0

If L/K were abelian then L = K.

Suppose L/K is not abelian. Let L/M/K be a subextension such that L/M is abelian and nontrivial.
This is always possible as there exists a cyclic subgroup of G, k. Then let Sy be the set of places of M
lying above places v € S. Thus for every w ¢ Sy, w splits completely in L. Since L/M is abelian it follows
that L = M contradicting the fact that L/M is nontrivial. Therefore L = K. O

Lecture 8
2013-04-17

Theorem 5.2 (Weak Grunwald-Wang). Let K be a number field and t = vy(n).
1. If K(Cot)/K is a cyclic extension then 105 (K, p,) = 1. In particular this is so when 8 { n.

2. If K(Cat)/K is not cyclic then I (K, uy,) is a finite 2-torsion group, i.e., if o € HIL(K, puy,) then
a € (K*)n/2,

Proof. If (m,n) = 1 and a = a™ = b" then for pm + gn = 1 one obtains o = (a?b?)™".

enough to show the result when n = p” for a prime p.

If (, € K and a € (K, pu,) then K(/a)/K is a Galois extension. For every v ¢ S one knows
that ¥/a € K, and therefore the prime v of K splits completely in K({/a). Lemma 5.1 now shows that
K(3/a) = K and therefore a = 1 in IIL (K, py,).

If ¢, ¢ K consider K((,). The above shows that o = 8™ for some 8 € K((,). Let X™ — a =[] fi(X)
the factorization into irreducibles over K. Over K((,) we know that X" — o = [[(X — 8¢!) and therefore
fi(X) has a root of the form 3; = 8¢} € K((,). The extension K(f3;)/K is therefore abelian Galois.

For v ¢ S let a = o for o, € K, in which case [] fi(«p) = 0 and so f;(a,) = 0 for some ¢. Since
K(B;)/K is abelian the Galois group acts transitively on the roots of f; and so f; splits completely in K,
and so v splits completely in K (5;). If K((,)/K is cyclic of prime power degree then its subfields are ordered
linearly and we may assume that K(51) C K(82) C .... Since v splits completely in some K(f;) it must
also split completely in K(8;) and so K(f;) = K by Lemma 5.1. Finally, a = 7 for 5 € K.

If n = p" with p > 2 then K((,)/K is cyclic of degree p". If n = 2" and K ({3¢)/K is assumed cyclic then
IH}S’(K7 ,U'n) =1

If K({o¢)/K is not cyclic then K(y/—1) # K as K((t)/K(v/—1) is cyclic. Therefore o € (K (v/—1)*)".
Let 8 € K(y/—1) such that o = 3" in which case taking norms one gets a? = (Ng(y=1)/xB)" and the
conclusion follows. O

Therefore it is

The following section was not covered in lecture
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I include, without proof, the full Grunwald-Wang theorem.

Theorem 5.3 (Strong Grunwald-Wang). For r > 1 let n, = (. + ¢!, Let K be a number field and S a
finite set of places of K. Let r be the largest integer such that n, € K. Then ILL(K, py,) = 1 unless:

1. =1, 2+, and —(2+n,) are non-squares in K and
2. va(n) >r and

3. S contains the set Sk of all the places v | 2 such that —1, 2+, and —(2+n,) are non-squares in K,.

End of section not covered in lecture

5.2 Characters with prescribed finite order local behavior

Let K be a number field and S a finite set of places of K.

Lemma 5.4. For every finite index open subgroup Py of P =]]
A¥ /K> such that U NP = B,.

ves K there exists an open subgroup U of

Proof. This proof has some missing topological details. See [AT09, Chapter 10, Lemma 4|. Let Cx =
Ax/K*. First, for n > 1, PyC%t and PC} are closed subgroups of Cx and PyC} is open in PC}.
Therefore there exists V' C Ck open such that PCi NV C PyC%. Let U = VP, Cf. Then PNU =
PNPCENPCEYV =PNPCR(PCENV)=PNPCYE =Py (PNCE).

Now P, is finite index in P and so for some integer n one has P" C P, in which case we take the open
U of Ck such that PNU = Py(P N C?"). Now suppose a € PN C#". Then there exists (a,) € P C A%
and z € K* such that (a,)z € (A%)?". Since a, = 1 if v ¢ S it follows that x € (K))?" for v ¢ S. Now
Theorem 5.2 implies that € (K*)™ and so (a,) € (A%)" so (o) € P™. Thus PN C?* C P" and therefore
PNU = Py(PNC%) = P as desired. O

Theorem 5.5. Let K be a number field and S a finite set of (not necessarily finite) places. For each v € S
let x, : KX — C* be a continuous character of finite order n,. Then there exists a continuous finite order
character x : K*\A} — C* such that Xlgx = Xv when v € 5.

Proof. Let P = [],.q K,\. Have a character ®,esxv : P — C* and let Py = ker ®x, be a finite index
subgroup of P. Lemma 5.4 provides an open subgroup U of A such that PNU = Fy. But then PU/U =
P/PNU = P/Py and therefore the character x5 = ®,esXy : P/Py — S! extends to a character xg :
PU/U — S'. Finally, PU C Cf is finite index and so x s extends to a character xs : A% /K*U — S! which
is a global finite order Hecke character. O

5.3 Characters with prescribed local behavior at infinite places

Write | - | for the usual absolute value on C* and | - |¢ for its square.

Lemma 5.6. Continuous characters of R* are of the form x — sign(x)¢|z|t for e € {0,1} and t, € C.
Continuous characters of C* are of the form x — (z/|z|)™|z|k for some m € Z and t € C.

Proof. All continuous homomorphisms from R to C are obtained by scalar multiplication and so all continuous
homomorphisms from (0,00) to C* are of the form x — z* for ¢ € C. The result then follows from the fact
that R* 22 {—1,1} x (0,00) and C* = St x (0, 00). O

Definition 5.7. A Hecke character ¢ : A% /K* is unitary if for each v | co one has ¢, (z) = (x/|z|)™ |z
where ¢, € R. The character ¢ is said to be algebraic of type Ay if t, = 0 for all v | oo. The character ¥ is
algebraic of type A if
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Proposition 5.8. Let K be a number field and for each v | co let m, € Z (0 or 1 if v | R) and t, € R.
There exists a Hecke character x : Aj. /K> — C* such that for v | oo, x,(z) = (v/|z|,)™ |z|e if and only

y
I (29) " el =1

v|oo

for a in a finite index subgroup of Oj;.

Proof. If x is a global Hecke character let U be the finite index open subgroup of me O such that
Xlv =1, ie., U is the conductor of x. Then for every o € O NU one has va Xv(a) = 1 and therefore
since [, xv(a) =1 one also has [], ., xv() = 1.

Reciprocally, let V' C O be a finite index subgroup. There exists a finite index subgroup U C HUTOO OF

such that V > O NU. There is an exact sequence
1= KXU/(OxNU) = A /K* = ClI(U) =1

where Cl(U) is a finite group.

Define x on KU by letting x, as required when v | oo and x, = 1 when v { co. The hypothesis implies
that x factors through KXU/(O% NU). Choosing a section to the exact sequence above, since Cl(U) is
finite, one may extend to a Hecke character . (Such a section exists because to an ideal I € C1(U) one may

attach [, @™ which is a homomorphism.) O

Lecture 9
2013-04-19

Lemma 5.9. Let K be a number field. A continuous Hecke character has finite order if and only if it is
trivial on K2X°.

Proof. If v | oo then ¢,(x) = (x/|z])™|z|k for m € Z and ¢t € C. If v = R then on K*° = (0,00) this
is ¢y(2) = ||t and if this is finite order then t = 0 and s0 @[, x0 = 1. If v = C then on K0 = C*
this is ¢, (re’?) = e™frt. If ¢, is finite order then necessarily ¢t = 0 and, since for 6 irrational the set {mf
mod 27} C [0,27) is dense, also m = 0 which gives again ¢ |xx.0 = 1.

Reciprocally, suppose ¢| KXo = 0. Since ¢ is continuous there exists an open subgroup U C Afgx such

that U C ker ¢. But then ¢ factors through A% /K* KX:°U which is finite, thereby showing that ¢ has finite
order. O

Theorem 5.10 (Weil-Artin). Let K be a number field and Koy C K be the mazimal CM subfield (where
Kcum = Q if K has no CM subfields). Let ¢ : Ay /JK* — C* be an algebraic Hecke character of type Ao.
Then there exists an algebraic Hecke character oy of Kom of type Ag and a finite order character x of K
such that ¢ = x - YoM © Ng/key - In particular every algebraic Hecke character of type A of a totally real
field is the product of a finite order character and |- | for some integer m.

Proof. By Lemma 5.9 a continuous Hecke character has finite order if and only if it is trivial on KX°.
Therefore it suffices to show that ¢ and ¥cm © Nk k., agree on K for some algebraic character icy-

First, assume K/Q is Galois with Galois group G. Since G = G g acts transitively on places of K
above a place of QQ, the infinite places of K are either all real or all complex.

Suppose that K is totally real. Then for v | 0o, ¥, (x) = (z/|x|)™ = (signx)™> which is trivial on K°
and so v readily has finite order and the theorem follows.

Suppose that K is totally complex. The character v is algebraic of type Ag and so for an infinite place
v, Py (x) = (z/]z])™ and Proposition 5.8 implies the existence of an open subgroup U of O such that for
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a € U one has [, (to(@)/[to(a)])™ = 1. Squaring we get

()™ 11 ()

o] |

=1
Fixing an embedding 7 : K — C, we have {¢,,7,} = {7 0 g|lg € G} and for g € G we write mg = m, o4 if
TOog =1ty and myg = —Myo4 if 70 g = 7,. Then the equation above becomes
H Tog(a)™ =1
geG

and since 7 is injective

I g@m =1

geG

For any complex embedding ¢ : K < C let ¢, be the (necessarily nontrivial) element of G induced by
complex conjugation on C, i.e., t(z) = t(¢,(x)). Suppose ¢, = 7og. Then 7, =1, 0¢,, = T70(c,,g) and so by
definition me, 4= —my.

The field Kcy is the fixed field of {c,c,/|e,t' : K — C}. The equation above becomes

[T s(@)™e.ga)s =1

G/e,

for a € U C Op.
Note that [¢(g(a))|c = |¢(c,g(a))|c so taking logarithms get

Z (mg +me,g)log |u(g(a))[c =0
G/e,

Theorem 2.1 implies that O and therefore the finite index subgroup U of O} have rank #o0o—1 = |G|/2—1
which is also the rank of Ay = ker (R#> — R) and so w, = my + mc, 4 is independent of g. But w,|G|/2 =
> geG e, (Mg +Meg) = 32 cc My is also independent of ¢ and so w, is independent of ¢. Therefore for any
other ¢/ : K < C one has m, 4 + Mete,g = Wy = W, = Mg + Me,g and 80 Mg = Mere, g- Thus my is constant
on Gk, -0rbits and so

[To@™ =TI oWk/xene)™ =1

geG gGGKCM/@

and if v ranges over a finite index subgroup of O then Ng/ k., & ranges over a finite index subgroup U’ of

Okey- What we get is that for « € U’ C O~ have
II s@m =1
9€G KM /0
and mc,, = —my from the fact that over K have m., 4 = —m,. Suppose 7 : Kcm — C is a complex

embedding. Then writing ¢ for the unique complex conjugation on K¢y we have
My 2m
M (Zee\™_ o (aten ™,
- 7 (g9())] -
QGGKCM/Q/C T(g(O{)) QGGKCM/Q/C

and by restricting the finite index subgroup U’ a little more we conclude by Proposition 5.8 the existence of
an algebraic Hecke character ¢)cm of Ko such that at v | oo in Kowm, Yom,o(x) = (z/|z])™ where m, = m,
if 1, = 70 g. In that case ¥ - Yoy © NI;}KCM is trivial on KX and so has finite order.
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Now if K/Q is not Galois let L/K be its Galois closure and Lcy the maximal CM subfield of L. Let
Hy = GL/K and Hs = GL/LCM' By definition KNLcv = Keum and so GL/KCM = H1H,. Now wONL/K is
a character on L which is Galois over Q and so 1o Np/x = x-no Np /., Where n is an algebraic character
of Ley. As before we need to show that the integers {m,} where v | co runs over places of L are constant
on orbits of GL/KCM = H;H,. But the integers are constant along H;-orbits since they are attached to
1o Ny i and they are constant along Hz orbits because ) o Np /i = X110 Np/po\- O]

Lecture 10
2013-04-22

Proposition 5.11. Let n > 1 be an integer not divisible by 8 and w : pi, (K)\pn(Ag) — St be a continuous
character such that w, = 1 for v | C. Then there exists a finite order character @ : K*\A%X — S' whose
restriction to p,(Ag) is w. Here S* = {z € C||z| = 1}.

Proof. We have an exact sequence
i (K)\pin (Arc) — (Af/K)[n] — HIG(K 1) — 1

as follows: if (o) € Ck[n] then (o) = z for some z € K*. Let y be the image of z in IITj(K, ). What
is the kernel of this map? If y = 1 then = € (K*)". But (a)z™! = () in Cx and a,z~t € p,(K,) and
s0 (ay)z™" € pn(Ag). By Theorem 5.2 since 8 1 n, II[j(K, u,) = 1 and so w is a character of Ck[n] — S'.

For an abelian topological group G denote by G¥ = Hom(G,S!) the Pontryagin dual consisting of
continuous homomorphisms. Then (G/H)Y = Ht, where H+ = {¢ € GV|¢(H) = 1}, and GVV = G. Thus
(CY-/nCL)Y = (nCY )t =2 {z € Ck|p(z™) = 1,V¢ € C)} = Ck[n]. By duality get Cx[n]¥ = C)./nC}, and
so we get an extension @ : Cx — S which is well-defined up to n-th power characters. We only need to
show that the lift can be chosen to have finite order.

Theorem 5.10 implies that there exists an algebraic character n of Kcy such that w and 1o N gy,
differ by a finite order character. Thus it suffices to show that n can be chosen to have finite order, i.e., to
be trivial on Ky ... But we know that at v | C, w, = 1 on p, and so n | m, which implies that n | m,,
for every (necessarily complex) place of Kcy. Proposition 5.8 implies that there exists a Hecke character p
of Kcy such that g, () = (z/|z])™/™ (the condition of Proposition 5.8 is automatically satisfied because
it is satisfied for ) and in that case nu~" is finite order and thus &(p o Nk k., )" is finite order with the
same restriction to p,(Ax) as @. O

6 Projective Galois representations

6.1 A theorem of Tate

The setup of the first lemma is that K/Q, is a finite extension such that u,(K) C K and we may choose
¢p € pp(K) a primitive root of unity. Then the G x-cohomology sequence of 1 — Z/pZ — Q,/Z, = Q,/Z,
gives

H' (K, Qy/2,) =+ H'(K,Qy/Zy) — H(K, Z/pl)

o

where H2(K,Z/pZ) = H*(K, u,(K)) = H*(K,K )[p] = Br(K)[p] — %Z/Z where the first isomorphism
is via the identification of G x-modules Z/pZ = p,(K) via z + (7 and the last map is the invariant map
invg. The local Artin map rx : KX = WP C G4 permits the identification of continuous homomorphisms
¢ : Gx — Qp/Z, with continuous homomorphisms ¢ org : K* — Q,/Z,.

Lemma 6.1. Let K/Qy be as above.

1. If $ € HY(K,Q,/Z,) = Hom(G,Qp/Z,) then 6(¢) only depends on (¢ o 1)
exists a € Z/pZ, independent of ¢, such that invk (0(¢)) = ad(rx()).

iy () In fact there
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2. The connecting homomorphism § is an isomorphism, i.e., a # 0.
3. The constant a is independent of K/Qy.

4. If F is a number field such that ¢, € F' and uy and ug are two finite places of I' then ar, = ar

ug *

Proof. Note that H(K,Q,/Z,) 2 HY(K,Q,/Z,) - H*(K,Z/pZ) is exact and so factors through
5
0— HY(K,Q,/Zy)/pH" (K,Q,/Z,) — H*(K,Z/pZ)

But H'(K,Q,/Z,) = Hom(Gg,Q,/Z,) = Hom(K*,Q,/Z,). The sequence 1 — u,(K) — K* X5 K*
is exact and so Hom(K*,Q,/Z,) — Hom(K*,Q,/Z,) — Hom(u,,Q,/Z,) is exact which means that
HY(K,Q,/Z,)/pH"(K,Q,/Z,) — Hom(up, Q,/Z,). Therefore §(¢) only depends on the restriction ¢ o
TK‘ K)-

gli)r(lcé pp C K it follows that p,» C K* for a maximal n > 0. Let ¢ : K* — Q,/Z, such that
#(Cpn) = p~"; such a ¢ exists by the decomposition K* 2 @k X ji (K) % (O )TF where TF stands for torsion
free. If there exists ¢ : K* — Q,,/Z,, such that ¢ = py then pyp({n) = p~" and s0 Y ((n) = o fora € Z.
But then p™((pn) = 5 7 01n Qp/Zy whereas p"p((pr) = (1) = 0. We conclude that Hom(K*,Q,/Z,) #
pHom(K*,Q,/Zy) and so 0 # Hom(K*,Q,/Z,)/pHom(K*,Q,/Z,) — Hom(up, Qy/Zy,) = Z/pZ and so
Hom(K*,Q,/Z,)/pHom(K*,Q,/Z,) = Z/pZ.

Then invg of is a homomorphism Z/pZ — Z/pZ and it follows that there exists a € Z/pZ such that
invic (3(6)) = ad(ri(C,)) for all o.

To check that ¢ is an isomorphism simply note that d injects Hom(K*,Q,/Z,)/pHom(K*,Q,/Z,) =
Z/pZ — H?*(K, u,) and so § is injective which implies that a # 0 and so § is an isomorphism.

Let L/K be a finite extension. Under u, C K* C L*, rr(¢,) = cor” ork((,) and for ¢ : L™ — Q,/Z,
one has

invg (6x(cor @) = ax cor ¢(rx((p))
invy,(8r(¢)) = ard(r(¢p))
= arg(cor’ rr((p))

= ag cor ¢(rx(Gp))

But invg (dx (cor ¢)) = invy (6. (¢)) and so ax = ay..

Consider the number field K = Q((,). It suffices to show that if u; and wuy are finite places of K then
ar,, = ag,,. Let ¢ € Hom(Gk,Q,/Z,) = H'(K,Q,/Z,) LN H?(K, p,) = H2(K,K)[p| = Br(K)[p].
Then ), inv, 6(¢) = 0 because 0 — Br(K) — ®Br(K,) - Q/Z — 0. Therefore ) ax,¢(rk,((p)) = 0.
Since rx : Ay — G%2 is trivial on K* it follows that ¢(rx((p)) = >, ¢(rx,(¢)) = 0. Suppose one
may choose ¢ such that ¢(rk,(¢p)) is nonzero at exactly u; and up. Then the equations ¢(rg,, ((p)) +
(rK,, ((p)) =0 and ag, ¢(rk, ((p)) +ax,, d(rk,, ((p)) =0 give ak, = ak,, as desired.

We now show the existence of such a global character ¢. Let 1 : p, — Z/pZ be a nontrivial character.
Since for v finite have Hom (KX, Q,/Z,)/p Hom(K S, Q,/Z,) = Hom(pu,(K,), Qp/Z,) one may extend n to a
character n : KX — Q,/Z, and be restriction get a character n : K* — Q,/Z,. Now K* C K is dense and
so there exist ¢y, : K — Z/pZ such that ¢y, |gx = n and ¢y,|xx = n~'. Let S = {u1,us}. Recall that
G% )k, i generated by the inertia groups Ix,, and Ik, and so G g = Ax/K* KX [],45 Ok, Consider
the exact sequence

1= Og, O [K*NOk 0k —GRg— ClK) =1

The character ¢ = ¢y, ® ¢y, On (’)IX{u1 01X<u2 will then be trivial on K* N (’)IX{u1 01X<u2 and, since the cokernel
Cl(K) is finite, will extend to a character of GE}P’ g- Let’s check that ¢ satisfies the requirements. For
v # uy,u2, Tr, () € Ik, and so ¢(rx, ((p)) € d(Ik,) = 0. If v € S then ¢(rk, ((p)) = nT1(¢) # 0. O
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Lecture 11
2013-04-24

Theorem 6.2. Let K be a number field. Then H*(K,Q/Z) = 0.

Proof. Since Q/Z = ®Q,/Z, it is enough to show that H*(K,Q,/Z,) = 0. Inflation-restriction gives

1— Hz(GK(up)/Kan/Zp) - Hz(Kv Qp/Zp) — H2(K(/~Lp)a(@p/zp)

Since Gk (y,)/x C (Z/pZ)* and Q,/Zy, is pro-p it follows that H? (G (,,)/ x> Qp/Zyp) = 0. Therefore to show
that H?(K,Q,/Z,) = 0 it is enough to do the same for K(p,). We now assume that p, C K.
Consider the exact sequence

HY(K,Q,/Z,) 2, H*(K,Z/pZ) — H*(K,Q,/Z,) *+ H*(K,Q,/Z,)

The group H?(K, Qp/Zy) is p-power torsion so to show it is trivial it is enough to show that multiplication
by p is injective, i.e., the connecting homomorphism § is surjective. Note that H?(K,Z/pZ) = H*(K, u,) =
Hz(K,?X)[p] =~ Br(K)[p] so we need to show that H'(K,Q,/Z,) — Br(K)[p| is surjective.

In other words we need to show that for every torsion Brauer class o € Br(K)[p] there exists a ¢ : G2 —
Q,/Z, such that d¢ = o. We know that 0 — Br(K) — & Br(K,) - Q/Z — 0 and so « € Br(K)[p] projects
injectively to a collection () with «, € Br(K,)[p]. By Lemma 6.1 there exists ¢, : Gk, — Q,/Z, such
that ¢, = o, and some a € Z/pZ such that inv, o, = ad(rg,((p)). For all but finitely many v, o, = 0 and
50 ¢y (pp(K,)) = 0 and therefore we get a character ¢ = >_ ¢, : (A ) — Qp/Z,. Also for ¢, € p,(K*) we
have ¢((p) = > ¢u (K, (¢)) = a1 > inv, a, = 0 and so ¢ factors through ¢ : p, (K)\pp(Ag) = Qp/Zp.

Since Br(C) = 0, for v | C one has ¢, = 0. Moreover, as pa, = 0 it follows that p¢ = 0 and so
Im¢ C %Z/Z. Writing ¢(z) = exp(2miz) we get ® = ¢ 0 ¢ : pup(K)\pp(Ag) — C* having finite order p
and such that ®, = 1 for v | C. Proposition 5.11 implies the existence of a finite order extension of ® from
pp(K)\1ip(Ak) to A% /K*. As @ has finite order it is necessarily trivial on K2° and so ® factors through

AIX(/KXKOXO’O >~ G3b. As @ has finite order, its image lies in ¥(Q/Z) and so composing with logarithm we
get an extension ¢ : G2 — Q/Z and composing again with projection to Q,/Z, gives ¢ : G — Q,/Z,. By
construction §d¢ = « as desired. O

6.2 Lifting projective Galois representations

Lemma 6.3. Let T be a profinite group and let H C G be topological groups such that H C Z(G). Let
p: T — G/H be a homomorphism. For each g € T' let a, be an arbitrary lift of p(g) to G. Then c(g,h) =
agha}_blagl is well-defined in H*(I', H) and there exists a homomorphism p : I' — G such that the image of
p(g) in G/H is p(g) if and only if ¢ is cohomologically trivial.

Proof. Since the image of ¢(g,h) in G/H is p(gh)p(h)"1p(g)~! = 1 it follows that c(g,h) € H. Moreover, as
c(g,h) € Z(G) it follows that we also have c(g,h) = a;, "ag agn = a  'agna; . Using these and the fact that
c(g,h) € Z(G) one may check that (dc)(g,h,i) = c(h,i)c(gh,i) " e(g, hi)e(g,h) ™ =1 and so ¢ € Z%(T, H),
where H has trivial I' action.

Also note that if a} is any other lift of p(g) to G then writing ¢(g) = aja,' one has ¢(g) € H.

979

Writing ¢(g,h) = al,(aj,) " (a}) ™" one gets (g, h) = ¢(gh)p(g)~'¢(h)~'c(g, h) and so ¢’ and c are equal

in H*(I', H). Certainly the lift a) comes from a homomorphism p : T' — G if and only if ¢ = 1 if and only

if ¢ = ¢/ is cohomologically trivial in H?(T', H). O

Theorem 6.4. Let K be a number field and p : Gx — PGL(n,@p) be a continuous homomorphism. Then
there exists a continuous representation p : Gg — GL(n,Q,) such that the image of p(g) in PGL(n,Q,) is
p(g) for any g.
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Proof. Note that H,, = SL(n,Q,)ttnm(Q,) = PGL(n,Q,) via the natural projection and that the kernel is
1= ptm(Q,) = Hp — PGL(n,Q,).

Let ¢,, € H*(Gk, ftmn) be the cohomology class associated by Lemma 6.3 to an arbitrary lift of p to
H,,. The cohomology classes are compatible under the maps H?(Gr, pinm) — H* (G, ftnm) if m | m’ and
so we get a cohomology class

CcC = ligﬂcm € thz(GKy,umn(@p)) = H2(GK7Q/Z) = 0

where the last equality if the content of Theorem 6.2. But then ¢ = 0 implies that ¢, = 0 for some m and
therefore p lifts to a homomorphism p : Gx — H,, C GL(n,Q,). O

Lecture 12
2013-04-26

Proposition 6.5. Suppose K is a number field and p: Gx — PGL(n,@p) is a projective Galois represen-

tation which is unramified almost everywhere. Let p : Gx — GL(n,@p) be a lift of p. Then p is unramified
almost everywhere.

Proof. Let F/Q, be a finite extension such that p : Gx — GL(n, F) (standard Baire category theory
argument). The representation p is continuous and so there exists L/K finite such that p(GLr) C 1+
p?> M, % (OFr) (the composition of p with projection to the discrete group GL(n, F)/(1 4+ p>* M, x»(OF)) has
open kernel). Note that log : 1+ p?M,,«n(Op) — p?> M, xn(Or) and exp : p? M50 (Or) = 1+ 02 M, xn(OF)
are inverses to each other and satisfy the Baker-Campbell-Hausdorff formula. Thus the log map is injective
and has the property that log((1 + p?X)") = nlog(1 + p?X). Therefore log p(Gr) is a pro-p torsion-free
group.

Let v be a place such that v t p, L, /K, is unramified at w | v and p(Ix,) = 1. This implies that
Iy, = I, and so it suffices to show that p(Ir,) = 1. But p(Iy,) C F* = ker(GL(n,F) — PGL(n, F))
is abelian and so p(Ir,) = p(I3"). Now I3> = OF = k[ X ppee(Ly) % (1+ (wy))™" where TF stands
for torsion-free and pipe (L) is finite because the ramification of L, (ppn )/ Ly grows with n. Since p(Ir,)
is torsion-free it follows that p(ueo(Lyw)) =1 and so p(Ir,) = p((1 4 (ww)) ™). But (1 + ()™, being a
subgroup of 1+ (wwy,, ), is pro-q,-group whereas its image is in 1 + p?M,,«,,(OF) which is pro-p with pt q.,.
All subgroups of pro-p groups must be pro-p and so p((1+ (w,))TF) = 1 and it follows that p(I;,) =1. O

6.3 Local Galois representations in the “tame” case

Theorem 6.6. Let K/Q, be a finite extension and p : Gx — GL(n,C) be an irreducible continuous repre-
sentation. If p{n (the “tame” case) then there exists an order n extension L/K and a continuous character
x : L* — C* such that p = Indf X-

Before proving the theorem we give two results of Clifford.

Proposition 6.7. Let G be a profinite group and let N << G be an open normal subgroup. Let (p, V') be an
irreducible representation of G over a field K and let (p, W) C V|n be an irreducible component. Then

1. V= deG/N p(g)W and there exist g1, ...,gn such that V = @®p(g;)W as representations of N.

2. If U is an irreducible representation of N write VU] be the U-isotypical component in V, i.e., the set
of v € V lying in the image of some N -equivariant map U — V. Then the set of U such that VU] # 0
is finite, G acts transitively on it and V = @V |U].

3. Let U be an irreducible representation of N such that VU] # 0 and write H = {g € G|gV[U] = V[U]}.
Then V = Ind$ V(U] as representations of G.
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Proof. Clearly deG/N p(g)W C V is G-invariant and must be equal to V since V is an irreducible G-
representation. Now since N is normal in G, p(g)W is also a (necessarily irreducible) representation of N
and thus p(g)W N p(g")W is either 0 or equal to p(g)W and therefore V' becomes a direct sum of p(g;)W for
finitely many g;.

That the set of U with V[U] # 0 is clear from the fact that V is finite dimensional. Next, let U C V|y
irreducible, then U C @©p(g;)W and since each p(g;)W is irreducible it follows that U = p(g;)W for some
g;. Finally V[U] = @U’ where U’ C V|y such that U = U’ as N-representations and so V = &V [U] as
N-representations.

Finally, let U = Uy,Us,...,U,, be the finitely many irreducible representations of N such that V =
@V[U;] and let g; such that U; = p(g;)U. It follows that G/H = {g1,...,gm}- Any v € V can be represented
uniquely as v = ) p(g;)v; where v; € U. The map V' — KI[G] @k g V[U] given by v = > [g;] ® v; is an
isomorphism of vector spaces which can easily be checked to be G-equivariant and therefore is an isomorphism
of G-representations. Finally, K[G] ® g VU] = Ind$ V[U] via the G-equivariant map sending [g] ® v to
the function sending g to v and every coset other than gH to 0. O

Lecture 13
2013-04-29

Proposition 6.8. Let G,N,V and W as in Proposition 6.7 such that K is algebraically closed and V =
VW] (in which case immediately dim W | dim V). Then there exist irreducible projective representations
0:G — PGL(dim W, K) and 7 : G — PGL(dim V/ dim W, K) with 7 trivial on N, such that p = 0 ® T in
PGL(dim V, K).

Proof. The group N acts on p(g)W via p(n)p(g)w = p(g)p?(n)w which makes sense since N is normal in
G. Recall that V = @p(g)W as N-representations where p(g)W has the action p|%, (n)w = plw (g 'ng)w.
Since p(g)W = W as V is isotypic there exist matrices A, such that p|§}, (n) = Agplw(n)A;" for all n € N,
where A, is defined up to scalars. Let o(g) = A, : G — PGL(WW) be the first projective representation; the
fact that this is a homomorphism is straightforward to check.

Proposition 6.7 shows that V' = @p(g;)W for finitely many g; in which case dim W | dim V' as desired.
Let r = dimV/dim W and let U be a vector space spanned by u1,...,u,, let wy,...,w,, be a basis of
W and let w;; = p(g;)w; be a basis of p(g;)W. For g € G write p(gig)w; = > Bijri(9)wrr (the order
really is g;g!) which can be done since wy, is a basis for V. Define U @ x W as a G-representation by
w(g)(u;, @) = Zk,l Bijri(g)ur @ w; which exhibits U@ W = V as G-representations. It suffices to construct
the projective representation 7 on PGL(U) such that p 2 o ® 7.

Note that for n € N one has p(gin)w; = p(g:)plw (n)w; € p(g;)W and so u(n) =1® plw(n). For every
g € G one has that plfy, (n) = Agp|w(n)A; " and therefore get that

p(n) =1® p?lw(n)

=(1® A1 plw(n)(1e Ay
p(n) = u(g) " (n)p(g)

= u(g) " (1 @ plw (n)u(g)

So u(g)(1® Ay) commutes with 1® p|w (n) for all g € G. For g € G let F(g) = pu(9)(1® Ay) € End(U @ W).
Since every element of U® x W can be written uniquely as a linear combination of u; ®v; for some v; € W and
the basis vectors u; of U, one can write F(g)(uw; @ w) as ) u; ® Fi;(g)(w) for linear maps F;;(g) € End(W).
Since F(g) commutes with 1 ® p|lw(n) it follows that F;;(g) commutes with p|w(n). But (p|n, W) is
irreducible and so Fj;(g) € Z(Endy(W)) = K* by Schur’s lemma. Therefore F;;(g) = «;;(g) for scalars
a;j(g) € K*. Writing 7(g)u; = Y a;5(g)u; it follows that 7(g) € End(U) giving a projective representation
7:G — PGL(U) (since A, is defined up to scalars only). That 7 is trivial on NNV follows from the fact that
forn e N, u(n) =1® plw(n).

Finally, 0 and 7 are irreducible because otherwise V' would be reducible, which it is not. O
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Definition 6.9. A supersolvable finite group is a finite group G with a descending filtration G = Gy D
G1 D -+ D G, =1 such that G; < G and the successive quotients G;/G;4+1 are cyclic.

Proposition 6.10. If (p,V) is an irreducible representation of the supersolvable group G over an alge-

braically closed field K then there exists a subgroup H C G and a character x : H — K* such that
[a¥) G

p = Indj; x.

Proof. If G is abelian then p is a character to begin with. We will prove the result by induction on |G]|.
If p: G — GL(V) is not faithful, i.e., if kerp = H < G then p factors through p : G/H — GL(V) where
|G/H| < |G| and so by induction p is induced from a character. Suppose therefore that p is faithful.

The group G/Z(G) is supersolvable with filtration G/Z(G) = Hy D Hy D --- D H,, = 1 with H; <
G/Z(G) and H;/H;;, cyclic. Let H = H,,_1Z(G) which will be proper in G if G is not abelian. Since
Hp—1 = Hp—1/Hp, is a cyclic normal subgroup of G/Z(G), H < G is abelian. Since H ¢ Z(G) and p is
injective it follows that p(H) ¢ Z(p(G)) = K* where the last equality follows from the irreducibility of p.

Now Proposition 6.7 implies, since H is normal in G that if U C Vg is a (necessarily one dimensional)
irreducible then V[U] is irreducible as a representation of Hy = {g € G|gV[U] = V[U]} and that V &
Indgu V[U]. If V # V[U] then by the inductive hypothesis V[U] = IndV x for T'C Hy and x a character
in which case V 2 Ind$ x. If V = V[U] then as representations of H, V = U® where U is one-dimensional
and so p(H) consists of scalar matrices contradicting the construction of H. O

Lemma 6.11. Let G — H be a surjection of finite groups with abelian kernel and let p: H — GL(V') be a
finite dimensional representation. Suppose F' C H is a subgroup and E C G is its preimage in G. Suppose
p: G — GL(V) is the composition of G — H — GL(V) and that there exists 7 : E — GL(W) such that
p = IndS 7. Then p=nd% o for a representation o.

Proof. Let 1 : G — H. If k € kerw then k € kerp so p(k) = 1. But at the same time kerm C F
and so p(k) = ©yeq/pT? (k) which implies that 7 is trivial on ker 7. Thus 7 descends to a representation
o: E/kerm = F — GL(W). The map = gives G/H = E/F and so Ind% 7 2 (Ind% &) o 7 which, since = is
surjective, gives p = Indg o as desired. O

Lemma 6.12. Let G be a finite group and H < G a normal subgroup such that G/H is supersolvable. If
(p, V) is an irreducible representation of G that cannot be written as the induction from a subgroup of G,
then Vg is irreducible.

Proof. Suppose V|p is reducible and let W an irreducible H-subrepresentation. Proposition 6.7 implies
that unless V' is isotypic, i.e., V. = V[W], V can be written as an induction. Therefore V' = V[W] and so
V = ®p(g;)W where all the p(g;)WW are isomorphic to W. We may therefore apply Proposition 6.8. We
obtain ¢ : G — PGL(W) and 7 : G — PGL(U) where U has dimension dimV/dimW > 1, 7|y = 1 and
ol = pl. Since 7|y = 1, the projective representation 7 factors through G/H — PGL(U). For simplicity
denote G’ = G/H supersolvable.

Recall from §6.2 that attached to 7 : G’ — PGL(U) is a cohomology class ¢ € H?(G’, uy) for some
integer N in which case one get a genuine representation 7 : G’ x uy — GL(U) as follows: let 7 be a fixed
lifting of 7 to G’ — GL(U) (not necessarily a homomorphism) and define G’ x py by letting multiplication
be given by (g,a)(h, ) = (gh,aBc(g,h)) in which case setting 7(g,a) = 7(g)« is in fact a homomorphism.
Indeed, 7(g,a)(h,8) = T(gh)aBc(g,h) = T(g,a)T(h, ). Now G’ x un is also supersolvable because if
G'=GyD...DG;D...D lissuch that G; < G' and G}/Gj,, is cyclic then G' % p,, = Gy X puy D ... D
Gixpn D ... D 1xpy D1issuch that Gj x uy <G’ x pn and G X uy /Gy % py = G /Gl is cyclic
while ppn/1 is also cyclic. As 7 is irreducible and G’ x up is supersolvable it follows that 7 & Indgl,x’“v X
for a character x : H' — K> by Proposition 6.10. The group 1 x ux < G’ x uy and so Mackey! gives

~ o Ixpun g
Tlisuy = @geG’xuN/H(lxuN)(IndH'mlxuN X)

Yf H C G, V is a representation of G and N <1 G then

(Ind% V)|n = EBQGG/HN(Ind%ﬂN V)9
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But evaluating 7(1,a) = (Indgl/x‘“\’ x)(1,a) we get a scalar matrix and so x is in fact a character of
H (1 xpuyn)asall 1 xun/H N (1% py) conjugates of x are equal. If 1 x uy ¢ H' then this would imply

that 7 = Indgl,wN x would be reducible. Thus 1 x uy C H'. Writing H" = {(g9,1)|(g9,) € H'} gives
H' = H"” x pyn. Note that composing 7 with the projection G — G/H gives T = Indfﬁ'l’f[’;ujv X where
extends to H"” H by its action on H" .

For some integer M a lift to GL(dim W) of o(g, ) defined as o(g) will give an actual homomorphism

o :Gxpun xpuy — GL(dim W) whereas 7 lifts to G X uy X ppy — GL(dim V/ dim W) by sending (g, «, 8) to

IndGNHN X

H E i g wping X Where x on H"H X pun X pung

7(g, ). Then as a representation of G X un X pps have 7 22
is defined via the projection to H"H X py.

Let p =0 Q7T = Indgﬁl‘ﬁqziﬁ#ﬁd(ﬁ ® x). Let p’ be the composition of the representation p with the

projection G X py X ppr — G. Then p and p' are representations of G x puy % ppr whose projectivisations
agree. Therefore they differ by a character ¥ of G x un X ups. Therefore p’ is an induced representations
which implies that p is induced by Lemma 6.11. O

Lecture 14
2013-05-01

Proof of Theorem 6.6. First, p is a continuous representation and thus factors through G,k for some
finite Galois extension L/K. Next, write p = Indgi; * p' such that p’ cannot be written as an induction.
Since p is irreducible it follows that p’ is irreducible and p t dim p’ | dim p. Therefore it suffices to show that
if p cannot be written as an induction then p has dimension 1.

Let P g = GlL/K be the wild inertia. Note that Go = G,k /Pr/x contains G = Iy x/Pr/k as a
normal subgroup and Go/G1 = Gy, /i, Which is cyclic. Moreover, I1,/x = Ik /IxNG and Pr g = Pg /PN
G, by the Herbrandt quotient theorem and so I,k /Pr/x = I /Px(Ixk NGr). But I /Pgx = [[Z,(1) and
so Ik /Pr)K is a finite quotient of an abelian group which must therefore be supersolvable. Lemma 6.12
then shows that p|p, . is irreducible.

But Pr/k is a p-group and so dimp | |Pr x| must be a power of p. But p { dimp and so dimp = 1 as
desired. 0

7 Iwasawa theory for Z,-extensions

The main result of this section is the following theorem of Iwasawa on Z,-extensions. The main reference is
[Was97, §13].

Theorem 7.1. Suppose p > 2 is a prime. Let Ko/K be any Z, extension of the number field K. Then
there exist integers A, u > 0 and v depending only on K such that vy(hk,) = An+ pp™ + v for n >> 0.

7.1 Z,-extensions and Leopoldt’s conjecture

Proposition 7.2. Let K be a number field. There exists a tower of extensions K = Ky C Ky C ... such
that Ko, = UK, is Galois over K with Galois group Gi__/x = Zyp and Gi_ /i, = p"Zy.

Proof. The extension Q(p,n+1)/Q is abelian with Galois group (Z/p"T'Z)* = (Z/pZ)* x Z/p"Z. Let
Qy, be the subfield of Q(p,n+1) fixed under (Z/pZ)*. Then Gg, o = Z/p"Z. Writing Qs = UQ, gives
Go.. /o = UM Z/p"Z = Z,.

Now let Ko, = KQu with Galois group Gg__/x = Go_ /g..nkx- But the latter is an open subgroup of
Go../g = Zy and so is of the form p*Z, for some k > 0 giving Gx_ /x = p*Z, = Z, additively. This is the
cyclotomic Z,-extension. Writing K, to be the subfield of K, fixed by p"Z, produces the desired tower. [

Having produced a Z,, extension of K we would like to answer the question of how many such extensions
there exist. To answer such question we need the following result from group theory:
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Lemma 7.3. Let G be a pro-p group. Then G is generated by dimp, H(G,F,) elements. The mazimal
torsion free subgroup of G is generated by rankz, HY(G,Z,) elements.

Proof. See [NSWO08, Proposition 3.9.1]. O

Lemma 7.4. Let G be a profinite group and let H be the mazimal abelian pro-p torsion-free subquotient of
G. Then
ranky, H'(G,Z,) = ranky, H'(H,Z,)

Proof. As G acts trivially on Z, it follows that H'(G,Z,) = Hom(G,Z,) = Hom(G*",Z,) =~ H(G**,Z,).
Let H = G* /U for U open. Then inflation-restriction gives

1 — H'(H,Z,) - HY(G*,Z2,) — H'(U,Z,)

so it suffices to show that rankz, H'(U,Z,) = 0. Now let V = U/N be the maximal pro-p quotient of U, in
which case V is torsion (by choice of U) and every finite quotient of N will have cardinality coprime to p.
Again inflation-restriction gives

1— HYV,Z,) — H'(U,Z,) — H(N,Z,)

The group V is finite so H'(V, Z,) is torsion and so rankz, H*(V, Z,) = 0 which implies that rank;, H*(U,Z,) =
ranky, H'(N,Z,) so it suffices to show that rank;, H'(N,Z,) = 0. But

H'(N,Z,) = lim ( ling Hl(N/M,Z/p"Z)>
MCN \p"Z,CZ,

where M is open normal in N. But N/M will be finite with cardinality invertible in Z/p"Z and so
HY(N,Z,) = 0. O

Proposition 7.5. Let M be a finitely generated Z,-module.

1. If K/Q, is a finite extension and M carries an action of Gx then
X(Gk, M) =ranky, H(Gy, M) — ranky, H'(Gg, M) + ranky, H*(Gx, M) = —[K : Q,|ranky, M
Moreover, ranky, H'(Gg, M) = ranky H*~"(Gg, M*(1)).

2. If K/Q is a number field, S is a finite set of places which includes the infinite places, the places where
M is ramified and the places above p, and M carries an action of Gk g, then

X(Gk,s, M) = rankz, H°(Gk.s, M) — rankz,, HY (G, M) + rankz,, H?(Gg, M)
= Z ranky, M — [K : Q|ranky, M

v|oco

Proof. First note that if M is a finitely generated Z,-module and G is one of Gk and Gk s then Propositions
3.6 and 3.8 imply that H*(G, M) is a finitely generated Z,-module. Next one may write M = M;os & Mrp
where M, (the finite torsion) is stable under G' and Mt is torsion-free. As H*(G, Myqys) is finite it follows
that rankz, HY (G, Myors) = 0. Using the exact sequence H'(G, Mios) — HY(G,M) — H'(G, Mtr) —
HTYG, Myors) we deduce that rankz, H{(G,M) = rankz,, HY(G, Mrr) so for the rest of the argument we
may assume that M is in fact torsion-free.

For any finitely generated Z, module X one has that rankz, X = dimg,(X/pX) —dimp, X[p]. Applying
this observation to X = H'(G, M) get that

rankz, H'(G, M) = dimg, H' (G, M)/pH" (G, M) — dimg, H' (G, M)|p]
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Since M is a free Z, module get an exact sequence 0 — M L3 M — M/pM — 0 which gives the exact
sequence A ‘ A ‘
0 — HY(G,M)/pH (G, M) — H' (G, M/pM) — H"*'(G, M)[p] — 0

We deduce that

X(G, M) = ranky, H°(G, M) —ranky, H'(G, M) + rankz, H*(G, M)

dimg, H°(G, M)/pH®(G, M) — dimg, H°(G, M)|p]

— (dimp, H' (G, M)/pH" (G, M) — dimp, H' (G, M)[p))

+ dimg, H*(G, M) /pH*(G, M) — dimg, H*(G, M)|[p]

= dimy, H°(G, M /pM) — dimg, H' (G, M /pM) + dimg, H*(G, M /pM)
— dimg, H°(G, M)[p] — dimg, H*(G, M)[p]

= dimg, (G, M/pM) — dimg, H*(G, M)[p] — dimg, H*(G, M)|[p]

= dimg, x(G, M/pM) — dimg, H*(G, M)[p]

where for the last equality note that H°(G, M) C M is torsion-free and so H°(G, M)[p] = 0.

If G = Gk for K/Q, then dimp, x(G, M/pM) = —[K : Qp]dimg,(M/pM) = —[K : Q,]rankz, M by
Theorem 3.7 and H3(G g, M) = 0. This concludes the proof of the first part.

If G = Gk s then by Theorem 3.9

dimg, x(G, M/pM) =Y dimg, (M/pM)“<> — [K : Q] dimg, (M/pM)

v|oo

dim[gp H3(GK,S,M)[p} - Z dim]Fp HS(GKU,M)LP]

vEO

It therefore suffices to show that for v | co one has
dimg, (M /pM)“*v — dimg, H*(Gk,, M)[p] = rankz, M=
If v | R then

H3(G(C/JRaM)[p] = Hl(G(C/]RaM)[p]
= M[2][p] =0

where the last line comes from H°9(Z/nZ,7Z) = 0. If v | C then trivially H3(Gg,, M) = 0.

When v | oo then Gk, is cyclic and so H* (G, , M) = 0. But from the exact sequence 0 — Mo /pMExv —
(M/pM)%xe — H'(Gg,, M)[p] — 0 we deduce that dimg, (M /pM)C*v = dimg, ME%v /[pM“¥v = ranky, M%xv
as desired. 0

Proposition 7.6. Let K/Q, be a finite extension and K /K be a Z,-extension. If p # £ then Ko /K is
the unique unramified extension with Galois group Z,. If p = ¢ there are exactly [K : Q] + 1 independent
such extensions K /K.

Proof. Certainly Gguw /g = Z —» Z,, and so there exists a unique unramified Z,-extension. Let K?/K be the
composite of all Z,, extensions, which will then be the maximal abelian pro-p extension of K with torsion-free
Galois group over K. The number of independent Z, extensions is equal to the Z, rank of the abelian pro-p

group G /k-
If p # ¢ then K? C K* the maximal tamely ramified extension of K since Px = G?/Kt is pro-¢. But recall

from local class field theory that G%’t/K ~ Gab/pab =~ I/(;/(l—i—mK) = Frob%( xOf/(1+mg) = Frob% Xk

The largest torsion-free pro-p subquotient of this is Frobz;(p corresponding to the unique unramified Z,
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extension. Another way of seeing this is by recalling from local class field theory that t : Ggi/gu =
Ix/ Pk = Hq#Zq(l) and Gguw /g = 7.foe Gkt i and T € I /Pg then oro~! € I/ Pk since I is
normal in Gk and t(oc70~!) = o(t(7)) where o acts on 1440 Z4(1) via the Tate twist. Now G+, » contains

the commutant (G i, Gxt k). Let 0 € Gge/x and 7 € Ggr/gw in which case oo~ 77!

T € GKt/Kp.
But then ¢t(o70~'77!) = o(t(7))t(r) " has to be trivial in Gg»/x the maximal abelian torsion-free pro-p
subquotient of Gg:/x and so o(t(7)) = t(7) in this quotient which, since no nontrivial element of Gk,
acts trivially on nontrivial Tate twists, implies that ¢(7) = 0 in the quotient. But then I /Py projects to 0
and so the maximal abelian torsion-free pro-p subquotient of G g+ /K 18 also the maximal abelian torsion-free
pro-p subquotient of G gur /i = 2, i.e., Zy as desired.

Now suppose that p = ¢. The number of independent Z, extensions, by Lemma 7.3, is ranky, H* (Gkr/rs Lp).
The group Ggr/i is the maximal abelian pro-p torsion-free subquotient of Gk and so Lemma 7.4 implies
that ranky, H'(G ke K, Zp) = ranky, H (G, Zy).

Finally, Proposition 7.5 gives that ranky H?(Gg,Z,) = rankz, H°(Gk,Z,(1)) = 0 and

rankz, H'(G,Z,) — ranky, H° (G, Z,) + ranky, H* (G, Z,) = —[K : Q)]

from where immediately we get that rank;, H'(Gg,Z,) = [K : Q)] + 1.

Lecture 15
2013-05-03

Lemma 7.7. 1. If K/Q, is a finite extension then @KX QLIP"L=K* QL.

2. If K is a number field and S is the set of places containing the infinite places and the places above p
then
im0} 4 9 Z/p'Z2 0F 07,

Proof. For the first part write K> 2 % x kj X ppe (K) % (1 +mg)TF. Tt suffices to show that lim M &
Z/p"Z = M ® Z, for each part separately. This is clear for w%, k) and p,~(K) which is a finite group.
The group (1+mg)TF is a finitely generated torsion-free Z,-module (1+p?Of = p?Ok under the logarithm
map and the latter is a finitely generated Z,-module; 1 + p?Of is finite index in (1 + mg )™ and so the
latter is also finitely generated) and therefore it is of the form Zj. Finally the result is true for Z, and thus
also for K*.

For the second part suppose M is a finitely presented abelian group with presentation Z" — Z°* — M — 0.
Let K C Z" be the kernel of Z" — Z° in which case (Z"/K) ® (Z/p"Z) satisfies the Mittag-Leffler condition
and so R! an((Z’"/K) ® (Z/p"7Z)) = 0. But then we deduce that m M QL/P"L =L |7y = M @ Zy,. From
Theorem 2.1 it follows that (’)[X(’ 5 is a finitely generated abelian group with rank |[S| — 1. The group le(’ g
is therefore finitely presented and the second part follows. O

Proposition 7.8. Let K be a number field with r1 real places and ro complex places. Let p be a prime.
Then the number of independent Z,, extensions is 1 4+ ro + 0 where 0k, called the Leopoldt defect, satisfies
0<dx <ri+reo—1. If Koo/K is a Zy-extension then K /K is unramified outside of places above p.

Remark 1. One of the many equivalent formulations of Leopoldt’s conjecture is that always dx = 0. In
particular, if K = Q or K/Q is quadratic imaginary then Leopoldt’s conjecture is true. In the case of K = Q
the unique Z, extension is the cyclotomic one while in the case of quadratic imaginary fields one has an
additional Z, extension called the anticyclotomic extension.

Proof of Proposition 7.8. First, let v | £ # p and let w be a place of K, above v. Then K /K, is
abelian with Galois group a subgroup of Z, and so is a Z, extension as well. Thus K, ,,/K, is unramified
by Proposition 7.6.
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Let K7 /K be as before the composite of all the Z,, extensions in which case K7 /K is the maximal abelian
pro-p torsion-free extension of K which is unramified outside of p. Let S be the finite set of places containing
the infinite places and the places above p. Then K? C Kg and Gk»/ is a quotient of G s. As before the
number Z of independent Z,, extensions is Z = ranky, H' (G v/, Zy)-

The group Gg» /i is the maximal abelian pro-p torsion-free subquotient of G s and so by Lemma 7.4
it follows that

Z =ranky, H' (Gg» 5, Zy) = rankz, H' (Gk,s,Z,)

The set S contains the infinite places and the places above p (Z, is everywhere unramified as it carries
the trivial G k-action) and so Proposition 7.5 implies that

rankz, HO(GKS,ZP) —rankgz, Hl(GK,S,Zp) + rankz, HQ(GKS,ZZ,) =(ri4+r)—[K:Q =—rg

giving
Z = rankz, Hl(GK,S,Zp) = rankz, HQ(GK)&ZP) +ro+1

Let 65 = rankz, HQ(GKS, Z,) > 0 in which case Z = 1413+ dx. To prove the inequality dx <11 +72 —1
we need to show that rank;, H?(Gk.s,Zy) < r1 + 712 — 1 = rankz O.
The Poitou-Tate sequence (Theorem 3.4) applied to Z/p™Z gives an exact sequence

HY(Gg,5,Z/p"Z) = ®vesH (K, Z/p"Z) — H (G s, pipn)” —

— H*(Gk 5, Z/p" L) = @ves H* (K, Z/p"Z) — H*(Gk s, pipm)" — 0
Dualizing and using Tate duality to write H'(K,,Z/p"Z)" = H*~(K,, i,n) we get

@vESHO(KvaNp") — HQ(GK,Sa Z/an)v — HI(GK,Smup") — @vesHl(Kwﬂp")
Kummer theory gives H' (K, ui,n) = KX /(K)P" and taking projective limits one gets
Does lim pipn (Ky) = lim H* (G5, Z/p"2)" — im H' (GK,s, bpn ) = @ves fm H' (Ko, pipn)

The projective maps in @,esppn (K,) are x +— P and since ppe(K,) is finite (ex, /g, is finite whereas
€Q, (1, )/Q, 18 infinite) it follows that Hm g (K,) =0. Using A/A™ =2 A® Z/nZ and Lemma 7.7 we obtain

0 — lim H*(Gk,s5,Z/p"2)" — Im H (G5, ppn) = Sues K @ Ly
First, note that

I'&HH2(GK,57Z/an)V = (hﬂHQ(GK,sz/an))v = HQ(GK,Sahng/an)v = HQ(GK,Sva/Zp)V

and so
0= H*(Gr,s5.Qp/Zp)" — Im H (G5, ppn) = SoesKS @ Ly
For the next step, we need a little notation. Let Eg = lim, o Of s Js = lim, o [I,s L and let

Cs = lichKs ILs L} /OF g- It is a classical computation in global class field theory (see [NSWO08, 8.3.8]

or [Mil13, Theorem 5.1]) that H(Gr,s,Cs) = Ax /K" [],45 Ok, - The Gk,s cohomology sequence for
1— Eg— Jg — Cs — 1 gives

H°(Ggs,Js) = H*(Gk5,Cs) = H (Gk,5,Es) = H (Gk.s,Js)

Hilbert 90 gives H!'(Gk s, Js) = 0 and so

H'(Gk.s,Es) = A /K™ [ K [ 0%, = Cls(K)
veS vgS
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Since S contains the places of K above p the sequence
1= ppn - Eg — Eg — 1

is exact. Indeed, if « € Eg then o € Of,s for some L C Kg and K( *y/a)/K will be unramified at places

away from S and so M = K("y/a) C Kg. Necessarily then »\/a € OF; ¢ where M C K.
Now Kummer theory gives

0= 0k g/(0f )" = H'(Gk s, ppr) = H' (Gk,5, Es)[p"] = 0
where H' (G s, Es)[p"] = Clg(K)[p"]. Taking projective limits as n — oo one gets
0= 1m0k s ®Z/p"Z — @Hl(GK,S,ﬂpn) — lim Cls (K)[p"]
and since l'glA[p”] = ( for any finite group A it follows that, using Lemma 7.7,
Of.s ® Ly = H' (G5, f1pn)
Plugging this back into the exact sequence above yields
0 — H*(Gk,5,Qp/Zp)" = Of ¢ @ Ly = SvesK) @ L,
Consider the exact sequence
0= 0k = Ok 5 = Gues—o K, /O = CI(K) — Clg(K) = 0
Since Z, is flat over Z we get after tensoring
02 0% ®Zp = Of g ® Ly = Bues—ok ) /OF R Ly

Now ¢ € H*(Gk 5,Q,/Zy)" maps via Ok ¢ ®Zy t0 0 in Gyes K @7Z;, and 50 t0 0 in @yes— oo K /OF @ Zy.
But then the image of ¢ in O ¢ ® Z, lies in fact in O ® Z,,.
Now
ranky, H?(Gr,s,Q,/Zy,)" < ranks, OF ® Z,
< rankz O
=ri+ro—1

but at the same time if we write H*(G,s,Z,) = Zy,@X where X is finite torsion and r = rankz, H*(Gx,s,Zy)
then

ranky, H*(Gk,s,Q,/Z,)" = ranky (H*(Gk,Zp) ® Qp/Z,)"
rankzp((Qp/Zp)T o (X ®z, Qp/Zp))v
= rankz, H2(GK’S,ZP)

since X ®z, Q,/Z, =0 and (Q,/Z,)" = Z,. Therefore rank; H*(Gk s,Zy) <11+ 72 — 1 as desired. O

Remark 2. Given that 6 = rankz, H?(Gk,s,Z,) another formulation of Leopoldt’s conjecture is that
rankzp Hz(GKﬂ,Zp) =0.

Lecture 16
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7.2 Class groups and Galois modules

Lemma 7.9. Let Koo/K be a Z, extension of a number field. There exists m > 0 such that Koo /K, is
totally ramified at all places of ramification.

Proof. We already know from Proposition 7.8 that K., /K can ramify only at the places vq,...,v, of K
above p. Fixing a place w; of K, above v; (since K.,/K is Galois any will do) let I; = Ix.. ., /K, - Now
NI; is an open subgroup of Gk /x = Z, and so is of the form p™Z, = Gk __ /k,, for some m. Suppose that
w |t | v are places of K, K, K. Then Gg__ , /k,., C Gk../k,, C I,. But then Herbrandt’s theorem gives
I w/m: = Lo NGr /K = GKeoow/Km., a0d 50 Kog /K ¢ is totally ramified. O

Remark 3. If Ko = Q(v/—6) and K; C K, the Zs-extension, with G, x, = Z/2Z then K; = Ko(v/?2) is
unramified over Ky. (This is [Was97, Exercise 13.3].)

Definition 7.10. Let L,/K, be the maximal abelian extension of K, which is unramified at all finite
places and has p-power order. This is a subextension of the Hilbert class field fixed by the prime to p part
of CI(K,). Let Lo, = UL,,. In this case

Up(hKn) = Up([Ln CKy)) = Ing[Ln D K]

Lemma 7.11. The Galois group X, = G, /k, = Cl(Ky) carries an action of G, /x by letting g-o = gog !

for g€ Gk, /k, 0 € Xy, and g any lift of g to G, /K.
Proof. First, any other lift of g to Gz, /k is of the form gh for h € G, /K, C G, k- Then

gho(gh)™ = ghoh™ '}
= gog !

since h, o € X,, which is an abelian group by definition. Therefore the action is independent of the choice of

lift. Finally, if g,h € Gk, k then gh is a choice of lift of gh and so

g+ (h-0)=ghoh™'g™"
= Gho(gh)~!

~ ~—1

= ghogh
=(gh)-o
and so this is indeed a group action. O

Lemma 7.12. Let vy,...,vs be the places of K, above p that ramify (necessarily totally) in K., and let
w; | v; be any place of Loo. If Imi =11, /K,... then Gk, = Xl for alli.

Proof. Since Loo/K is unramified it follows that I,,; N Xoo = 1. Therefore I,,; — Gp_/k,,/Xeo =
Gk. /K, Denote by Ip,; as well the image of I,,; in Gg_/k, - The subextension K,, was chosen
such that IKoc,uj/Km,,vj = GKOO,W/Km,vi where u; is the place of K, below w;. The decomposition group
GKw’ui/mei C Gk /K,, is an open subgroup and so it is of the form GKOO/KM for some n; > m. But
by choice of Ky, Gg__/k,, = Mm, and so Gk k, = mGKoo/Kni which implies that minn; = m. But
Gk /K, acts transitively on the places v; and so n; = m for all i proving that I,,,; & Gk _/k,,. Finally
this implies that Gp__/k,, = XooIm,i- O

Lemma 7.13. Let v be a topological generator of Gk __/x = Zy in which case vy, = 'ygm s a topological
generator of Gk__/k,, = p™Zy. Then

Gro/km:Gro/Km] = (Ym — 1) - Xoo

where the action of Gk /k,, on Xeo =lim Xy, =G /K, 15 defined in Lemma 7.11.

34



Proof. Identify I,,, 1 = Gk _ /K, in which case we denote by 7,, the lift to I,, 1 as well. Then v,,-x = YTy
If g1,92 € Gr__/K,, = Im,1Xoo then may write g; = h;x; for h; € Gk__/Kk,, and z; € X and it is easy to
check (using that I,,, 1 and X, are abelian) that

919297 " 95 1 = (1 — ho)hy - 1) ((h1 — 1)ha - 32)

Taking hy = v, and hy = 1 gives (Y — 1) - 72 = 919297 *g5 > and 50 (Y, — 1) - Xoo C Gro /K GLo /K]
Going in the other direction, if v € Gg__/k,, then v =~y for some a € Z,. Then

yo 1= =040 1= 3 (D)1

n>1

«
n

and so (1 —hg)hy -1, (1= hi)ho - 22 € (Ym — 1) - Xoo. We deduce that (G k.., Gr. /K, ] C (vm —1) - Xeo
and equality follows. O

Lemma 7.14. Let 0y, ; € I be the image of vm € Gk /K, = Im,i- Since L, i C Gr__ /K, = Xoolm,i there
exists gm,; € Xoo sSuch that 0y, i = gm,i0m,1. Let Yy, C X be the Zy-submodule generated by g 2, ..., gm.s
and (v — 1)Xo. Then

m

Xn = Xoo/Vn,m ' Ym
where vy, = 1+92 +-- '+7§7WL’1. (Here the action of vy, ., on'Y,, C Xo is that defined in Lemma 7.11.)

Proof. By definition L,, is the maximal abelian unramified p-extension of K, while L., is some p-extension
of K,,. Therefore L,, is the maximal abelian unramified subextension of L.,. Translating to Galois groups,
Gr. /L, is generated by the commutant [Gr K,,Gr./Kk,] (to make L, /K, abelian) and I,; (to make
L, /K, unramified).

Note that o, ; = Omi SO

= (gm,igm,l)pn_m
n—m_ 1

pnT ™

p
_ k —k
- Um,lgmyiam,l)am,l

n—m

oP
'Ym gmz m,1

T
k=0
-1

= (Z/n,m : gm7i)0'n71

where the fourth equality is by definition of the action v, - — since o, 1 is a lift of vy, to Gp_ /. We
conclude that ¢, = Vnm * Gm,i-
Now
Xn=Gr,/K,
=Gro/K./GLe/Ln

= Xooln 1 ([GLo /i Gro i) Ingts - Ins)

= Xeoln 1 /{GLo /K> G /i) Ints Gn2s -+ -5 Gnss)

= XOO/<[GL(X>/Kna GLm/Kn]agn,% s 7gn,8>

= Xeo/{(rn = 1) Xeos gn2s -+ Ins)
where the third equality uses Lemma 7.12 and the sixth equality uses Lemma 7.13. Finally, Y,, is generated
by (Yn — 1) - Xoo = Unm(Ym — 1) - Xoo and gn,i = Vn,m - gm,i and so Y, = v, ., - Y, giving

Xn = Xoo/Vn,m Y
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7.3 The Iwasawa algebra

Recall that our goal is Theorem 7.1 where we study v,(|X,,|) where X,, is a quotient of X,. To study the
cardinality of X, as n — oo we need to study X, as a module over Gg__ /. In fact we will show that X
is a module over Z,[T], we will study finitely generated modules over Z,[T"] and we will deduce the theorem
from a structure theorem.

We begin by collecting some facts, with brief sketches of proofs, about power series rings. Throughout
L/Q, is a finite extension.

Lemma 7.15 (Division with remainder). If f,g € Op[T] such that f(T) = ao+ a1 T +--- with a; € my, for
0<i<n-—1anda, € Of then one may uniquely write

g=aqf +r
for a power series g € OL[T] and a polynomial r € OL[T] of degree < n.

Proof. Write U(T) = ay, +an41T +--- and for a uniformizer wy, of L, let P = @, *(f — UT™), a polynomial
of degree < n. Consider the linear operator

T(i bZTZ) = i aiTi_n
=0 i=n

and the multiplication by P/U operator mp,y. If
o(T) =U(T)" Y (=1)'@L(rompw) o 7(g)
i=0

K2

then one may check that this series converges and that g = gf + r for a polynomial r of degree < n. For
details see [Was97, Proposition 7.2]. O

Definition 7.16. A polynomial P € Op[T] is said to be distinguished if it is of the form P(T) = T™ +
Ap_1T" 1+ 4+ qp with a; € my.

Lemma 7.17 (Weierstrass preparation). Let f € Op[T] such that f(T) = ap +a1T + - - with a; € my, for
0<i<n-—1anda, € OF. Then one may write f uniquely as f(T) = P(T)U(T) where U € (OL[T])*
and P € OL[T) is a distinguished polynomial of degree n.

Proof. By Lemma 7.15 it follows that 7" = ¢(T) f(T) + r(T') for a polynomial r of degree < n. Modulo my,
have f(T) = a, 7" + O(T™*!) and so
T" — 1(T) = (T)F(T) = g(T) (aaT" + O(T™1))  (mod m)

which implies that »(T) = 0 (mod my). Let P(T) = T™ — r(T) of degree n and distinguished. Reducing
modulo the ideal (my, T"*!) the above equation becomes T" = a,,q(0)T™ and so ¢(0) # 0 which means that
q € (OL[T])* and let U(T) = ¢(T)~!. Finally f(T) = P(T)U(T).

If f = PU then T" = U(T)"'f(T) + r(T) and uniqueness of P and U follows from the uniqueness
statement of Lemma 7.15. O

Corollary 7.18. If f € OL[T] then (f) = (@} P) for a distinguished polynomial P.

Proof. Let n be the largest exponent such that f =0 (mod m7}). Then P = fw; " will satisfy the hypothesis
of Lemma 7.17 and so f = w} PU for a unit U. O
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Definition 7.19. If G is a profinite group and L/Q, a finite extension then the completed group ring O [G]
is defined as
OL[G] = lm OL[G/H]

where H C G runs through the open normal subgroups of G. The ring O [G] is called the Iwasawa algebra
of G.

Proposition 7.20. Let G = Z, be topologically generated by v and let L/Q, be a finite extension. Then
v+ 14T yields an isomorphism
OL[G] = OL[T]

Proof. The open normal subgroups of G are of the form H = p"Z, so we have OL[G/H| = OL[Z/p"Z] =
OL[T]/((1+T)?" — 1) by sending the generator of Z/p"Z to 1+ T. Therefore

Or[G] = m OL[T]/((1 + T)*" — 1)

It suffices to show that
OL[T] = @OL[T]/((l +T)P —1)

Let P,(T) = (1+T)P" —1. It is easy to see that P, ,1/P, € (mz,T) and so P, € (m,T)"*! by induction.
Let f € Or[T]. Lemma 7.15 produces a power series ¢, and a polynomial f,, of degree < p™ such that

F(T) = qu(T)Pu(T) + fu(T)

in which case f,,, = f,, (mod P,) for all m > n. This provides amap f — (f,,) from O [T7] to lim O (T]/(P.(T])).
Finally, N(P,(T)) C N(mz,T)"*! = 0 and so this map is injective.

Now for surjectivity, suppose that (f,) € @OL[T]/(Pn(T)). Since (P,(T)) C (mg,T)"*1, it follows
that for m > n we have f,, = f,, (mod (mg,T)"™1). But OL[T] is complete for the (my,T)-adic topology
and so there exists f € Op[T] such that f = f, (mod (mg,T)"*!). It remains to show that in fact f = f,
(mod P, (T')). By definition there exists ¢, , € OL[T] such that f,, — fn = @mnPn. In the (my,T)-adic
topology of O [T] we have

f — fn fm B fn
P,

n n

= lim
m

= lim dm,n
™ )

which, being a limit of polynomials, must be a power series in Of[T] if the sequence converges. (Here we
may use that O [T] is closed in its fraction field. Writing g, = limy,, ¢m.n get f = ¢ Py + fr as desired. O

Lecture 18
2013-05-13

7.4 Modules over the Iwasawa algebra

Definition 7.21. The Iwasawa algebra is A = O[T].

Lemma 7.22 (Nakayama). Suppose X is a compact topological A-module. Then X is finitely generated if
and only if X/(mp,T)X is finite.

Proof. See for instance [Was97, Lemma 13.16]. O

Definition 7.23. Let M, N be two A-modules. Say M ~ N if there exists a morphism of modules M — N
with finite kernel and cokernel.

Lemma 7.24. Let L/Q, be a finite extension.
1. If f,g € A are coprime then (f,g) is finite index in A.

2. The prime ideals of A are 0, my, (mp,T) and (P(T)) where P € O[T] is irreducible and distinguished.
The prime ideal (mp,T) is the unique mazimal ideal.
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3. If f € A such that f is not a unit then A/(f) is infinite.
4. If M is a finitely generated A module then

M~A"® (@ A/(WT)) ® EBA/(fj(T)mj)

for distinguished irreducible polynomials f;.

Proof. The first part. Corollary 7.18 implies that we may choose f,g to be products of powers of w; and
distinguished polynomials or else (f,g) = A. Since f,g are coprime, without loss of generality assume
wr 1 f. Let h € (f,g) be a polynomial of minimal degree. Write h = w} ¢ with ¢ either 1 or a distinguished
polynomial. If ¢ # 1 then f = ¢f 4 r for degr < degl = degh gives w}r € (f,g) a polynomial of smaller
degree than h. Thus h = w} € (f,g9). Now (w},f) = (h,f) C (f,g) and so A/(f,h) — A/(f,g). But
A/(f,h) = A (@}, f) = (On/m})[T]/(f) which consists of polynomials of degree < deg f and coefficients
in Or,/m} and therefore is finite.

The second part. The ideals listed are prime. Suppose p is a proper prime ideal. By Corollary 7.18 every
non-unit in p is a polynomial. Let f € p be a polynomial of minimal degree. If o, € p then p/wy, is a prime
ideal of k. [T] which is a PID with maximal ideal T and so p = (wy) or p = (wy,T). Suppose wy, ¢ p. If
p # (f) then there exists g € p — (f) necessarily coprime to f. Then p D (f, g) will have finite index in A by
the first part. But then @} € p for some n contradicting the assumption that wy, ¢ p.

The third part. Since we care about the ideal (f), by Corollary 7.18, (f) = (w}g) where g = 1 or g is
a distinguished polynomial. If n > 0 then (f) C (wy) and so A/(f) — kr[T] which is infinite. If n = 0
then g # 1 is a distinguished polynomial and no two elements in Oy, can be equal in A/(f) so the quotient
is infinite.

The fourth part is a big exercise in linear algebra in the style of the classification of finitely generated
modules over PIDs. See for instance [Was97, Theorem 13.12]. O

Lemma 7.25. Let M ~ N as A-modules and let f,, € A such that each M/ f, M is finite. Then each N/ f,N
is finite and
vp(|M/ foaM]) = vp(IN/ fuN|) + C(1)

where the notation C(1) is taken to mean constant for n >> 0.

Proof. Unenlightening exercise in using the snake lemma. See [Was97, Lemma 13.21]. O

7.5 Class numbers in Z,-extensions

Lemma 7.26. Let Ko./K be a Z, extension of a number field K. Let X, be as defined in Lemma 7.15.
Then Y, and X« are finitely generated Z,[T]-modules.

Proof. The group X, carries an action of Z, (G, /x| and thus Xo, = l'&an carries an action of lgl Zyp|Gk, k] =
ZylG k.. k] = Z,[T] by Proposition 7.20.

Recall that Z,[Gk_ k] = Zp[T] sending v +— T + 1. Let m be as in Lemma 7.9. By definition for
n > m we have

n—m_q

p

w1 -
Vn,m::: 1 > @+ € (p,T)CA
m i=0

and so by Lemma 7.14
Ym/(pa T)Ym = Ym/yn,m : Ym C Xoo/Vn,m : Ym = Xn

is finite. By Lemma 7.22 we deduce that Y, is finitely generated. Finally, X../Y,, & X,, is finite and so
X is finitely generated. O
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Proof of Theorem 7.1. We will show that there exist nonnegative integers u, A, v such that for n >> 0
vplhic,) = vp(|Xal) = A+ pp" + v
in other words that
vp(|Xanl) = An + up" + C(1)
Note that 0 = Y,, = Xoo = Xoo/Y — 0 where X /Y, & X, is finite; therefore Y;, ~ X, which shows
that Y /Vnm - Y ~ Xoo/Vnm - Y = X,,. By Lemma 7.25 it suffices to show that
Vp(|Yin /VnmYm|) = An + pp™ + C(1)

Lemma 7.26 shows that Y, is a finitely generated A-module and so by Lemma 7.24 implies that

Vo2 o (@8/6m) o (@A)

First, note that Y, /vy 1Yy, is finite but v, ,, € (p, T) it is not a unit and therefore A/v,, ., is infinite by
Lemma 7.24. This implies that » = 0.

Now
Up(|Yim /Vn,mYm|) = va(‘A/(pnia Vn,m)) + Z%“A/(f;ljvl/mm”)

is a finite sum so it is enough to show that for each direct summand M of Y,,, one has
Op(|M/vpm M) = Aun + pap™ + C(1)

where Ay, s € Z>o.

Suppose M = A/(p*). Then M /vy, M = A/(p*, vy ) consists, using the division algorithm of Lemma
7.15 as deg vy, = p" — p™, of polynomials of degree < p" — p™ with coefficients in Z/p*Z. Therefore
|M /vy m M| = pF®" ™) and so v, (|M/vy.mM|) = kp™ + C(1) as desired.

Now suppose that M = A/(f") where f is distinguished and therefore ¢ = f" of degree d is also
distinguished. If k > d, the division algorithm gives T% = ¢(T)g(T) + r(T) with degr < d. Modulo p,
g ==T% and so T* = ¢T% + r which implies that » = 0 (mod p) and so T* = pZ,[T] (mod g). If p" > d
then (1+T)?" =1+ pZ,[T] (mod g) and so by induction (1 + T " =1 + p*Z,[T] (mod g). Let ng > m
such that p"™ > d. If n > ng, p” > d and k > 1 then

p—1 p—1

n+k .

Ptk = Pogk (E 1+ ‘) = Poyk (1 +p*Z,[T])"  (mod g) = Poyap(1+ pZy[T]) (mod g)
=0 =0

where recall that P,(T) = (1 + T)p’c — 1. But 1+ pZ,[T] is invertible in A and so in A/(9), Vntktintk =
Prik+1/Pryr acts (up to a unit) by multiplication by p.
Now g is distinguished so p 1 g and therefore multiplication by p is injective on M = A/(g). Therefore
| M/Vp M| = |M/Vpn—1" " Vng+2,n0+1Vno+1,mM|
= |M/p" " vy 1 m M|
= [M/p" T M| T M T T g1 M|
= |M/p" T MM Vg1 ,n M|
= |A/ (" @M/ vng1,m M|
= |(Z/p" "7 ) [T/ ()| M/ Vg 1.m M|
= p? 0D M g 41,m M|
This implies that

Op(|M /v mM|) = d(n —no — 1) + vp(|M/Vngi1,mM|) = dn+ C(1)
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Remark 4. It is a theorem of Ferrero and Washington that if K /Q is abelian Galois then p = 0. In general,
if Ko /K is the cyclotomic Z,-extension then it is expected that p = 0.

Lecture 19
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8 Hecke theory for GL(1)

Hecke theory refers to the study of L-functions attached to various arithmetic or analytic objects and their
functional equations. It is worth spending a little time understanding what the point is, as the results are
fairly technical.

Suppose K is a number field and p : Gx — GL(n,C) be a continuous Galois representation. One defines
the L-function of p as

L(p,s) = [ ] det(1 — p(Frob, g, *|p"<) "
vtoo
which is an analytic function for Re s >> 0. However, a priori, it is not known what kind of behavior L has
on C. Is it meromorphic? Analytic? Does it have a functional equation?
The strategy for tackling these questions is to find an analytic construction of the L-function in a context
where these questions can be answered naturally using Fourier transforms. Hecke theory for GL(1) is the
topic of Tate’s thesis, whose main results we explain, without detailed proofs.

8.1 Fourier analysis
8.1.1 Measures

Let G be a locally compact topological abelian group and let pg be a Haar measure. Let G= Hom(G, S1)

be the space of continuous characters. Then G is compact if and only if G is discrete and G = G. If H € G

is a closed subgroup then (7/?{ ~ HL = {¢ € G|¢(H) = 1} and G/H* = H. There exists a unique Haar
measure pg/pg on G/H such that for every ¢ € C.(G) with compact support

/Gaﬁ(g)duc,g - /G/H (/H ¢(gh)duH,h) d(puc/1m)g

IfG = H'{UU} G, is a restricted product with respect to the open subgroups U, C G, then G H{{U,UL} @U.
If p, is a Haar measure for U, such that for almost all v, u,(U,) = 1 then 4 = ®u, is a Haar measure for

H/{UU} Gy.

8.1.2 Fourier transforms for abelian groups

For a Haar measure ;1 on G the Fourier transform F,, : L' (G, u) — C(@) defined by

Fuld)(x) = /G (@) x(9)disg

extends by continuity to F,, : L*(G, u) — L? (@, 1) for the unique (dual) Haar measure i on G such that for

every ¢ € C.(G),
/G 6P du = /G IFu(6) 27

Then F5;F,,¢ = ¢ under the canonical identification G~G.
Suppose I' C G is a discrete subgroup such that G/T" is compact. Poisson summation states that

Yo=Y Fuld)rh)

’YGF ’YLEFL
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8.1.3 Fourier transforms for vector spaces

If G is R, C, a finite extension of Q, or Ag/K where K is a number field and ¢ € G is nontrivial then
a — (z — v(ax)) gives a noncanonical identification G = G. Write S(G) for the space of Schwarz functions:
when G = R or C these are functions all of whose derivatives decay faster than polynomials, when G = K/Q,
is a finite extension then these are locally constant functions with compact support. R

Choosing ¢ € G as above gives a Fourier transform F, 4 : S(G) — S(G). Via the identification G = G,
the explicit formula is

Fun(@)(h) = /G &(9) 0 (hg)dg

Write py, for the transfer of the dual measure it from GtoG using .
Lemma 8.1. If K = R let ¢(z) = exp(2miz) and p([0,1]) = 1. If K = C let ¢(z) = exp(2miRex)
and p([0,1] x [0,7]) = 2. If K/Q, is a finite extension let X : Q, — Z[1/p] be such that A\(z) + x € Z,.
Then \(z) is well-defined up to Z and ¢(z) = exp(2mi\(Trx/q,(*)) is a well-defined character. Suppose
w(Og) = [D;(}Qp O]~ V2.

In all three cases, p;, = p.

Proof. [Tat67, Theorem 2.2.2]. O

Let K be a number field. For each place v fix v, € IA(U such that for almost all v, kerv, = O,.

o~

Then ¢ = ®, € K; = H/{OL}I/(;. Using 1, to identify K, = IA(U get O, = OF. Thus A = Ak via

a~ (x + (ar)). Under this identification K+ C A is simply K C A and A/K/\K =K.

If p is the Haar measure on Ay inducing the discrete measure on the discrete subgroup K C Ax /K and
inducing p(Ax/K) = 1 on the compact group Agx /K then oy = M-

Let S(Ak) = ®,S(K,) consist of ¢ = ®¢, where ¢, = charp, for almost all v. If ¢ = R¢, € S(Ak)
then

Fup® = QFu, 4, Gv

with Fourier inversion ), ,—1.F, v¢ = ¢.
The Poisson summation formula for K C A states that

lalax Y dlaa) =Y Fuup(@)(a'a)
aceK aeK
8.2 Local zeta integrals

Suppose K = R, C or a finite extension of Q,. For a continuous character x : K* — C* we would like to
define “analytically” an L-function. The idea is to define for each test function ¢ € S(K) and Haar measure
v on K*

(¢, x vy 8) = . ¢ (@) x(2)]2|5 dvy

and recover the L-function as a common denominator as the test function ¢ varies.
If K =R and x(z) = (z/|z])®|z|k define

L(x,s) = m CTHEID((s +t +€) /2)
If K =C and x(z) = (z/]z])™|z|& define
L(x,5) = 2(2m) " CHHIT(s 4 ¢ 1 1] /2)
If K/Q, then



Proposition 8.2. There exists a test function ¢, such that ((¢, Xy, v, s) = L(x, s). For every test function

o s(), g0

1. If K =R, v =dx/|z| and x = (z/|z|)*|z|} then ¢, = 2=e ™",

s holomorphic.

2.IfK=C,v= ﬂ(i‘éwfgz) and x(z) = (z/|z|)"|z|k then ¢y =T 2717l if n. > 0 and ¢, = a2 " 27l7lc
if n <O0.

3. If K/Q, is a finite extension, v(O) = 1 and x is unramified then ¢, = charo, ; if x is ramified of
conductor f > 1 then ¢, = v(1+ m{{)*l char, s .
K

Proof. See [Tat67, §2.5] “the corresponding functions of 3” on page 316 for K = R, on page 318 for K = C
and on page 320 for K/Q,. O

Lecture 20
2013-05-17

8.3 Local functional equation and local e-factors

Now that we have defined L-functions analytically we should remark that they do not contain much infor-
mation about the characters. In fact, for every ramified character x, one has L(x, s) = 1, and more generally
the L-function of a Galois representation does not take into account the ramified part of the representation.
To study the ramified part one needs the e-factor which arise naturally in the context of functional equations.

Suppose K = R,C or a finite extension of Q, and x : K* — C*. Let ¢ € K nontrivial identifying K
with K, p a Haar measure on K and v a Haar measure on K*.

Proposition 8.3. For every ¢ € S(K)

(s X v )Y (06 s 115 8) = C(Frupdy X~ 1w, 1 = 8)
for v(x, v, i, 8) not depending on ¢ and v.
Proof. [Tat67, Theorem 2.4.1]. O

Theorem 8.4. The function

L(x, s)

E(Xv ’(/}7 122 8) = ’Y(X? '(/)? 12 S)m

is of the form A - B® where A,B € K.
Let ¢ and p as in Lemma 8.1. If K = R and x(z) = (z/|z|)®|z|k then e(x,v¥,u,s) =i¢. If K = C and

x(z) = (x/]z))™|z|s then e(x, v, i, s) = i™.
Finally suppose K/Qy, is a finite extension and ¢ is any nontrivial character of K. Let f be the conductor

of x, i.e., the smallest integer such that X(Z/{If() =1 and let —d be the conductor of 1, i.e., the smallest integer
such that w(m;(d) = 1. (For example if v is as in Lemma 8.1 then d = vk (Dg/q,)-) Then

0¥ s) = | mmgh) D7 w( d+f> (ﬁﬂ“) ax "
K

0k /ul @K

Proof. See [CF86, §2.5] “explicit expressions for p(c)” on page 317 for K = R, on page 319 for K = C and
on page 322 for K/Q,. O
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Corollary 8.5. Have

5(Xa 77/1(‘1 ' 7)7 Hy 5) = X(a)|a’|§{_l€(X7 l/f, M, S)
e(X, ¥, rp, 8) = re(X, ¥, 1y 8)

Proof. The second equality is immediate. For the first equality note that the conductor of ¢ (a - —) is equal
to —d — vk (a) and so

€(X, Nv¢(a : _)7 8)

—d—vk(a) -1 i —(d+vk (a)+f)s
plmge ) Z ¥ ( d+vk a)+f> X (derUK(a)Jrf) ix "
K

€0 /Z/{f
T - - ar —(d+vk (a s
= X(a’)‘a|K1u(mKd) Z ¢< dJmK )X L <W> qK( v (a)+f)
z€OL /U, WK W

it (umity w( ) (gﬂ) s
K Wk

yeO X /Ui
= x(a)lali e(x. ¥, 1, 5)

where we used that p(my Avx(a) )/ u(mzg?) = [m;(d vie(a) my] = q%K(a la|x" as p is a Haar measure

and we denoted y = zazw " O

Proposition 8.6. Let K/Q, be a finite extension, 1 a nontrivial character of K and n : K* — C* a
continuous character of conductor f > 1.

1. For 0 < a < f/2 there exists ¢, € K such that n(1+ x) = ¥ (c,z) for vi(xz) > f — a.

2. If x1,x2 : K* — C* are continuous characters of conductors fi and fo such that fi, fo < a then
e(xam, ¥, 1, s)xa(ca) = (X2, ¥, 1, 5)x2(ca)

Proof. Let x : K* — C* be any continuous character of conductor f > 1. First, if vg(x),vx(y) > f—a
then (1 +2)(1+y) = (L+2+y)(1+ 5f;) where 1 + 21— € U2 < Ul = kery. Therefore
x(1+2z)(1+y) =x(1+z+y) and so z — x(1 + z) is an additive character which case then be recovered
as Y(cqx) for some ¢, € K. Applying this to x = 7 yields the first result.

Recall that ker(¢(c, - —)) = ¢, tker(¢) = mf{ as x has conductor f. But then vg(c,) = —d — f. In
particular, in the formula of Theorem 8.4

e ¥, 1, 8) = Z p(xca)x M(zea) | ap T

. d
where we replace the sum over z with a sum over xc,w K+f .

Writing = y(1 + z) gives

S vkl M) = S S wleay(z+ )M eay(z + 1))

zeOK/Z/{f ye(i);é/lzl};a zEm{{“/mf{
= > dleay)xHcay) Z Yleayz)x (1 +2)
yeO}é/Z/{If(_“ zemK /mK
= Z w(cay)X_l(cay) Z Y(caz(y — 1))
yeO X /Ul zemiT/mi.
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where the last line follows from the fact that x (1 + 2z) = ¥(cq2) as vk (z) > f — a.
If u =l ® then

Do dleazly—1) = D dlealz+u)(y—1))
zEp{;a/pﬂ zemf;“/m;:
= ¢(Cau(y - 1)) Z w<ca2(y - 1))

zemiT®/mi,

and therefore Z ¥(cqz(y—1)) = O unless ¥ (c u(y—1)) = 1, which can only happen if v (cou(y—1)) >
zemd7 " /mi,
—d. But vg(c) = —d — f and vk (u) = f — a and therefore the sum vanishes unless y € U%. If y € Ug then
P(cqaz(y —1)) =1 and so
> Wleazly — 1) = [ml*/ml| = g%

zemd 7 /ml

We get
> Ykleam)x Mear) =qk Y. Pleay)x (cay)
€O X /Ul yeug U
which gives
et 8) = a T e Nag | YD wleay)x T eay)

yeus Ui

We now apply the above to x = x11 and x27. Suppose for instance that x = x17. Then x has conductor
fand x(1+2)=x1(1+z)n(1 + 2) = n(l 4+ z) = ¥(c,x) for every = € u}f{a as fi <a < f — a. Therefore

a—(d+f)s

e(xam ¥, 1, 8) = g prme) [ >0 dleay)an)Heay)

yeUg JUL=®
_ 1 a—(d+f)s —d -1
= X1 ' (Ca) i prme | >0 wleay)n  cay)
yeug /Ul

because if y € UL C ker x; then x7 ' (cay) = x7 *(ca)-
The conclusion follows from the fact that e(x17, %, 1, $)x1(cs) does not depend on x;. O

Lecture 21
2013-05-20

8.4 Global zeta integrals

Suppose x : Ay /K* — C* is a continuous Hecke character, v is a Haar measure on Ay and ¢ € S(Ag).
Define

o) = [ olaxiz)lals, dv.
Ak
Since AX = H'{OX,L} K¢ we may write y = ®y,, where y, : K — C* is unramified at all but finitely

many v. By definition ¢ = ®¢, and write v = ®v,, where v, is a Haar measure on K¢ with the property
that v,(O) = 1 for almost all v. Then

C(QJ),X,V, 8) = HC(¢U7X1}>VU’S)
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which converges for Res > ¢ + 1 where |y,| = |z|% for t, <t a real number. Such a ¢ can always be found
if x(K*)=1,1e, x:Ag/K* - C*isa continuous Hecke character.

Theorem 8.7. The integral {(¢, x, v, s) satisfies the functional equation
<(¢7 X7 v, S) = C(‘Fu,qu? X717 v, 1 - S)

It has analytic continuation to C unless x = ||}’ in which case it has a simple pole at s = —sq with residue
—vH (AL /K*)¢(0) and a simple pole at s = 1 — so with residue v' (A} /K)F, ,(4)(0). Here v* on A} is
the Haar measure such that the quotient measure on A% /A} =2 (0,00) is the measure dt/t, while the Haar
measure on Al /K> is the quotient measure by the discrete Haar measure on K*.

Proof. See [Tat67, Main Theorem 4.4.1]. O

Corollary 8.8. If K is a number field and x : Ay /K* — C* is a continuous Hecke character then
H’Y(Xuvwvaﬂva s)=1.

Proof. This is immediate from Theorem 8.7 and Proposition 8.3. O

8.5 Global L-functions and e-factors

Let x : A} /K™ — C* be a continuous Hecke character and write x = ®x,,. Define

= HL(Xva S)

Write
S) = H E(Xva Yoy o, 3)

i _ dz __ 2dad
which does not depend on ¢ or p. Choose v such that v, = % if v | R, v, = ﬂ\/% for v | C and
v,(O)) =1 for v t oco. Choose pi,, as in Lemma 8.1.
Theorem 8.9. The function L(x,s) has analytic continuation to C unless x = | - 30 in which case it

has a simple pole at s = —sq with residue —v'(Ak,/K*) and a simple pole at s = 1 — 89 with residue
-1
v (AL /K*)\/|Dk| = where Dk is the discriminant of K/Q. Moreover

L(X7 S) = E(X7 S)L(X_17 1- 8)

Proof. Let S be the finite set of places such that v | oo or Yy, is ramified or kerv, # O, or u,(0,) # 1
or v(OF) # 1. For every place v choose ¢, such that {(¢y, Xv, Vs, S) = L(xv,s). In particular, for v ¢ S,
¢, = charp, by Proposition 8.2 and in this case we compute

(Fopo o o)) = /K charo, (y) o (2y)ditn.y = /O Bo(@)dtiny

_ Mv(ov) %(l’) =1
0 Yo(z) # 1

where ker 1, = O, since 1), is unramified for v ¢ S by choice of S. Therefore Fy, ., v = b0 (On) oy = Go.

Then for v ¢ S, F, 4,00 = charo,, ((Fu,p, v Xy s Ve, 1 —5) = L{x; ' 1= 5) and e(xv, Yo, fho, 5) = 1.
Thus

Lo SDxms) wa—v)

L(x7s) L(xv: )
C(fu,w¢> _1 H C fwu,uv%,xv anl_S)
N e R | O (RN
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and so

—1 L(x, '1-s)
L1 =)l s) _ SFuwdx™ ol = ) les g, ) G iz Lves S0t Vo o, 9)

L(xv,s
L(X’S) C(¢3X7V75) HUES g((j)vfimyq)”s)
_ C(}_ﬂquﬁ,xfl,y,lfs) C(Q%,Xv,%;ﬁ) s(Xv,wvaﬂvas)L(Xglalfs)
C((b’ XV, 8) vES C(Fﬂquﬂ)u ¢v7 X’;17 1- 5) L(XU’ S)
=1
Since L(x, s) = ¢(¢, X, v, 8), L(x, s) is analytic unless x = |- |}’ for some sq in which case it has simple poles
at s = —sg and s = 1 — 5.

It remains to compute the residues. By Theorem 8.7 the residue at —sq is —v1 (AL /K*)¢(0) and the
residue at 1 — so is V(AL /K*)F,.4(¢)(0) so it suffices to compute ¢(0) and F,, ,(4)(0). Recall from
Proposition 8.2 that for x, = 1 which is unramified we can choose ¢, = charp, for all v { co. When v | R
then ¢,(z) = =™ and when v | C then ¢,(z + iy) = e~"@ +¥*) In particular $(0) = [1¢,(0) =1 as
desired. L

It remains to show that F, ,(¢)(0) = \/|[Dk| . But for v | R we have chosen ¢,(z) = e~ Py(x) =
e2™® and u, = dz for which

Fri b ®0(0) = /Re_mzdx =1
For v | C we have chosen ¢, (z + iy) = e 2@ 4y (2 +iy) = e*™@ and p, = 2dxdy for which
Fiiy o0 @0(0) = /(Ce—27r(w2+y2)2dxdy -1

For v t oo we only need to look at x,(z) = |z|5° which is unramified and since v(O}) = 1 we have ¢,, = charp,
and we have already computed the Fourier transform

]:Mu,wv(bv(o) = Mv(ov) = ['D;{}J/Qp : Ov]_l/Q

where the last equality follows from Lemma 8.1. Therefore

Fu(@)(0) = [Pk} g, : O]

vtoo

= 11 Vi, /0,Pk./0,)

vtoo
-1
=V |Dk]|
as desired. 0

8.6 Applications
Theorem 8.10 (Analytic class number formula). Let K be a number field and let 1 denote the trivial Hecke
character of K. Show that L(1,s) has a simple pole at s = 1 with residue

2"hg R
lim(s — 1)L(1,s) = — 5K
s—1 wK |-DK|

where n is the number of infinite places of K, hx = |Cl(K)|, Rk is the regulator of K (defined as the
absolute value of the rank of the matriz (log(|uily))i,n as u; ranges through a set of generators of O and
v | 00), wi = |eo (K)| and Dy is the discriminant of K/Q.
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-1
Proof. Theorem 8.9 shows that L(1, s) has a simple pole with residue v (AL /K*)\/|Dk| = so we just need
to compute this volume. Recall from Theorem 2.1 the exact sequence

0— KL [[ 05 /0% = Ak /K* — CI(K) =0

vtoo

and that v! is the quotient measure on A}, /K> induced from the Haar measure on A} coming from v on
A% by the discrete measure on K* C A}.. This gives

Vi (A /K) = v (KL T 0X /05 (CUK)) = hicv' (K [T 07 /0%)
vfoo vfoo
Also recall the exact sequence

0= =BT S [T 05 /1ee(K) = KL T O /0 = Ase/log OF — 0

v|R v|C vtoo vtoo

Writing v! for the measure on
kL J[ox /0% c Ak /K™
vfoo
and for the subset measure on [],p{=1} [T jcS" [Tyje O /i (K) we get the quotient measure v on

A /log O which gives
MEL [T 0505 = v [T TS T 03 /e (K)) (A / 1og OF)
vtoo o[R o|C wioo
What are the measures on the kernel and image? If v | R then we have
0= {1} > R* >R —0

via & — log |z|. The measure on R* is v, = dz/|z| = dlog |z| and so the measure on the image R is dz. If
v | C then
058" C*>R—0

via z — log |z|c. Recall that v, = Tr(i‘?fgg) which in polar coordinates z = rcosf and y = rsin 6 becomes
2
v, = 2drdd - 2drdd dedl;’gr and so we can put the measure df/m on S! yielding the measure dz on the

quotient R.

This produces the standard Lebesgue measure on A, and so the volume of A /log O is precisely
Rp. The volume of J[,x{£1}[],c S 1o OF is 2™ where n is the number of infinite places. Putting
everything together gives

vfoo
2mh
v (Al R7) = 2Tl
WK

The following section was not covered in lecture
Corollary 8.11. Let (i be the Dedekind C-function of K. Show that

. _ - QT(ZW)ShKRK

where v, hg, Rx and wg are as in Theorem 8.10, 2s is the number of non-real embeddings K — C,
hx = | Cl(K)| and Dg is the discriminant of K/Q.
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Proof. Note that if 1 is the number of real places and ry is the number of complex places then

L(1,5) = (7*/21(5/2)) " (2(27) T ()" e (s)
and the result follows from Theorem 8.10 and the fact that
ress—1 L(1,s) = 7 " ress—1 (K (9)
O

Theorem 8.12 (Strong multiplicity one for characters). Let K be a number field and x1, x2 : Ajy /JK* — C*
be two continuous Hecke characters such that x1,., = x2,0 for almost all v. Then x1 = X2.

Proof. Let x = Xle_l such that x, = 1 for v ¢ S where S is a finite set of places which, by assumption,
does not include the infinite places. Then

L(x,s) = HL(XvaS) H L(1,,5)

VES vgS

L(xy, s
= L(1,5) I_LL((is;

If x, is unramified let o, = x,(,) and otherwise let o, = 0. Then L(x.,s) = (1 — a,q,*)~! and so

1—gq;°
L(X7S) = L(178) H ﬁ
ves Ay Qu

—s

But each 1i;q”,5 is nonzero at s = 0 and s = 1. Thus L(x, s) has a pole at s = 0 and s = 1 which implies,

vqu
by Theorem 8.9, that x = 1. O

End of section not covered in lecture

Lecture 22
2013-05-22

9 Hecke theory for Galois representations

9.1 Global theory

Let K/Q be a finite extension and p : Gxg — GL(n,C) be a continuous Galois representation. We have
already defined

L (p,s) = [ det(1 — p(Froby)g; *[p") ™!

vfoo
Lemma 9.1. Let K be a number field and L/K a finite extension.

1. The function L>(—, s) extends to virtual representations. In particular, if p is a virtual representation
such that p =0 then L>=(p,s) = 1.

2. If p: G, — GL(n,C) then
L= (Ind]L( p,s) =L>(p,s)
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Proof. For the first part, note that p being continuous will have open kernel of the form Gy, for L/K finite
Galois. Thus p : G /g — GL(n,C). Maschke’s theorem then implies that p is completely reducible and
so we only need to check that L>(p; @ pa,s) = L>(p1,s)L°>°(p2, s) which is immediate from the fact that
det(1 — p1 @ pa(Frob,) X|(p1 @ p2)'*) = det(1 — p1(Frob,)X|p1) det(1 — p1 (Frob,)X|p1).

The second part requires some work. See for example [Neu99, Chapter VII, Proposition 10.4 (iv)]. The
idea is to use the decomposition (IndlL( P)lax, = Puwlv Indﬁ’; (pla., ) and then to express the action of Frob,
on the inertial invariants of this space as a matrix in terms of the action of Frob,, on the inertial invariants
of the plg, - O

Theorem 9.2. There exists Loo(p, s), and £(p, s) of the form A- B?® such that if L(p, s) = Loo(p, $)L>(p, s)
then
L(p,s) = e(p,s)L(p", 1 — s)

where p* = Hom(p, C) with action (p*(g)f)(v) = f(p(g~")(v)).

Proof. Tf x : Gx — C* is a continuous character then x factors through G3> = A% /K> K% and therefore
get x : A /K* — C*. It is easy to see that L>(x, s) with x a Galois character is L>(, s) with x a Hecke
character. By Theorem 8.9 L(x,s) = e(x, s)L(x~ !, 1 — s).

As p is continuous, there exists a finite Galois extension L/K such that G C kerp and so p factors
through G,/ — GL(n,C). Brauer’s theorem implies the existence of cyclic extensions L/L;/K and charac-

ters x; : G/, — C* such that p =3 m; Indﬁ X; in the Grothendieck group of continuous representations
of GK.

Let Loo(p,s) = HLOO(IndIL(i Xi, $)™ in which case L(p,s) = [] L(xi,s)™. Let e(p,s) = [[e(xi,s)™.
Then

L(p, ) = T[] e o)™
Tt 9™ L0 1 — )™
=e(p,s)L(p*,1—s)

as desired.

It remains to show that L(p,s) (and therefore £(p,s)) is well-defined, i.e., if > n; Indﬁ, xi = 0 as a
virtual representation, then [[ L(x;,s)™ = 1. By Lemma 9.1, [T L*®(x;,s)™ = L™ (> _n; Indﬁ Xi,S) = 1.
Therefore it suffices to show that [], Lo (xi,s)™ = 1. We will, in fact, show that for each place v | co of K,
[T I, 10 Loo(Xiawi» 8)™ =1 where w; are places of L; lying above v.

First, note that the characters x; are (finite order) characters of G, and so x;w, = 1 or o where o is
the sign character for real places w;. Next, from > n; Indﬁ x: = 0 restricting to G, we get

E E n; Indﬁ“w_ Xiw; = E E n; Indﬁ“w_ 1=0
Jw; Jw;
i w;lv i w;i|v

If v | C then w; | C for all w; and so we deduce that 3°;n; 32, ,1 = >, ni[L; : K]1 = 0 which is
equivalent to Y n;[L; : K] = 0. At the same time L(x; w,;,s) = L(1,s) = 2(27)~°T'(s) and we compute

[T 1T 206w, o)™ =TT TT @) @)™

iow,|v iow,|v

= 2(27r)*51“(5))27~,m[Li:K]
1

If v | R denote by I the set of (i,w;) with w; | R and x; ., = 1, by J the set of (i,w;) such that w; | R
and x;.w; = o and by H the set of (i,w;) such that w; | C and (necessarily) x;., = 1. Then the formula
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Do Do T Indﬁ“w_ 1 = 0 becomes

(i,w;) €Tl (i,w;)eJ (i,w;)eH

as Indg 1 = 1@ 0. We deduce that 3, n; + 3, n; = 0 and > yni+ > gn; =0. We compute

ITII L0Gwes)™ = T LOms)™ [ Lleo)™ ] L(ie.s)™

iow,|v (i,w;) €L (i,w;)€J (i,w;)€H
= D1, 51 L(o,5)%0 M I(1e, 5)Sn ™
= L(lg,s) =™ L(o,s)” 2" L1, 5) =0 "™

(i)

where we used the identity
(7=720(s/2)) (7~ CFV20((s 4 1)/2) ) = 2(2m) T (s)

in other words L(1g, s)L(o,s) = L(1c, ).

9.2 Deligne’s local e-factors

Having settled the issue of the existence of £(p, s) for a global p : Gx — GL(n,C) one is left with the natural
question of defining e(py, ¥, i, s) for p, : Gx, — GL(n, C). Such an e-factor would encode information about
the ramification of p, and appears naturally in the statement of the local Langlands correspondence.

Theorem 9.3. Let K/Q, be a finite extension, ¢ € K nontrivial and w a Haar measure on K. There exist
e(p, v, 1, s) (of the form A-B*) attached to finite dimensional continuous representations p of G such that:

1. If x : Gk — C* is a character then e(x, ¥, p, s) = e(x o T, ¥, 1, 8) as defined for characters of K*.
2. e(p1® pa2, ¥, 1, 8) = e(p1, ¥, 1, 8)e(pa, ¥, 1, 8) s0 e(—,1, u, ) is multiplicative on the Grothendieck ring.

8. Forr € (0,00), e(p, 1,7, s) = r&imee(p ah, p, s).

(s—1)dimp

4' For a € KX: E(Pﬂﬁ(a ’ _)7/1'7 8) = det p(’l”K(CL))|(l‘K €(p7¢7,u*7 S)

5. If L/K is a finite extension and p is a representation of virtual dimension 0 (i.e., p = > . my;p; in the
Grothendieck ring with " m; dim p; = 0) then e(Ind¥ p,9, u,s) = e(p, v o Trp/x, 1, s) for any Haar
measure u' of L.

6. Have

e(p, 1y 8) = £(p,, 1, 0) - g (o P dimpcond )

7. There exists f, such that if x is a character of conductor f > f, then

e(p ® X, 1, 1, 8) = det p(c) e(x, 1, i, 5)4™ P

where ¢ is such that x(1 + z) = ¥(cx) for vi(x) > [f/2].
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In principle this should follow from the Brauer induction theorem. Indeed p trivializes G, for some finite
Galois extension L/K and thus factors through G k. There exist L/M;/K subextensions and character
Xi : Grym, — C* such that in the Grothendieck ring

p—dimp-1= ZniIHdIiji(Xi -1
where n; € Z. Thus
€(p - dlmp ' 1,’111,,”,5) = He(X’L' - 17¢ © TrMi/K7/~Li7S)ni

giving e(p, ¥, i, s). However, the challenge is to show that this definition does not depend on M;, x; and n;.
In fact there is no current local proof of this fact.

The actual proof will use the global e-factors of Theorem 9.2 which are known to exist. To do this we
need to go from the local to the global setting and in the process prove results that ensure that choices do
not affect the outcome.

Lemma 9.4. Let L/K be a finite Galois extension of p-adic fields. There exists a finite Galois extension
of number fields E/F, a finite place vy of F' and a unique place uy of E such that F,, = K and E,, = L.
Moreover, Gp/p = G k.

Proof. Since Q C @p one may choose a number field Fy C L which is dense in L. Let E be the composite
of {o(Eo)|la € G/} and let FF = ENK. Since E C L and F' C K are dense, Gg/p = Gr/k. The dense
embedding ' C K defines a finite place vy of ' with F;,, = K and the dense embedding E C L defines a
finite place ug of E with F,, = L. Now uy is fixed by G,k = Gg/r and so ug is the only place of E above
V0. O]

Lemma 9.5. Let L/K be a finite Galois extension of p-adic fields and let e = er i be the ramification
index. Then for x € O one has

Np(l42) =1+ Try k() (mod mZvs/ely

Proof. If 0 € Gk then vk (o(x)) = vg(z) = e tvy(2) and therefore if I C G,k is a set of cardinality i
then vi ([],c;0(2)) = Lvg(z). If i > 2 then
2up(x)
e

(Y o) > tuw

ICGL | I|=io€l

v

and so

Np/k(l+z)= || (1+o(x))
O'EGL/K
L:K]

[
=1+ Trpe(@)+ Yy, Y [[o@

i=2 ICGyp/k,|I|=io€l

=1+Tryx (mod mb2ve(@)/ely
O
Lecture 23
2013-05-24

Lemma 9.6. Let L/K/Q, be finite extensions. Let {1,/ be the smallest integer such that Gi(L/K C Gpr.
Then for y > {1k,

¢Z/1K(Z/) =er/xyY —vr(Pr/k)

where recall that ¢r, is the ramification function defined as ¢ /i (x) = / Gr/ko: GL/K,U]_ldu when
0
L/K is Galois, and ¢1,/x = ¢p/Kk © gf)E}L where E is the Galois closure of L/K in the non-Galois case.
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Proof. Start with L/K Galois. The graph of the function ¢/ is piece-wise linear with inflection points at
the jumps in the ramification filtration. In particular, for = > qﬁz/lK (¢r/K ), the slope of the graph of ¢/

is ez/lK. This implies that for y = ¢/ (z) > {1 /K,
¢Z/1K(y) =er/KY + ¢E}K(£L/K) —er/klL K
Let k = qSZ/lK(EL/K) € Z. The we need to show that ey /x¢r/x (k) —k = vr(Dr k). But

eL/Kdu —k

k
e k _k:/
Ly (k) o [Gr/xo:Grjwl

k
= / |GL/K,u\dU -k
0

k
= (IGL/xil = 1)
i=1
=vr(Dr/k)
Now suppose L/K is not Galois and let E be the Galois closure. For y >> 0 one has
Y= ¢;;}L(¢E/L(y)) =ep/L9e/L —VE(DE/L)
and so
¢Z/11<(3/) = ¢E/L(¢E}K(y))
_ ¢pyx(®) +ve(DE/L)
€E/L

er/kY —Ve(DPp/k) +ve(Dr/L)
€E/L

=C€L/KY — UL(DL/K)

where the last equality follows from Dg/x = Dg,1 D1k To show that c/)E/lK(y) =er/ky —vL(Dr k) for

!/

y > {1k it suffices to show that (qbz/lK)’(fL/K) = er/k where ()’ means right derivative. Using the chain

rule we get
(¢Z}K),(£L/K) = (¢p/L 0 ¢E}K)'(€L/K)
_ IE/L(d)E‘}K(gL/K))
(b;g/K(QSE}K(EL/K))
Ue/k : Gr/opt )]

Ue/r:Grirot cen )]

e/KIGEn gt )]
|G

E/K,qsg}K(ZL/K)'

as ¢ g (x) = 1/[Ir/x : Gr/K 2] by definition. Thus it is enough to show that

|GE/K,¢5}K(2L/K)| - |GE/L,¢5}K<2L/K>|
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B G . GKL/K hile G . G¢E/L(¢E}K(KL/K)) . G¢Z/1K(€L/K) But Herb d
W G ket (o) = Oy WOUe Gyt w0 T GpL = YE/L - But Herbran
implies that
O (b x) br/x (O k(e K)) 0 0
Gyl =Ggx " NGpr=Gylx NGer =Gyl
where the last equality follows from the fact that by definition of £, we have Gif/ ;; CGg/L- ]

Lemma 9.7. Let L/K be a finite extension of p-adic local fields and let o« : K* — C* be a continuous
character of conductor cond(a) > £ . Then

cond(avo Ny k) = qbz/lK(cond(a))

Proof. Let m = cond(cvo Ny, i) the smallest integer such that o Ny /i vanishes on Uy Via the local Artin
map m is the smallest integer such that oo N o rzl vanishes on G7'. But a o Np g o rzl =ao rl}l

which would then have to vanish on G7' with m smallest with this property. Herbrand’s theorem says

that G = G2/“™ 1 Gy and so m is the smallest integer such that o o ry' is trivial on G52/*"™ 0

G = G(f{L/K(m) N G%/K = Gzax(mm(m)’e”}(). This implies that max(¢r,x(m),fr/x) > cond(a). Since
cond(a) > £,k we get that ¢, x(m) > cond(a) and m is minimal with this property. The result follows

since ¢Z/1K(€L/K) € Z from the previous lemma. O

Lecture 24
2013-06-05

Lemma 9.8. Let L/K be a finite Galois extension of p-adic fields. There exists an integer ny i which
depends only on L/K with the following property. Suppose a : K* — C* is a continuous character of
conductor n > npx and a = [n/2] —vr(Dr k). Let ¢ be a nontrivial additive character of K and let
ca € K from the proof of Proposition 8.6 such that a(1 + x) = ¢¥(c,x) for x € K with vg(z) > n—a. If
L/M/K is a subextension and x is any character of G, ns then

e(x - ao Nuyw, o Tragype, 1 8) = x(ca) "' o Nagye, 0 Trag /i, i )
for any Haar measure p on M.

Proof. We will apply the stability Proposition 8.6 for x1 = x, x2 = 1 and n = a0 Ny;/i. Denote by cq 4
such that n(1 4+ x) = ¥(cq,yux) for vi(xz) > cond(n) — a where a < cond(n)/2.
Let

np/kx > max(a i, 2L (DPryx) + v (D) + Loy /ey k)

as M varies among the subextensions L/M/K. We will show that if x is a character of Gy, 5, then for
b= en/xa —vnm(Dyyk) we have cond(x),cond(1) < b < cond(ao Nys/i)/2. Then Proposition 8.6 would
imply that

e(x - o Nagyr, ¥ 0 Tragyic, 11 8) = X(ChiaoN g e boTrar i) €(000 Nagyre, 00 Trag i,y s)
and the Lemma would follow if we could check that
Cb,00N )i poTrn i = Ca,o,0p

From n > nL/K > Q(WL(DL/K) + WK(DM/K) +€L/M/6M/K) we deduce that b > gL/M But if X is a

character of G,/ it will be trivial on G%/M C G and so cond(x) < £r/p < b as desired. To check that
b < cond(avo Ny )/2 it suffices to check that

b= eM/K(n/Q — UL(DL/K)) — UM(DM/K) S Cond(a o NM/K)/2 = ¢X41/K(n)/2
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where the last equality follows from Lemma 9.7 as cond(a) = n > np g > £y/k. This inequality is
equivalent to

Gy (1)/2 2 ennye(n/2 — v (Dryx)) — var (Do)
(enr/xn — v (Duyk))/2 > enyx(n/2 —vi(Dryx)) — vm(Puyxc)
enm/kVL(Dr/k) +vm(Duyi)/2 >0

which is clear.

It remains to show that cyaon,, x,oTry x = Casayp- Let © € M such that v (z) > cond(ao Npj/g) —b.
Then v (z) > ey (n —a) + var(Dyyk) and so vi (Try i (2)) > vi(z) > n—a > 0. By Lemma 9.5,
Nyyx(1+x) =14 Trp i (2) + y where v (y) > 2vn(z)/enr/x > 2(n — a) > n. Therefore

= w(ca,a,w TrM/K(x))

= U(Trar/k (Ca,a,p))
since 1+m € Uy C ker a and vg (Trps (7)) > n—a. By definition this implies that Cb, a0 Nps e 0T ps 1 =
Ca,a,s and the result of the lemma follows. O

Proof of Theorem 9.3. Any continuous Galois representation p will be trivial on G, for some finite Galois
extension L/K. For a fixed finite Galois extension L/K and any representation p of G,/x we will construct
e(p, o, p, 8).

Let E/F be the finite Galois extension from Lemma 9.4. Since G,/x = Gg/p every representation p of
G'1/k is also a representation p of G/ p.

Let S be the finite set of places of F' containing the places where E/F ramifies and the place vy. For each
v € S —wg choose a finite order character «, of F* of conductor n, > ng, /p, for a (any) place u | v of E.
For v = vy let o, = 1. By Theorem 5.5 there exists a a continuous character of A% /F* such that a|p, = a,

for v € S. Choose ¥ a nontrivial character in &;/F such that ¥r,, = ¥ and pr a Haar measure on Ap
such that pp(Ap/F) =1, pupy, = p and pp,(0,) =1 for v ¢ S. When v € S — vy let ¢, € F such that
(14 x) = 1y (cpz) for v(x) > [n,/2] —v(Dg,/F,) (see Lemma 9.8). When v ¢ S — vy choose ¢, = 1 and
let ¢ = (c,) € Aj.

Suppose L/M/K is a subextension with corresponding global subextension E/H/F and p is a represen-
tation of G'/ys giving p a representation of G/ r. Let Sy be the places of H over places in S and again we
denote by vy the unique place of H over vy. Let pps be a Haar measure on M and let puy be a Haar measure
on Ay giving volume 1 to Ay /H and such that pg ., = par. We will define

—dimp
e(p,voTrar/r, par, ) = e(praoNg p, ) det p(ru(c)) ( H e(aw o Ny, /F,, YFw 0 Ter/Fu’#H,va)>

weSH—vo

where v denotes the place of F' under w. A priori e(p, 1 o Tras i, par, s) depends on . We will check the
following four facts:

1. if x is a character of G /5 then e(x, ¢ o Tray/ i, piar, s) = e(x o rar, Tro Trag i, piar, 5) as defined for
characters,

2. e(—,9 o Tra/k, piar, 8) extends to the Grothendieck group,

3. if p has virtual dimension 0 then e(p, v o Try 1, pias, 5) does not depend on pips
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4. if L/M;/M;/K are subextensions and p is a virtual representation of Gy, of virtual dimension 0
then for any choices of s, and ppz, have 5(Ind%f Py o Trag, i, s 8) = (0,0 0 Trag, i, a5 5)-

Independence of a: Use Brauer induction to find L/L;/K, characters x; of G/, and integers n; such
that p —dimp-1=> n; Indﬁ (xi: — 1). Using properties 2 and 5 we deduce

E(p,'(/},,l,t78) :H<€(XiaonrLi/K7/1’ivs)>ni
8(1,1/),[&, S)dimp 5(1aonrLi/K7/Lias)

and independence of « is clear.

Lecture 25
2013-06-07

Property 1 and fact 1: We now check that if L/M/K is a subextension and x is a character of G,/
then e(x, % o Trag i, par, 8) = e(x o rar, Tro Trag i, piar, 8). This implies property 1.
By construction

€(X71/}M7HM35):5(2'QONH/F7S)£(TH(C)) H €(a'UONHw/FU?/l/}H,UHMH,UHS)

weSH—vo

where Sy are the places of H over places in S and again we denote by vg the unique place of H over vy;
here v is the place of F' under w, and ¢y = 1r o Try/p. Now Sy contains all the places of ramification of
E/H and X, being a character of G, g, can only ramify at w € Sg. Therefore by definition

e(X-aoNy/p,s) = H €(Xw - @ © Ny /pys VHws H,w S)
weSH

where recall that a,,, = 1 and so aw,0Np, ,r,, = 1and ¢y, = 1 by choice. Since X(ru(c)) = [[,es, Xw(rn, (cv))
we need to check that

5(551)07 ¢H,v07/14H,U07 S) = 5(5(11)07 wH,vm HH vg s S)%’U[)(]-)
X H E(XwavONHw/FU,wH,wa'H,waS)Xw(cv)g(avONHw/FUa'l/}H,wwuH,wvs)il

weESH—vo

for which is is enough to show that e(Xwaw 0 N, /5, Vi ws i ws 8)Xw(Co) = €(w © Ng /5, VH w» H w5 S)-
Since cond(a,) = ny, > np, /1, this is implied by Lemma 9.8.

Property 2 and fact 2: The fact that e(p,1 o Tras/x, par, s) extends to the Grothendieck group is
automatic from the fact that L(—,s), det and dim extend.

Property 3 and fact 3: We will show that (p, ¥ o Try i, 7ins, 5) = pdim Pe(p,oTrar i, par, 8) which
also implies that if p has virtual dimension 0 then e(p, v o Trys/k, piar, s) does not depend on .

Recall that puy = Qup,, gives volume 1 to Ay /H. Let r > 0 and py,, = Qup rw With pg v = THEH,vos
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WHru = r‘l,uHﬂL for some u € Sy — vy above t and pg r 0 = fHw fOr W # vo,u. Then

elp o Tragyc,rine, s) H
e(pao Ngyp,s)det p(ru(c))

“1
= (el o Nuyypy s ¥re © Trp sy, 7 b s 8) X

—dim p
e(av o N, /r, s ¥rw © Tra, /5, 1hH e, 8))

wESH—vo

—dim p

X IT  e(ewoNu, p,¥rwoTeg, /p, i s)

weSy—{vo,u}

—dim p
dim
= e ( I | e(ay o Ng, /s Y OTer/FUa,UH,wvs)>

wESH—vo
rdimpg(p7 o TI“M/K7 KA, 5)
e(pao Ngyp,s)det p(ru(c))

by Theorem 8.4.
Property 4: We have seen that

i,¥o'Tr i ng
6(071?(@'—),#75):5(1,1#(@ - M’ dlmpH( a :fOTI'LL//If(( ))::i s)))

_ (s 1) dim p dlmp XlaonrL /K His S ) b
HX% TL ( 1#7,“7 H( ’(/)OTI‘L JK 5 Hiy S )

= det p(rK(a))|a|§§*” ““‘“Ps(p, LNTAE)
by Corollary 8.5 and the fact that if p— dimp-1=> n; Indﬁ (xi — 1) then
det pory = [ [xilcory, /i or)™ = [Jxiore,)™

Property 5 and fact 4: Suppose L/M;/Ms/K corresponds to E/Hy/Hy/F and p is a virtual dimension
0 representation of G/, giving p of Gg/pg,. Then

5(Ind%f Py o Trpg, /i,y 8) = IndH2p aoNgy,/p,s )detIndgf p(rm,(c))

e(p-aoNp, r,s)det p(ru, (c))

e(
e(Indg? (5 - o Ny /r), 8) det plcory), /g, orm, (c))
elp
( ¢OTrM1/KaNM178)

since dimInd%f p=[M;: My]dimp =0 and det IndH2 p=po corH /s and corH JHy OTHy = TH, -
Certainly global L-functions are inductive in that if p is a representation of G,p, then L(Indgf p,8) =

L(p, s) and therefore a(Indgf p,8) = €(p,s). Moreover, det Indg2 p = and dim IndH p = [Hy : Hy]dimp.
Note that while the character ¢ does not seem to appear in the formulae, it does as c is defined in terms of
.

Property 6: Let n(p,) be such that e(p, 1, u, s) = a(p,w,u,o)q;{n(p’ws. We know from Theorem 8.4
that n(x, 1) = cond(x) — cond(v). Also property 2 implies that n(p; ® pa, %) = n(p1,v¥) + n(p2, 1) and so
n(—, 1) extends to the Grothendieck group. Now suppose L/K is a finite extension and x is a character

of L*. Then property 5 gives n(IndlL((X —1),%) = frygn(x — 1,9 o Trp k) since qr = q{{L/K. Thus if
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p—dimp-1= Znilndﬁ()ﬁ — 1) then

n(p,v) = (dimp)n(1,¢) + > nin(Indf, (xi — 1),%)
= (dim p)n(1,%) + Z nifr, xn(xi —1,¢ 0 Trp, k)
= —(dim p) cond(¢)) + Y nifr, /i cond(x:)

because n(1,1) = — cond(¢)) +cond(1) = — cond(v)) and n(x —1,90Tr /g ) = cond(x) —cond(1) = cond(x).
The result now follows from the computation

cond(p) = cond(p — dimp - 1)
=" n; cond(Indf (x; — 1))
= nifr, x(cond(x:) + vi, (D, k) — cond(1) — vz, (Dr, k)
= nifr,/x cond(x;)

using the fact that cond(Ind¥ p) = Jr/K (cond(p) + dim pvr,(Dr/k))-
Property 7: As before if p —dimp-1=> n; Indﬁ (xi — 1) then

im e(Xi-xXoNL ik, ¥oTrr, i iy s)\ ™
e(p @ X, ¥, 11, 8) = €0, ¥, 1y 5)° pH( - -

e(xo N, i, o Trp, /i, i, )

If cond(x) = f > ny/k then Lemma 9.8 gives e(x; - x © Np,/x,% 0 Trp, i, pis s) = xi(¢) re(x o N, /x, % o
Trr, K, i, s). Thus

e(p @ X1, 11, 8) = €0, ¥,y )P [ [ X (i (€)™
= e(x, ¥, . )™ P [ [ xilcory, i orac (€)™
= e(x, ¥,y 8)1™ P det p(ric(c)) ™"

as desired. 0
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