ACMS 60690 Numerical Analysis I, Fall 2014

Instructor: Yongtao Zhang, Email: yzhang10@nd.edu

<u>Textbook</u>

There is no fixed textbook. Materials are chosen from different references below.

Course Description

This is an introduction course for graduate students to learn fundamental concepts, theory and techniques in numerical analysis and scientific computing.

Topics

- 1. Numerical Solution of Nonlinear Equations and Linear Systems
- 2. Approximating Functions
- 3. Numerical Differentiation and Integration
- 4. Numerical Solution of Ordinary Differential Equations
- 5. Numerical Solution of Partial Differential Equations

<u>Prerequisites</u>: Calculus, Linear Algebra, Differential Equations, a programming language (Fortran or C or C++ or matlab, etc.)

References

[1] Numerical Analysis: Mathematics of Scientific Computing, Third Edition, by David Kincaid and Ward Cheney, Brooks/Cole, ISBN: 0-534-38905-8, 2002. (The 2009 version by the American Mathematical Society (ISBN: 978-0-8218-4788-6) is the same.)

[2] Finite Difference Schemes and Partial Differential Equations, Second Edition, by John C. Strikwerda, SIAM, 2004, ISBN: 978-0-898716-39-9.

[3] Finite Difference Methods for Ordinary and Partial Differential Equations, by Randall J. LeVeque, SIAM, 2007, ISBN: 978-0-898716-29-0.

[4] J. Stoer, and R. Bulirsch, Introduction to Numerical Analysis, Springer, 2002.

[5] L. N. Trefethen, and D. Bau, Numerical Linear Algebra, SIAM, 1997.

[6] C.-W. Shu, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor (Editor: A. Quarteroni), Lecture Notes in Mathematics, v1697, Springer, 1998.

Other information

- Office location: Hurley Hall 176
- Office phone: (574) 631-6079
- **Office hours**: Tue 3pm 4pm, or send me an email for an appointment.
- Meeting time & place: MWF 10:30am-11:20am, Pasquerilla Center 105 (Lecture)
- Class website: http://www.nd.edu/~yzhang10/ACMS60690.html
- **Homework:** Both theoretical and computational homework will be assigned regularly. Homework will be collected and graded.
- **Exams:** There will be one midterm exam and the final exam. Midterm exam will be the in-class exam. The final exam will be a take-home exam involving computer problems, or a combination of take-home exam and in-class exam.
- Grades: 35% homework, 20% midterm, 45% final exam. The final grade will be assigned by the total points as follows: A+ ≥ 97, A ≥ 93, A- ≥ 90, B+ ≥ 87, B ≥ 83, B- ≥ 80, C+ ≥ 77, C ≥ 73, C- ≥ 70, D ≥ 60. Note: The cut-offs of grades are sharp. A+ will not be shown in your transcript.
- Honor Code: Both examinations and homework are conducted under <u>the</u> <u>honor code.</u> While cooperation in doing homework is permitted (and encouraged), copying is not.