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Logical investigations can obviously be a useful tool in philosophy. They must, however, be
informed by a sensitivity to the philosophical significance of the formalism and by a generous
admixture of common sense, as well as a thorough understanding both of the basic concepts and
of the technical details of the formal material used. It should not be supposed that the formalism
can grind out philosophical results in a manner beyond the capacity of ordinary philosophical
reasoning. There is no mathematical substitute for philosophy.

Saul Kripke: Is there a Problem about Substitutional Quantification?
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Introduction

In 1922, Thoraf Skolem published a paper entitled “Some Remarks on Axiomatized Set Theory.” The

paper presents a new proof of a model-theoretic result originally due to Leopold Löwenheim, and it then

discusses some of the philosophical implications of this result. In the course of this latter discussion, the

paper introduces a model-theoretic puzzle that has come to be known as “Skolem’s Paradox.” The present

dissertation focuses on this paradox.

Skolem’s Paradox involves a seeming conflict between two theorems of modern logic: Cantor’s theorem

from set theory and the Löwenheim-Skolem theorem from model theory. Cantor’s theorem says that there

are uncountable sets—sets that are too big to be put into any one-to-one correspondence with the natural

numbers. The Löwenheim-Skolem theorem says that if a collection of first-order sentences has a model, then

it has a model which is only countable. Skolem’s paradox arises when we note that the axioms of set theory

can themselves be written as first-order sentences: how can the very axioms which prove the existence of

uncountable sets be satisfied by a merely countable model?

Ever since Skolem formulated this paradox, philosophers have argued that issues of deep philosophical

importance hang on the paradox’s resolution. Skolem himself claimed that the paradox shows that set

theory provides an inadequate foundation for mathematics. Later authors have used the paradox to argue

that “every set is countable from some perspective” (Wang), that substitutional quantification is equivalent to

objectual quantification (Fine), or that Quine’s theory of ontological reduction is hopelessly flawed (Grandy

and Chihara). Most recently, Hilary Putnam has claimed that the paradox has, in his words, “profound

implications for the great metaphysical dispute about realism which has always been the central dispute in

the philosophy of language.”

It should be fairly clear, even at this preliminary stage, that there are two different things which these

kinds of arguments need to do. First, they need to show that Skolem’s Paradox really is a paradox! That

is, they need to show that Skolem’s Paradox exposes a genuine tension between Cantor’s theorem and the

Löwenheim-Skolem theorem and that eliminating this tension requires a modification in our initial views

about, e.g., set theory. Once they have done this, they can go ahead and explain how their more dramatic—

or, at least, more explicitly philosophical—conclusions are supposed to follow.

This dissertation focuses almost exclusively on the first half of this project—i.e., the half which tries to

expose an initial tension between Cantor’s theorem and the Löwenheim-Skolem theorem. I argue that, even

on quite naive understandings of set theory and model theory, there is no such tension. Hence, Skolem’s
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Paradox is not a genuine paradox, and there is very little reason to worry about (or even to investigate) the

more extreme consequences that are supposed to follow from this paradox.

The heart of my solution to Skolem’s Paradox can be found in chapter 1. In 1.1 and 1.2, I formulate

a relatively simple version of this paradox. In doing so, I attempt to disentangle the different roles which

set theory, model theory and philosophy play in the paradox. I also isolate the features of the paradox

which make it feel paradoxical in the first place.1 Finally, in 1.3, I explain why this formulation of Skolem’s

Paradox does not constitute a genuine “paradox” after all.

Very roughly, my explanation goes as follows. In 1.2.1, I isolate six sentences (or, in two cases, formulas)

that live in the near neighborhood of the English phrase “x is uncountable.” In 1.2.2, I show that Skolem’s

Paradox turns on an equivocation between two of these sentences. Then, in 1.3, I present a series of four

arguments which show why this equivocation cannot be justified. At the end of the chapter, therefore, I

conclude that this version of Skolem’s Paradox exposes no real tensions between Cantor’s theorem and the

Löwenheim-Skolem theorem.

One way to avoid the argument of chapter 1 would be by reformulating Skolem’s Paradox so as to

rely on more sophisticated mathematics—i.e., not just on the Löwenheim-Skolem theorem. In chapter 2, I

consider three examples of this strategy: one which involves transitive models, one which involves elementary

submodels of Vκ for some inaccessible κ, and one which involves theorems about permutations of the set-

theoretic universe.2 In the long run, I argue that all of these formulations fail and that, although it may

take some mathematical drudge-work to discover this fact, they fail for the same reason that the original

formulation of Skolem’s Paradox fails. At the end of the day, then, I conclude that there is nothing even

in the vicinity of Skolem’s Paradox which exposes a genuine tension between Cantor’s theorem and the

Löwenheim-Skolem theorem.

In the course of this argument in chapter 2, another interesting feature of Skolem’s Paradox comes to

light. Philosophers have often argued that Skolem’s Paradox is due, in essence, to the specific way that

first-order models interpret existential quantifiers. More specifically, there is one particular quantifier in the

formal expression corresponding to the English phrase “x is uncountable” which tends to get the “blame”

for Skolem’s Paradox. In 2.2 and 2.3, I show that this analysis is, at least partially, misguided. There are

many different symbols which can “take the blame” for Skolem’s Paradox, and it’s technically important to

understand which ones can (and cannot) do this in specific cases.

In chapter 3, I examine a second puzzle concerning Skolem’s Paradox. Ever since the 20’s, philosophers

have known that there is a relatively simple technical solution to Skolem’s Paradox. Nevertheless, philoso-

phers have continued to find the paradox tempting and have, in many cases, claimed that it poses a genuine

philosophical problem (i.e., as discussed at the beginning of this introduction). Why, then, have so many

philosophers found the technical “solution” to Skolem’s Paradox less than adequate?

1See also the first few pages of 1.3.1 for a discussion of the “feel” of Skolem’s Paradox.

2See the relevant sections of chapter 2 for definitions of, e.g., “transitive,” “elementary,” and “inaccessible.”
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In chapter 3, I suggest two reasons for this attitude. The first involves a general suspicion of the mathe-

matical machinery that is used to formulate the technical solution, while the second argues that the technical

solution overlooks something important about the role of axiomatization in mathematics. In 3.1, I formulate

a version of the first position and then give a reply to it. Basically, I claim that there may well be something

to worry about here, but that the worries in question are so fundamental that they reduce Skolem’s Paradox

itself to a triviality. If these worries are well-founded, then set-theoretic problems appear immediately, and

Skolem’s Paradox functions as mere technical window-dressing.

In 3.2, I tackle the second position. I begin by isolating the exact role which axiomatization would

need to play in mathematics if Skolem’s Paradox were to be a genuine problem. I then give two different

arguments against the idea that axioms play (or even could play) this particular role. In the end, I conclude

that neither of the arguments against the technical solution to Skolem’s Paradox can really be sustained.

Since these are the only arguments which threaten my own solution to Skolem’s Paradox—i.e., the solution

given in chapters 1 and 2—I conclude that my solution remains persuasive.

Finally, in chapter 4, I turn away from generic formulations of Skolem’s Paradox to examine Putnam’s

so-called “model-theoretic argument against realism.” I show that Putnam’s argument involves mistakes

of both the mathematical and the philosophical variety, and that these two types of mistake are closely

related. Along the way, I clear up some of the mutual charges of question-begging which have characterized

discussions between Putnam and his critics. In the end, I conclude that Putnam’s use of Skolem’s Paradox

involves far less originality than is sometimes supposed and that his “model-theoretic argument against

realism” is simply a failure.

If there is an overarching theme to this dissertation—other than its focus on Skolem’s Paradox—it

would be that expressed in the quotation on the first page. Genuine philosophical results require genuine

philosophical arguments. If we are willing to put enough philosophy into our formulation of Skolem’s Paradox,

then we are very likely to get some philosophy out. The significance (and truth) of the philosophy we get

out of Skolem’s Paradox, however, will depend almost exclusively on the significance (and truth) of the

philosophy we put in. In particular, we won’t get any substantial philosophical conclusions from mere

reflection on Cantor’s theorem and the Löwenheim-Skolem theorem. And, by the way, there is no tension

between these two theorems.
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Chapter 1

A Simple Paradox

The first two chapters of this dissertation examine several “canonical” formulations of Skolem’s Paradox.

Chapter 1 focuses on an initial, quite simple, formulation of the paradox, while chapter 2 examines three

more sophisticated formulations. Throughout these two chapters, my principal goal is to disentangle the

roles that set theory, model theory, and philosophy play in the formulation of Skolem’s Paradox. By doing

so, I hope to 1.) provide a clearer understanding of the mathematics which lies behind Skolem’s Paradox

and 2.) identify some of the purely philosophical assumptions upon which the paradox depends.

On the mathematical side, I show that different formulations of Skolem’s Paradox rest on fundamentally

different mathematical underpinnings. As a result, there is no uniform “explanation” of the paradox—

i.e., there is no single technical mistake whose isolation enables us to solve Skolem’s Paradox.1 On the

philosophical side, I argue that no formulation of Skolem’s Paradox can be genuinely “paradoxical” unless

it relies on substantial—and, in my view, almost certainly mistaken—assumptions about the relationship

between model theory and ordinary mathematical English.2

1.1 A Simple Paradox I

Let me begin with a fairly simple, though not very plausible, formulation of Skolem’s Paradox.

We start with a standard, first-order axiomatization of set theory, ZFC.3 On the assumption
that this axiomatization has a model, the Löwenheim-Skolem theorems ensure that it has a

1That being said, many presentations of Skolem’s Paradox do involve relatively straightforward technical errors (or, at least,

tendentious and misleading formulations of basic mathematical results). Part of my goal, then, is to provide a clear enough

exposition of the mathematics behind Skolem’s Paradox that readers can recognize such errors on their own. In my view, this

already goes a long way towards “solving” Skolem’s Paradox.

2In section 1.2 I isolate these assumptions and explain how they contribute to Skolem’s Paradox. In 1.3, I argue that these

assumptions are false, and I provide an initial explanation as to why they are false. I do not, however, consider any of the

arguments which might be put forward in favor of the assumptions until chapter 3.

3Throughout the next two chapters, I use ZFC as a “canonical” axiomatization of set theory. At points, I leave ZFC to

discuss other axiomatizations—e.g., GB, NF, etc.—but these discussions are limited to the footnotes. In the long run, nothing

of philosophical significance depends on the particular (first-order) axioms used in formulating Skolem’s Paradox; so restricting

our discussion to ZFC is a harmless expository convenience.
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countable model. Call this model M . Now, as ZFC ` ∃x “x is uncountable,” there must be some
m̂ ∈ M such that M |= “m̂ is uncountable.” But, since M itself is only countable, there are
only countably many m ∈ M such that M |= m ∈ m̂. Thus, cardinality seems to be relative:
from one perspective, m̂ is uncountable, while from another perspective, m̂ is countable.

There are two things that we should immediately notice about this formulation of Skolem’s Paradox. First,

although the invocation of “relativity” and “perspective” in the last sentence is somewhat obscure, it is

clearly a response to some problem which has been created in the previous sentences. Second, these previous

sentences are nowhere near as explicit as we might like concerning what this problem is supposed to be!

To make our formulation of Skolem’s Paradox precise, therefore, we should begin by determining the exact

nature of this initial problem.

The most natural explication of the initial problem goes something like this. From the fact that

M |= “m̂ is uncountable,” we conclude that m̂ really is uncountable. From the fact that there are only

countably many m ∈ M such that M |= m ∈ m̂, we conclude that m̂ is really countable. Since these two

conclusions are contradictory, we have the “problem” we are looking for. Further, because each of our two

conclusions involves the countability of m̂, we have an explanation as to why cardinality is the property

of sets that is regarded as “relative” and why countability is the property that is taken to depend on our

“perspective.”

Running with this explanation for the moment, we can reformulate Skolem’s Paradox as follows. Let M

be a countable model for ZFC and let Ω(x) be a formula which codes the phrase “x is uncountable.” As

above, we use the fact that M |= ZFC to obtain an element m̂ ∈ M such that M |= Ω[m̂]. We then argue,

1. M is a countable model of ZFC. (A)
2. Ω(x) says that “x is uncountable.”
3. M |= Ω[m̂].

∴ 4. m̂ is uncountable.
5. If M is countable, then each m ∈ M is also countable.

∴ 6. m̂ is countable.

Here, lines 1 and 3 follow directly from our choice of M and m̂, and line 6 follows easily from 1, 3 and 5.

Our difficulties, therefore, lie in assessing the truth of premises 2 and 5 (and, indeed, in understanding these

premises). We also need to evaluate the validity of the inference from 1–3 to 4. The rest of this section—and

its successor—will focus on these tasks.

We begin with an interpretive question which effects our understanding of lines 4–6 (and, ultimately, of

line 2). When we say that an element m ∈ M “is countable,” do we mean that

I. {x | x ∈ m} is countable

or do we mean that

II. {x | M |= x ∈ m} is countable?

Since this question effects the very meaning of 2 and 4–6, its answer is a prerequisite to assessing either the

truth of premises 2 and 5 or the validity of the inference from 1–3 to 4.
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There are two things to notice about this question. First, the two interpretations of “m is countable”

differ only in the way they interpret the notion of “membership” vis-a-vis the element m. Interpretation I

assumes that we are interested in the real membership relation on m, while interpretation II assumes that

we are interested in the relation which M thinks is the membership relation on m—i.e., in whatever relation

on M ×M serves as the interpretation of “∈” under the interpretation function of M .

Second, the two interpretations share the same conception of countability. Under both interpretations,

for instance, line 4 asserts the existence of a bijection between N and some set; under both interpretations,

the existence of this bijection is an issue of ordinary (naive) set theory. The difference between the two

interpretations concerns the appropriate range of this bijection: interpretation I makes the range {x | x ∈ m̂},

while interpretation II makes it {x | M |= x ∈ m̂}. To put this point another way, the two interpretations

agree on how we measure the countability of a given set, but they disagree on which set we want to measure—

i.e., which set constitutes the set of “members” of the element m.

This second point is crucial for a proper understanding of Skolem’s Paradox. As we move along, we

will encounter formulations of Skolem’s Paradox which depend on various reinterpretations of the notion of

countability. It is important, therefore, to keep such reinterpretation of “countability” distinct from the kind

of interpretation at issue in I and II. To be sure, some formulations of Skolem’s Paradox will involve both

kinds of interpretation; but even in such cases, it will be important to keep the issues distinct so as to better

understand the differing roles they play in the generation of Skolem’s Paradox.

Given this, which of the two interpretations gives the best reading of argument (A)? On the one hand,

interpretation I is certainly the the most natural reading of “m is countable.” Further, and as we shall see in

sections 1.2.1 and 1.2.2, it is the only reading on which premise 2 can be made plausible without substantial

modification. Nevertheless, I think it is fairly clear that interpretation II actually gives the best reading of

“m is countable” as this phrase occurs in argument (A).

There are three considerations that favor interpretation II. First, interpretation I has the effect of making

premise 5 straightforwardly false. As Paul Benacerraf has noticed with respect to another formulation of

Skolem’s Paradox, there is absolutely no reason to think that the countability of M entails that every member

of M is also countable (i.e., “countable” in the sense of interpretation I).4 This immediate falsification of

premise 5 counts heavily against using interpretation I to understand argument (A).

This problem of Benacerraf’s is interesting, and I think it sheds some important light on Skolem’s

Paradox. To understand the problem better, we should begin by examining the following two examples.

First, suppose that κ is an inaccessible cardinal and that N is a countable, elementary submodel of Vκ. In

this case, even though N is countable, and even though N |= ZFC, N still contains the uncountable set

(ℵ1)V as a member .5 Second, suppose that N is any countable model for ZFC and that X is any set which

4See [4], 102–3. As noted, Benacerraf is not discussing argument (A) itself. However, the argument he is discussing is

sufficiently similar to (A) to make his discussion relevant.

5For our purposes, there are two things which are important about this example. First, the fact that κ is inaccessible entails

that the model 〈Vκ,∈〉 satisfies ZFC. Second, the fact that N is an elementary submodel of Vκ entails both that N also satisfies
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doesn’t happen to be in the domain of N . Then, by simply substituting X for some arbitrary member of N

and then modifying the “membership” relation on N so as to respect this substitution, we obtain another

model N ′ which 1.) contains X, 2.) has exactly the same cardinality as N , and 3.) satisfies exactly the same

sentences as N (e.g., ZFC). If, therefore, X happens to be an uncountable set, then N ′ will be a countable

model of ZFC which contains an uncountable set as a member.6

These examples show why premise 5 is not, as it stands, acceptable under interpretation I. There are,

however, at least two ways of modifying argument (A) so as to render premise 5 acceptable without giving

up on interpretation I. The first is due to Benacerraf himself. Benacerraf notes that reformulating Skolem’s

Paradox in terms of transitive models ensures that every member of a countable model is itself a countable

set. In the case of argument (A), therefore, we can simply begin by choosing M to be a countable, transitive

model of ZFC and then replacing 5 with

5t. If M is countable and transitive, then each m ∈ M is also countable.

As this new version of premise 5 is true, the modified formulation of argument (A) allows us to neatly avoid

Benacerraf’s problem.

Since transitive models will be important throughout the next few sections (though not, I think, for

exactly the reasons that Benacerraf suggests), it is useful to pause for a moment to clarify the mathematics

behind Benacerraf’s proposal. To begin, we say that a set X is transitive if every member of a member of

X is also a member of X (i.e., y ∈ z ∈ X =⇒ y ∈ X). We say that a model is transitive if its domain

is a transitive set and its “membership” relation is simply the real membership relation restricted to that

domain.

Given this, it should be clear how transitive models help to solve Benacerraf’s problem. If M is a

transitive model and m is an element of M ’s domain, then every member of m is also a member of M .

ZFC and that N and Vκ agree on the identity of cardinals which have unique first-order definitions—e.g., cardinals like ℵ1, ℵ2
and ℵω . Hence, each of these (uncountable) cardinals must be an actual member of N . As a result, the countable model N is

literally bursting with uncountable elements.

6 This second example uses a technical trick which will reappear several times in the next few sections, so it is useful to

spend a few moments explaining it in more detail. The example depends on two theorems of model theory. First, if two models

N and N ′ are isomorphic—i.e., if there exists a bijection f : N → N ′ such that for every a, b ∈ N , a ∈N b⇐⇒ f(a) ∈N′f(b)—

then these models must also be elementarily equivalent—i.e., for every sentence φ, N |= φ⇐⇒ N ′ |= φ.

Second, if N is a model and if f : N → A is a bijection, then f carries with it a canonical method for building a model which

has A as its domain and which is isomorphic to N . To obtain this model, we simply define a relation ∈A on A×A as follows:

a ∈A a′ ⇐⇒ f−1(a) ∈N f−1(a′).

Given this definition, 〈A,∈A〉 is the desired model, and f itself is the desired isomorphism.

Returning to the example from the text, we find that substituting X for an arbitrary n̂ ∈ N amounts to constructing a

bijection f : N → (N ∪ {X}) \ {n̂} such that f(n̂) = X and f � (N \ {n̂}) = Id. Similarly, redefining ∈ in the manner

suggested above amounts to building the very model which this bijection canonically induces. Given this, claim 1 follows

directly from the definition of N ′, claim 2 follows from the fact that f is a bijection, and claim 3 follows from the fact that f is

an isomorphism along with the fact that isomorphic models are elementarily equivalent.
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Hence, m can be no bigger—i.e., can have no greater cardinality—than M itself. In particular, it is not

possible for a countable, transitive model to contain a uncountable set as a member; this is exactly what

premise 5t tries to say.7

Unfortunately, transitive models are sometimes hard to come by. If we assume the existence of an

inaccessible cardinal—as we did, for instance, in the first example of the fourth-to-last paragraph—then we

can obtain such models easily.8 Without such an assumption, however, transitive models may be hard to

find. It is consistent with ZFC, for example, to accept the existence of non-transitive models of set theory

while rejecting the existence of transitive ones.9 Indeed, it is fairly easy to find consistent extensions of ZFC

which are incompatible with transitivity: even if ZFC has transitive models, these extensions do not.10

This, then, brings us to a second technique for modifying argument (A) so as to render (some version

of) premise 5 compatible with interpretation I. Like Benacerraf’s transitive-model technique, this technique

ensures that M contains only countable sets. Unlike the transitive-model technique, this technique involves

no assumptions over and above the assumption that ZFC has a model.

To employ this new technique, we begin with an arbitrary model N such that N |= ZFC. We then choose

A to be an arbitrary subset of Pω1(N) such that |A| = |N |.11 Next, we employ a trick from footnote 6.

Since, A and N have the same cardinality, there is a canonical method for turning A into a model of ZFC

7Another way to think about this involves noticing that interpretations I and II coincide for transitive M . That is, if M is

a transitive model and m ∈M , then {x | M |= x ∈ m} = {x | x ∈ m}. Thus, the fact that interpretation II solves Benacerraf’s

problem for arbitrary models entails that interpretation I solves the problem for transitive models.

8The technique for obtaining such models involves a result called the “Mostowski Collapsing Lemma.” This lemma allows

us to take any well-founded model—i.e., any model which contains no infinite descending ∈-chains—and find a transitive model

which is isomorphic to it. Hence, if we start with an inaccessible cardinal κ and then apply the Collapsing Lemma to some

countable, elementary submodel of Vκ, we end up with a countable, transitive model of ZFC (see footnotes 5 and 6 for further

background concerning this construction).

9Here, I use the fact that if M is a transitive model of ZFC, and if M |= ∃N “N is a transitive model of ZFC,” then M

must really contain some transitive model of ZFC (to use the jargon, the property “being a transitive model of ZFC” is absolute

between M and V ). I also use the fact that every transitive model of ZFC satisfies the sentence ∃N “N is a model of ZFC”

(since this sentence is essentially arithmetical, and transitive models get arithmetical sentences right).

Suppose, then, that there is a transitive model of ZFC. As an infinite descending sequence of transitive models violates the

axiom of foundation, there must be a transitive model which contains no other transitive models as members (a so-called minimal

transitive model). This model satisfies ZFC plus ∃N “N is a model of ZFC” plus ¬∃N “N is a transitive model of ZFC”.

Hence, even if transitive models exist, it is consistent with ZFC + ∃N “N is a model of ZFC” to assume that they don’t .

10Let me give two ways of obtaining obtaining such extensions. The most straightforward way involves adding a new constant

c to our language and then adding the sentences “c is a natural number,” “c 6= 1,” “c 6= 2,” etc. to the axioms of ZFC. The

resulting theory is (by compactness) consistent; but since the constant c names a non-standard natural number, the theory

cannot have transitive (or even well-founded) models.

Alternately, we could let T any consistent, axiomatizable extension of ZFC and then note that the theory T ′ = T ∪¬Con(T )

is still consistent but fails to have transitive models (since, in any model of T ′, the “natural number” witnessing ¬Con(T ) has

to be non-standard).

11Here, Pω1 (N) is simply an abbreviation for {X | X ⊂ N and |X| < ω1}. Since N is infinite, we know that there are at

least |N | many countable subsets of N . Hence, |Pω1 (N)| ≥ |N |, and obtaining the desired A is easy.
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(and, indeed, into a model which is isomorphic to our original N). As a result, we wind up with a model

which 1.) satisfies ZFC, 2.) has the same size as N , and 3.) contains only countable sets as members.12

Since we can assume, without loss of generality, that our original N was countable, this new model lets us

solve Benacerraf’s problem (albeit with a minor revision of premise 513).

These, then, are two ways of responding to Benacerraf’s problem without abandoning interpretation I.

Both of them, however, require that we select a more specific model with which to work and that we rewrite

premise 5 take into account the structural details of this model. In contrast, interpretation II allows us to

avoid Benacerraf’s problem without modifying argument (A): on interpretation II, the mere fact that M is

countable really does ensure that every m ∈ M “is also countable.” This easy avoidance of Benacerraf’s

problem is one reason for preferring interpretation II to interpretation I.

A second reason for preferring interpretation II is that this interpretation allows the countability of M ’s

domain to play a real role in argument (A). As we have just seen, any model of set theory—whether countable

or uncountable—is isomorphic to a model all of whose members are countable. On interpretation I, therefore,

we can formulate a (trivial) variant of argument (A) in which the cardinality of M becomes a moot point:

we simply let M be an uncountable model containing only countable sets, and we replace premise 5 with

the simple declarative

5d. Every member of M is countable.

Hence, since interpretation I lets us formulate argument (A) in terms of uncountable models, and since the

countability of our models is supposed to be a key feature—indeed, the key feature—of Skolem’s Paradox,

interpretation I should be bypassed in favor of interpretation II.

This second point is crucial and needs to be emphasized. The proponent of Skolem’s Paradox thinks that

something important follows from the fact that the axioms of ZFC can be satisfied by a countable model.

Reading their argument along the lines suggested by interpretation I has the effect of making the countability

of this model irrelevant; reading it along the lines suggested by interpretation II makes the countability of

this model essential. Given this, II must be the preferred interpretation of the phrase, “m̂ is countable” in

the context of argument (A).

A third reason for preferring interpretation II is that it allows us to avoid philosophical problems that are

far more basic than the (mere) problems with countability which Skolem’s Paradox highlights. In contrast,

interpretation I leads smack into the middle of such problems. For one thing, interpretation I raises the

strong possibility that lines 4–6 in argument (A) just don’t make any sense. After all, the model M may well

12It is worth noting that there is nothing special about the fact that our final model contains only countable sets. The same

technique can be used to obtain a model all of whose members are finite, and a minor modification let us obtain a model all of

whose members have cardinality κ, for κ an arbitrary cardinal. In the first case, we let the domain of our model be a subset of

Pω(N) rather than Pω1 (N); in the second, we let this domain be a subset of Pκ+ (κ) \ Pκ(κ). (Note that we use κ rather than

M in this construction, because Pκ+ (M) \ Pκ(M) may be empty if |M | < κ).

13I.e., premise 5 might be replaced with something like

5c. If the domain of M is a subset of Pω1 (X) for some X, then each m ∈M is countable.
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contain no sets, only things like dogs, cats, hamsters and rabbits.14 If so, and if the terms “countable” and

“uncountable” can only be applied to sets—e.g., if they are meaningless when applied to small housepets—

then lines 4–6 will also be meaningless.

Even if the terms “countable” and “uncountable” do apply to ordinary objects (i.e., to objects that

aren’t sets), interpretation I still generates problems which are more basic than Skolem’s Paradox. To

understand these problems, we need to notice two things. First, interpretation I makes argument (A) turn

on the assumption that understanding the organizational structure of a model enables us to understand

the internal composition of that model’s elements. More particularly, it requires the assumption that we

can start with facts about the relation ∈M—i.e., facts about the way M happens to interpret the symbol

“∈”—and infer facts about the real membership relation on the set-theoretic universe—or, at least, facts

about the real membership relation restricted to elements in the domain of M .15

Second, once this assumption about ∈M and ∈ has been made, we can generate all the “paradoxes”

we want by simply comparing these two relations directly . To see this, suppose that M is an arbitrary

model of set theory and that Gandalf and Katie are two ordinary housecats; suppose also that Ω′(x) is

the formula which codes “x is a set” and that Ω′′(x, y) is the formula which codes “x is a member of y.”

Then, using a trick from footnote 6, we can build a model M ′ and an isomorphism f : M → M ′ such that

f(ℵM
0 ) = Gandalf and f(ℵM

1 ) = Katie. At the end of the day, therefore, we are in position to formulate the

following “paradoxes”:

1. Ω′(x) says that “x is a set.” 1. Ω′′(x, y) says that “x is a member of y.”
2. M |= Ω′[Gandalf]. 2. M |= Ω′′[Gandalf,Katie].

∴ 3. Gandalf is a set. ∴ 3. Gandalf is a member of Katie.
But, 4. Gandalf is a cat, not a set. But, 4. Katie is a cat, and cats don’t have members.

Indeed, if we are interested in using this feline machinery to develop a “paradox” which is more similar to

the one in argument (A), we could simply argue as follows:

1. M is a countable model of ZFC.
2. Ω(x) says that “x is uncountable.”
3. M |= Ω[Katie].

∴ 4. Katie is uncountable.
5. Katie is a cat, and cats don’t have members.

∴ 6. Katie is not uncountable.

Thus, the assumption that models can be expected to “know” about the internal constitution of their

own members—i.e., the assumption which argument (A) has to make if it is to work in accordance with

interpretation I—leads to “paradoxes” involving issues that are far more basic than those raised by Skolem’s

14Of course, M will have to contain something other than animals, since M is infinite and there are only finitely many animals

in the world. Nevertheless, there is no assurance that the other elements of M will be sets, nor that the particular element m̂

will not be an animal. Besides, and as Tony Martin has reminded me, rabbits do breed very rapidly.

15So, for instance, ∈M is the relation at issue when we evaluate “M |= Ω[m̂]” in line 2, but ∈ is the relation at issue in (the

inferred) line 3. Similarly, ∈M is the relation which makes premise 5 plausible, but ∈ is the relation which lets us infer line 6.
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Paradox. In light of this fact, our primary focus on Skolem’s Paradox leads us to eschew interpretation I in

favor of interpretation II.16

These, then, are three considerations which favor interpretation II over interpretation I. Interpretation

II solves Benacerraf’s problem without altering our choice of models and without modifying premise 5, it

makes the countability of M ’s domain play a genuine role in argument (A), and it avoids assumptions which

lead to paradoxes more basic than Skolem’s Paradox itself. In light of these considerations, we can rephrase

Skolem’s Paradox in the following, somewhat more explicit, manner:

1. M is a countable model of ZFC.
2. Ω(x) says that “x is uncountable.”
3. M |= Ω[m̂].

∴ 4. {x | x ∈M m̂} is uncountable.
5. If M is countable and m ∈ M , then {x | x ∈M m} is also countable.

∴ 6. {x | x ∈M m̂} is countable.

In this formulation, premises 1, 3 and 5 are clearly true, and the inference from 1, 3 and 5 to 6 is clearly

valid. Our difficulties, therefore, involve the assessment of premise 2 and the evaluation of the inference

between 1–3 and 4. The next section will focus on these two projects.

Before turning to these projects, however, it is worth noticing one “substantial” point which the present

section has established: that we cannot expect an arbitrary model—even one which satisfies ZFC—to know

anything about the membership relation on the real set-theoretic universe. Even in cases where the elements

of a model’s domain are sets, the model itself knows nothing about the set-theoretic relationships between

these sets. At best, the model knows about its own internal “membership relation,” and this relation may

have nothing to do with the real membership relation on the set-theoretic universe (or even the restriction

of this relation to the domain of M).17

1.2 A Simple Paradox II

In this section, I focus mostly on questions relating to premise 2. How should this premise be interpreted? Is

the premise true (under some interpretations)? Is the premise strong enough to entail line 4? Before going

into details, however, I want to make two preliminary points about the role premise 2 plays in argument (A).

First, if premise 2 is going to facilitate an inference from 1–3 to 4, then a lot of philosophical baggage

will have to be built into the phrase “says that.” At the very least, the phrase must be interpreted so as to

16Of course, the fact that a model cannot “know” about the internal constitution of its members should have been clear from

our initial discussion of Benacerraf’s problem (see, especially, the two examples on p. 6 and the material in footnotes 6 and

12). Here, I am emphasizing the fact that, even if models could know about the internal constitution of their members, this

would not make Skolem’s Paradox philosophically interesting. Instead, it would give rise to so many other paradoxes—and to

so many more basic paradoxes—that Skolem’s Paradox itself would be completely overshadowed.

17For more on this theme, see sections 1.3.3, 2.2, and 2.3. In 2.3, I formulate several versions of Skolem’s Paradox for which

this particular confusion about “membership” provides the only real explanation.
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ensure that any first-order model of ZFC will respect the conception of “says that” in question. Put more

concretely (and in terms of the model we are actually discussing), the conception of “says that” will have to

be strong enough to ensure that the following claim holds:

∀m ∈ M [M |= Ω[m] =⇒ {x | x ∈M m} is uncountable]. (†)

Of course, this is a minimum condition. It would be good if we could replace the conditional above with

a biconditional, and it would be even better if we could get more than truth-functional equivalence—e.g.,

if we could show that there is some deep semantic connection between Ω(x) and “x is uncountable.” The

claim above, however, is all that we need to make the inference between 1–3 and 4 valid.

Second, there are strong reasons for thinking that no possible interpretation of “says that” can both

support (†) and be correct. After all, the very fact that (†) leads to Skolem’s paradox provides prima facie

grounds for rejecting it. Since (†), in conjunction with some fairly straightforward mathematics, leads to an

outright contradiction, we have good reason to apply modus tollens and reject any interpretation of “says

that” which claims to support (†).

Nothing in the remainder of this section (or chapter) will try to overcome this prima facie objection.

Instead, I will discuss several different ways of understanding Ω(x) in order to see why this formula might

seem to say that x is uncountable (and might seem, therefore, to support (†) ). Having done so, I will then

provide a fairly detailed analysis of just how (†) goes wrong. For several different interpretations of Ω(x), I

will isolate where M |= Ω[m] and “m is uncountable” diverge, and I will explain how this divergence leads

to a failure of (†) (and, in consequence, to the collapse of argument (A) ).

1.2.1 Six Interesting Sentences

In order to understand premise 2, it is useful to distinguish four different ways of understanding the formula

“Ω(x).” Before doing so, it is useful to consider two different sentences of ordinary English—sentences which

live, so to speak, in the near vicinity of Ω(x). I begin, therefore, by laying out these six items—i.e., two

sentences of ordinary English and four versions of Ω(x)—and then saying a little bit about relationships

between them.18

We can begin with the ordinary English sentence “x is uncountable.” If asked what this sentence means,

a set theorist will say something about the lack of a bijection between x and the natural numbers. If asked

about the phrase “is a bijection,” she might go on to talk about collections of ordered pairs satisfying certain

nice properties. Finally, if asked about the term “ordered pair,” she may say something about the ways one

can identify ordered pairs with sets.

18I will often talk about four “versions” of Ω(x) rather than four ways of interpreting a single formula. For the purposes

of this section, I don’t think very much turns on the question of whether the semantic distinctions I draw induce genuinely

different formulas or whether they just give a single formula different interpretations. Even in ordinary English, questions

about the individuation of words which have multiple meanings (e.g., “bank”) lead rapidly to complications. I see no reason,

however, to think that these complications are germane to the questions at issue here.
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Taking this explanatory process to its logical conclusion, we can continue to fill in the details of “x is

uncountable” until we obtain a single sentence (albeit a quite long and complicated sentence) which uses

no phrases other than “equals,” “is a member of,” “not,” “if. . . then,” and “there is a set y, such that.”

This sentence—which, like “x is uncountable,” is simply a sentence of ordinary mathematical English—is

the second item in our list of six. Because this sentence is (far) too long to write out explicitly, I will use

“Cantor(x)” to denote it.19

Given Cantor(x), we get our third sentence by abbreviating the phrases “equals,” “is a member of,” “not,”

“if. . . then,” and “there is a set y, such that” with the symbols =,∈,¬,→, and ∃y. Having done so, we obtain

a transcription of Cantor(x) which uses no symbols other than the above-mentioned =,∈,¬,→, and ∃y (and,

perhaps, some punctuation). For convenience, I call the resulting sentence the “plain English version of Ω(x)”

and denote it by ΩE(x). Before moving on, there are two things to notice about ΩE(x).

First, ΩE(x) is not generated by interpreting some formula of first-order set theory. We do not, that

is, begin with a string of uninterpreted first-order symbols and then stipulate that these symbols are to be

understood in some particular way. Instead, we begin with a sentence of ordinary mathematical English,

and then use a certain collection of symbols—which just happen to be commonly used in the formulation of

first-order set theory—as abbreviations for terms and phrases which already occur in this sentence.20

Second, and as a direct consequence of the fact that ΩE(x) is simply an abbreviation for Cantor(x),

ΩE(x) has exactly the same semantics as Cantor(x) itself. So, the symbol “∈” still means “is a member of,”

the phrase “∃x” still means “there is a set x such that,” etc. Most importantly, the sentence ΩE(x) is true

exactly when the sentence Cantor(x) is true—i.e., exactly when x is an uncountable set.

Note that this second point does not entail that ΩE(x) is semantically unproblematic. If, for instance,

there are semantic problems which effect Cantor(x) itself—e.g., some kind of vagueness or ambiguity—then

these problems will also effect ΩE(x). It does, however, entail that ΩE(x) has no special problems which

distinguish it from Cantor(x). In particular, the mere fact that ΩE(x) uses symbols like =,∈ and ¬ does

not introduce semantic problems—e.g., vagueness, ambiguity or “susceptibility to reinterpretation”—which

were not already present in Cantor(x).

19To see the difficulties in writing Cantor(x) explicitly, note that even a simple phrase like “x is a singleton” turns into,

There is a set a such that it is not the case that if a is a member of x, then there exists a set b such that it is not

the case that if b is a member of x then b is equal to a.

when it is “written out” in the manner of Cantor(x). If we move to something marginally more complicated—say, the phrase

“x is an ordered pair” or “f is a function”—then we get sentences the length of good size paragraphs. Finally, Cantor(x) itself

requires several pages to write down explicitly!

20This abbreviatory use of “first-order symbols” is quite common in mathematics. Since→ is easier to write than “if. . . then,”

and since ∃x is considerably shorter than “there exists an x such that. . . ,” mathematicians often conserve time (and blackboard

space) by using the latter to abbreviate the former. In theory, this practice could lead to a certain kind of confusion—where, e.g.,

we forget which instances of “∃” are symbols in our formal language and which are simply abbreviations of ordinary English.

In practice, however, this seldom causes any real problems, and I have only known one logician—Yiannis Moschovakis—who

tries to avoid using “∃,” “→” and “¬” as abbreviations for ordinary English.
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Let us, then, leave ΩE(x) by the wayside and move to consider three further, and somewhat more

technical, ways of understanding Ω(x). First, we might consider Ω(x) as a completely uninterpreted string

of first-order symbols. In this case, we would start with some syntactic rules governing the generation of

formulas, and then notice that these rules let us generate the particular string of symbols which constitutes

Ω(x). This might be the approach to take, for instance, if we wanted to investigate the proof-theoretic

properties of Ω(x). For our purposes, however, the only thing to notice about this understanding of Ω(x) is

that it avoids semantics altogether: Ω(x), on this understanding, is simply a syntactically interesting string

of ultimately meaningless symbols. For reference purposes, I call this the “proof-theoretic version of Ω(x)”

and denote it by ΩP (x).

Second, we could consider Ω(x) from the standpoint of a model theorist, giving a semantics to some of

the symbols in Ω(x) while leaving the interpretation of other symbols as a subject for further study. If, for

instance, we wanted to do first-order model theory, then we might insist that “¬” function in the standard

manner and that “∃” and “∈” have a close semantic relationship (i.e., that any admissible interpretation of

“∈” will be joined with an interpretation of “∃” such that “m1 ∈ m2” only makes sense when both m1 and

m2 are in the range of ∃). At the same time, we let the exact interpretation of ∈ and ∃ be fairly indefinite

and take this indefiniteness itself as a subject for mathematical investigation.

Since this way of thinking about Ω(x) may be somewhat unfamiliar, three comments are in order. First,

understanding Ω(x) model-theoretically does involve giving a semantics—or, at least, a proto-semantics—to

that sentence. For one thing, it gives a standard interpretation to some of the symbols in Ω(x)—i.e., those it

employs as “logical constants”—and it may place restrictions on the interpretation of others.21 Thus, even

though a model-theoretic understanding of Ω(x) does not fix a unique semantics for that formula, it does

not leave the formula completely uninterpreted. By specifying a certain range of models, and by specifying

how Ω(x) is to be interpreted at each of these models, this understanding provides a fair bit of semantic

information about Ω(x).

Second, we can obtain different model-theoretic versions of Ω(x) simply by choosing different classes

of models for our language and/or by specifying different ways of interpreting the individual components

of Ω(x) at these models. So, for instance, we can give the sentence ∀P∃xP (x) different kinds of model-

theoretic semantics by varying the rules for interpreting the “second-order” quantifier. If we insist that this

quantifier range over all subsets of a domain, we get one kind of semantics; if we make it range over the

first-order definable subsets of a domain, we get another; if we allow it to range over some arbitrary subset

21So, for instance, generic first-order semantics does not provide a universal domain for its quantifiers, but it does require

that its quantifiers range over sets. Similarly, once we have a domain of quantification, first-order semantics does not tell us

how to interpret particular predicates and constants, but it does require that this interpretation be correlated with the choice

of domain for the quantifiers (i.e., constants must name members of this domain, and predicates must pick out subsets of the

domain). Hence, although a generic first-order semantics leaves a great deal of room for varying interpretations, it also places

substantial restrictions on those interpretations. See [15], [25], [53] or section 3.2 of this thesis for further discussion of this

issue.
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of the domain’s powerset we get still a third. In this sense, then, model theory provides a whole collection

of semantics for Ω(x), depending on how we choose to specify the relevant conceptions of “model” and/or

“satisfaction.”22

Finally, and most importantly, any model-theoretic semantics worth its salt will be designed to allow

some variation in the models at which a particular sentence can be interpreted (and, indeed, at which a

particular sentence can come out true). The point of model theory, after all, is to investigate the interaction

between models and formulas. If we give too specific a semantics to our formulas—e.g., by fixing everything

about the interpretation of our language and leaving nothing to vary as we move from model to model—then

we render those formulas model-theoretically trivial.23 Thus, the very nature of model theory requires that,

in giving a particular formula a model-theoretic semantics, we allow that formula to be interpreted at a fairly

wide (but interestingly limited) collection of models. It’s simply built into the notion of semantics which

underlies the study of model theory.24

For the purposes of this section, I will label the version of Ω(x) which gives this formula a generic first-

order, model-theoretic semantics Ω1(x). Once this semantics is in place, it immediately induces another

version of Ω(x) (or, better, a whole family of versions of Ω(x)) which results from interpreting Ω1(x) at a

particular model. Specifically, the quantifiers, which were allowed to range over an arbitrary set in Ω1(x),

are now fixed so as to range over the particular set which constitutes our model’s domain. Similarly, the

membership symbol, which was left (at least partially) undefined on the generic, first-order version of Ω(x),

is now given a particular significance by the interpretation function of our model. Given a particular model

N , I call the resulting interpretation of Ω(x), “ΩN (x).”

Before moving on, we should notice that the semantics of ΩN (x) are in one way closer to the ordinary

English semantics of ΩE(x) than to the generic model-theoretic semantics from which it came. For one

thing, this semantics gives determinate significance to all the components of Ω(x). For another, it gives

a determinate truth-value to all sentences in the language of Ω(x). Like ΩE(x), therefore, ΩN (x) can be

regarded as a “fully-interpreted” version of Ω(x).25

22Note that these are two kinds of “variability” in play here. One is the variability which comes when we move from model to

model, given a generic semantics for Ω(x). The other comes when we make our initial choice of generic semantics—i.e., when

we decide whether Ω(x) is a first-order formula, a second-order formula, or something else entirely. The paragraph above is

concerned, solely, with the second of these types of variability.

23In particular, we should not be surprised to find that first-order sentences are typically satisfied by a whole variety of

structurally different models. In designating a sentence “first-order,” we say that it is to be evaluated at these kinds of models.

And while some sentences—e.g., ∀x∀y x = y—may do a good job at picking out the structure of their models, this cannot be

the case for all sentences. If it were, then first-order semantics would lose most of its mathematical interest.

24Given this, philosophers should be more careful in their use of phrases like “fully-interpreted, first-order languages.” From

a model-theoretic perspective, the difference between first and second-order languages depends on those languages lacking a

“full interpretation.” There is, for instance, no interesting difference between fully-interpreted second-order arithmetic and a

fully-interpreted first-order theory of numbers and sets of numbers. Only when we allow these two theories to take on multiple

models—i.e., when we remove the “full interpretation—does the first-order/second-order distinction begin to do anything.

25Of course, exactly how Ω(x) gets interpreted depends on which model we chose to interpret it at: if N 6= N ′, then ΩN (x)
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All that being said, there are substantial structural differences between ΩE(x) and ΩN (x). Exploring

these differences will be the principal focus of sections 1.3.2 and 1.3.3. For now, I conclude the present

section by recalling the six items—two sentences of ordinary English and four versions of Ω(x)—which have

been introduced in this section: 1.) “x is uncountable,” 2.) Cantor(x), 3.) ΩE(x), 4.) ΩP (x), 5.) Ω1(x),

and 6.) ΩM (x) (where M is as in argument (A) ). Understanding how these items contribute to argument

(A) is the task of section 1.2.2.

1.2.2 The Heart of Skolem’s Paradox

In this section, I discuss four issues concerning the relationship between argument (A) and the six items

introduced in the last section. First, I argue that premise 2 in argument (A) is relatively plausible if “Ω(x)”

is interpreted as ΩE(x). Second, I note that premise 3 amounts to the assertion that ΩM (x) is true. Third, I

use these first two points to highlight a key philosophical assumption upon which Skolem’s Paradox rests—

namely, the assumption that there is a deep relationship between the semantics of ΩE(x) and those of ΩM (x).

Finally, I make a few brief remarks concerning the relevance of ΩP (x) and Ω1(x) to Skolem’s Paradox.

To begin, consider the four versions of Ω(x) which were presented in the last section. Of these, ΩE(x)

is clearly the version which is most naturally related to the English phrase “x is uncountable.” Whereas

the other versions all involve a fair bit of technical machinery—the introduction of a formal syntax in each

case, and the introduction of a formal semantics in the case of Ω1(x) and ΩM (x)—ΩE(x) is essentially a

sentence of ordinary English. Furthermore, the way ΩE(x) is derived from “x is uncountable—i.e., through

the abbreviation of a sentence which is a direct explication of “x is uncountable”—makes it plausible to

think that ΩE(x) “says that” x is uncountable.

To evaluate this thought more carefully, we need to ask ourselves whether that “says that” relationship

is preserved through the following diagram—whether, that is, each of the three sentences in the diagram

really “says” the same thing:

“x is uncountable” ⇐⇒ Cantor(x) ⇐⇒ ΩE(x).

Start with the transition between “x is uncountable” and Cantor(x). Clearly there is a truth-functional

equivalence between these two sentences. After all, Cantor(x) is simply a long-winded explication of “x is

uncountable,” and any explication worth its salt preserve the truth-value of its explinandum. Nevertheless,

I have a concern as to whether “x is uncountable” and Cantor(x) really “say” the same thing.

My concern here is this: there are many different ways to explicate the notion of uncountability. These

explications differ in the ways they “code” basic set-theoretic concepts. So, for instance, some explications

of “uncountability” use Kuratowski pairs to formulate the notion of “a bijection” while others use more

may be very different ΩN′ (x) (and may, indeed, have a different truth-value). This is simply to reiterate a point made in the

last paragraph: the technique of specializing to a particular model provides a family of different versions of Ω(x). While these

versions share certain family resemblances (induced by the fact that they all arise from first-order models for the language of

set theory), they are still different interpretations of Ω(x).
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cumbersome codings.26 Similarly, some explications of uncountability emphasize the lack of a bijection

between x and ω, while others emphasize the lack of a bijection between x and some other set—say, the set

of Zermelo numbers or the set of hereditarily finite sets.

Now, if all these different explications “said” the same thing, then there would be no problem in moving

between “x is uncountable” and Cantor(x). However, I see no reason to think that these explications do say

the same thing. Certainly it is possible for two such explications—Cantor1(x) and Cantor2(x)—to fail to be

logically equivalent. In such a case, it’s hard to see why the two explications should be regarded as “saying”

the same thing. As a result, it’s hard to see why any one of these explications—e.g., Cantor(x)—should be

singled out as the explication which “says the same thing” as “x is uncountable.”27

Although I think this point is important for our understanding of set-theoretic English, I don’t want

to make too much of it here. For one thing, “x is uncountable” and Cantor(x) are truth-functionally

equivalent (in every possible world, no less!). For another, a simple modification of argument (A) allows us

to bypass my concern altogether: we just replace each instance of the term “countable” in argument (A)

with some particular explication of countability—e.g., “it is not the case that Cantor(x).” The resulting

argument raises the same problems as argument (A), and it does not involve any (explicit) use of the term

“countable.” In light of these considerations, I will proceed to grant—at least for the sake of argument—that

“x is uncountable” and Cantor(x) really do “say the same thing.”

With this concession in hand, the move to ΩE(x) becomes unproblematic. Since ΩE(x) is simply an

abbreviation for Cantor(x), these two sentences have exactly the same semantics. Hence, the move between

Cantor(x) and ΩE(x) is trivial. If we combine this with the concession made in the last paragraph, then we

are able to conclude that “x is uncountable” and ΩE(x) also say the same thing—i.e., that the “says that”

relation is preserved through the three columns in the diagram above.

This, then, provides us with an acceptable reading of premise 2: if we stipulate that “Ω(x)” in premise

2 is to be read as ΩE(x), then premise 2 comes out true.28 Further, it’s fairly easy to see how premise 3

can also be formulated so as to tie into the material from the last section. Because the quantifiers in ΩM (x)

are taken to range over the domain of M and because the membership symbol in ΩM (x) is taken to mean

∈M , there is a perfect correspondence between the truth-conditions for ΩM (x) and those for M |= Ω[x]. In

particular, for any element m ∈ M ,

ΩM (m) is true ⇐⇒ M |= Ω[m].

Hence, premise 3 turns out to be just another way of asserting ΩM [m̂].

26Kuratowski identifies the ordered pair 〈a, b〉 with the set {{a}, {a, b}}. We could just as easily identify it with the set

{{{{a}}, {{a, b}}}}.
27Of course, we might argue that there is a best explication of “x is uncountable” and that this is the one which “says the same

thing” as “x is uncountable.” Since I will eventually grant—for the sake of argument—that Cantor(x) and “x is uncountable”

do say the same thing, I will not pursue this suggestion here.

28This certainly works if “says that” is understood to mean nothing more than “is equivalent to.” It may also work if “says

that” is given a stronger reading, but this is far less clear (for the reasons mentioned in the main text).
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At this point, we are ready to approach the philosophical heart of Skolem’s Paradox: the assumption

that there exists a connection between the semantics of ΩE(x) and those ΩM (x). For starters, we should

note that the two conclusions we have already reached—i.e., that ΩE(x) “says that” x is uncountable, and

that ΩM (x) is equivalent to M |= Ω[x]—allow us to reformulate the claim (†) in the following, somewhat

more perspicuous, form:

∀m ∈ M [ΩM (m) =⇒ ΩE({x | x ∈M m})]. (†′)

This claim captures—in a purely truth-functional manner—the hypothetical connection between ΩE(x) and

ΩM (x) which, I think, ultimately underlies Skolem’s Paradox. In section 1.3, I discuss the truth of this

claim. At present, I focus on the role it plays in the formulation of argument (A). There are three things to

notice here.

First , (†′) provides a necessary condition for argument (A) to be sound.29 To see this, suppose that

argument (A) is sound. Then the validity of the inference from 1–3 to 4 means that premises 1 and 2 must

entail the conditional:

M |= Ω[m̂] =⇒ “{x | x ∈M m̂} is uncountable.”

But, since neither 1 nor 2 makes any mention of m̂, and since the only distinguishing thing about m̂ is the

fact that M |= Ω[m̂], premises 1 and 2 must actually entail the more general:

∀m ∈ M [M |= Ω[m] =⇒ “{x | x ∈M m} is uncountable”].

As we have already seen, the antecedent of the conditional here is equivalent to ΩM (m) and the consequent

is equivalent to ΩE({x | x ∈M m}). Substituting in accordance with these equivalences, therefore, we obtain

(†′). Finally, since argument (A) has been assumed to be sound, premises 1 and 2 must be true. So, (†′)

must be true as well.

It is important to notice that the argument above does not depend on any particular interpretation of

the “Ω(x)” in premise 2. Nor does it depend on the details of premise 1. Instead, it depends on—and only

on—the two facts discussed earlier in this section: that ΩE(x) says the same as “x is uncountable” and that

ΩM (x) is equivalent to “M |= Ω[x].” Given these two facts, any argument which moves from premise 3 of

argument (A) to line 4 of argument (A) must also presuppose—or at least imply—(†′).

Second , if we focus on the version of argument (A) which interprets the “Ω(x)” in premise 2 as ΩE(x),

then (†′) provides a sufficient condition for (A) to be sound. On the one hand, and as we have already seen,

premises 1, 3 and 5 in argument (A) are clearly true; if we use ΩE(x) as the interpretation of “Ω(x),” then

premise 2 is true as well. On the other hand, we know that the inference from 1, 3 and 5 to 6 is valid; in the

presence of (†′), the inference from 1–3 to 4 is also valid. Thus, (†′) is a sufficient condition for the soundness

of argument (A).

29Philosophers typically use the word “sound” to mean that an an argument is valid and that it has true premises. Mathe-

maticians typically use “sound” as a synonym for “valid.” Here, and throughout this thesis, I will follow philosophical usage

and assume that sound arguments have (only) true premises.
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Third , (†′) is a relatively natural assumption to make about ΩE(x) and ΩM (x). Because these two

sentences have the same syntactic structure, it is easy to assume that they have the same semantics as

well. Hence, it is easy to assume that we can infer ΩE(x) from ΩM (x) in the course of an argument. More

importantly, even if we are inclined to reject the inference from ΩM (x) to ΩE(x), it is often easy to miss

the fact that this inference is involved in a given presentation of Skolem’s Paradox. If Skolem’s Paradox is

presented rapidly, or is presented so as to slur over the distinctions made in 1.2.1—say, by using a single

phrase to mean ΩE(x) at some points and ΩM (x) at others—then it is easy to lose sight of the fact that a

transition between ΩM (x) and ΩE(x) even takes place.30

These, then, are the reasons I regard (†′) as the crucial philosophical assumption on which Skolem’s

Paradox ultimately rests. From a logical standpoint, (†′) is presupposed by every version of Skolem’s

Paradox. In addition, (†′) is sufficient to make one version of Skolem’s Paradox go through: if (†′) is true,

then the version of argument (A) which uses ΩE(x) in premise 2 comes out sound. Finally, (†′) is an natural

assumption: whether true or not, (†′) captures much of what makes Skolem’s Paradox feel paradoxical in

the first place.

Before examining the truth of (†′), I want to conclude this section by making two remarks about ΩP (x)

and Ω1(x). First, ΩP (x) and Ω1(x) are essentially irrelevant for the purpose of understanding premise 2.

Since ΩP (x) has no semantics, it cannot “say” anything at all. And, although Ω1(x) does have a semantics,

this semantics is too indeterminate for Ω1(x) to say that “x is uncountable.” Unless Ω1(x) is interpreted at

a specific model—i.e., unless it is turned into some ΩN (x)—it contains too many undefined (or incompletely

defined) symbols to take on a specific meaning. Therefore, neither of these formulas is an acceptable candidate

for use in premise 2.

Second, although ΩP (x) and Ω1(x) are closely related to ΩM (x)—e.g., in that they all share the same

formal syntax and in that Ω1(x) shares some of the semantics of ΩM (x)—they do not provide much help

in understanding (†′). In particular, we can’t justify (†′) by arguing that the “says that” relation—or even

some weak truth-functional analog of this relation—is preserved through one of the following diagrams:

ΩM (x) =⇒ ΩP (x) =⇒ ΩE(x)

ΩM (x) =⇒ Ω1(x) =⇒ ΩE(x)

(1) (2) (3)

In each case, the transition between column (1) and column (2) tries to connect a sentence having a specific

semantics—and a particular truth value—to a sentence which has (at best) an indefinite semantics—and,

30In my view, unconscious slides between ΩE(x) and ΩM (x) are the most important reason for philosophers taking Skolem’s

Paradox seriously. To be sure, some philosophers have defended this slide explicitly; their arguments will be examined in

chapters 3 and 4. In general, however, I think that our initial feeling that there is something to Skolem’s Paradox—that

Skolem’s Paradox really is a paradox—stems less from explicit arguments than from implicit slides between ΩM (x) and ΩE(x)

(slides which may be facilitated by an equivocal use of phrases like “x is uncountable” and “Omega(x).”).
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in consequence, no truth value at all. Similarly, the transition between column (2) and column (3) tries to

connect a sentence with no truth value to a sentence with a specific truth value. Hence, even though ΩM (x)

requires ΩP (x) and Ω1(x) for its formulation, we should not expect its relations with ΩE(x) to work through

ΩP (x) and Ω1(x)—i.e., we should not expect these sentences to function as intermediaries between ΩM (x)

and ΩE(x). Thus, whatever interest ΩP (x) and Ω1(x) have for mathematicians, they do very little towards

helping us understand argument (A).

At this point, I think we have obtained a fairly detailed understanding of the six items introduced in

section 1.2.1, along with the roles these items play in argument (A). Although ΩP (x) and Ω1(x) help us to

understand ΩM (x), they do not play an independent role in argument (A). In contrast, ΩE(x) and ΩM (x)

are quite crucial to this argument. ΩE(x) provides the most plausible reading of “Ω(x)” in premise 2; ΩM (m̂)

provides an alternate formulation of premise 3. Together, they allow us to formulate the key assumption

which underlies argument (A)—i.e., the claim (†′). In section 1.3 (esp. 1.3.2) I turn, at last, to the assessment

of this assumption.

1.3 Solving Skolem’s Paradox

This section has two goals: 1.) to evaluate the truth of (†′) and 2.) to provide a “solution” to the version of

Skolem’s Paradox which we have been discussing. The bulk of this work takes place in 1.3.1–1.3.3. In 1.3.1, I

do two things. First, I argue that any plausibility that (†′) may have depends on the fact that M is a model

for ZFC. Second, I argue that (†′) is false and that this falsity should be obvious once we understand the role

(†′) plays in Skolem’s Paradox. Once this argument is completed, I turn in 1.3.2 and 1.3.3 to explain why

(†′) is false: i.e., where the semantics of ΩM (x) and ΩE(x) differ and how this difference leads to the failure

of (†′). Finally, in section 1.3.4, I step back to discuss some more general issues concerning the “solution”

to Skolem’s Paradox which this chapter has provided.

1.3.1 The Solution

Let’s begin with (†′). Insofar as (†′) depends on the model M , it is reasonable to wonder just which features of

M give (†′) its intuitive plausibility. On my reading, the key fact about M which makes (†′) seem plausible is

the fact that M |= ZFC. To reinforce this thought, let me make a few remarks concerning the generalization

of (†′) to arbitrary models.

For convenience, I use (†′G) to represent the following, rather broadminded, generalization of (†′):

∀N∀n ∈ N [ΩN (n) =⇒ ΩE({x | x ∈N n})]. (†′G)

The first thing to notice here is that we lack even prima facie reasons for accepting this broad generalization

of (†′). After all, there are many models for the language of set theory which contain objects other than sets,
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and there are some models which contain no sets at all.31 In such cases, it’s hard to see why these models

should be regarded as having anything to do with set theory, unless they happen satisfy some set-theoretic

axioms—say, some significant fragments of ZFC. In consequence, it’s hard to see why we should accept any

instance of (†′G) which relates to such models—i.e., any instantiation of (†′G) to an N such that N 6|= ZFC.

To reinforce this point, we should notice just how badly models for the language of set theory can fail

to satisfy ZFC, while nevertheless satisfying formulas like Ω[m]. Consider, for instance, the model whose

domain consists of the numbers 1–10 and which interprets “∈” by:

n ∈ m ⇐⇒ n ≤ 5 and 5 < m ≤ 10.

In this model, all numbers greater than 5 satisfy Ω(x), although the model itself has no connection with set

theory and fails to satisfy even the axiom of extensionality.32 For that matter, if we let Ψ(y) be the formula

which codes “y = ω,” then any model which satisfies “¬∃y Ψ(y)” will also satisfy “∀xΩ(x).”33

These examples show how badly a model can fail to satisfy ZFC while still satisfying formulas like

Ω[m]. The first example also proves (outright) that (†′G) is false. For suppose that (†′G) were true. Then,

instantiating N to the model above and instantiating n to 6, we would get the conditional:

ΩN (6) =⇒ ΩE({1, 2, 3, 4, 5}).

But, since ΩN (6) is true, this conditional entails that {1, 2, 3, 4, 5} is uncountable. This is absurd.

Finally, note that, even if (†′G) were true, this fact would be of limited use to proponents of Skolem’s

Paradox. After all, (†′G) is such a strong generalization of (†′) that it facilitates variants of argument (A)

which 1.) reach the same conclusions as argument (A) but 2.) make no use of the Löwenheim-Skolem

theorems.34 Hence, far from assisting in the formulation of Skolem’s Paradox, (†′G) actually trivializes this

31So, for instance, we have already seen a model N such that N |= “Gandalf ∈ Katie” where Gandalf and Katie are two

ordinary housecats. See 10.

32With respect to the axiom of extensionality, note that all of the numbers n ≤ 5 have exactly the same “members,” as do

all of the numbers m > 5. With respect to the satisfaction of Ω(x), note that this formula has the overall form:

Ω(x) ≡df ¬∃f [“f is a function” & Domain(f) = ω & Range(f) = x].

Here, the phrases “x is a function,” “Range(f),” and “Domain(f)” are themselves mere abbreviations for further (rather

complicated) formulas. For our purposes, the important thing to notice is that the formulas “f is a function” and “Range(f) = x”

together entail that every member of x is also a member of a member of a member of f . Hence, since the interpretation of “∈”

in our model does not allow membership chains containing more than two elements, no f of the type forbidden by, e.g., Ω[6]

lives in our model. Hence, the model satisfies Ω[6] (and Ω[7], and Ω[8], etc.).

It is worth noting that this model also satisfies Ω[n] for n ≤ 5, though unpacking the relevant definitions is more time-

consuming in these cases and depends on a particular definition of ω. The basic idea is that discussed in the next footnote.

33Again, this is a simple consequence of the definition of Ω(x). To see this, simply note that:

¬∃y Ψ(y) ` ¬∃f [· · · & ∃y (y = Domain(f) & Ψ(y)) & · · · ]

for any possible values of “· · · ” ( including those relevant to Ω(x)).

34To obtain one such argument, we simply replace M in (A) with the model discussed in the last paragraph and then replace
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paradox. Given (†′G), we can derive the same conclusions as argument (A) without mentioning the fact that

ZFC has countable models.

These, then, give three reasons for eschewing (†′G). First, (†′G) not a very plausible principle: given that

some models contain no genuine sets and fail to satisfy even the most basic set-theoretic axioms, there’s no

reason to think that (†′G) should be true of those models. Second, easy counterexamples show that (†′G) is

actually false. Third, even if (†′G) were true, this would only serve to trivialize—rather than facilitate—our

overall formulation of Skolem’s Paradox.

Together, these three points reinforce the thought that M ’s satisfaction of ZFC plays an important role

in making (†′) intuitively plausible. Unfortunately, the mere fact that M |= ZFC is not enough to make (†′)

true. To see this, we should begin by considering the following weakening of (†′G):

∀N [N |= ZFC =⇒ ∀n ∈ N [ΩN (n) =⇒ ΩE({x | x ∈N n})]]. (†′ZFC)

To see that (†′ZFC) is false, we need only let N be a countable model of ZFC, and let n̂ ∈ N be such that

N |= Ω[n̂]. Then, employing the equivalences introduced in 1.2.2, we have that N |= ZFC, that ΩN (n̂) is

true, and that ΩE({n | n ∈N n̂}) is false. Therefore, (†′ZFC) is false as well.

This example shows that merely adding a condition about the satisfaction of ZFC to (†′) will not make

(†′) true in any generalizable way. More importantly, the example actually shows that (†′) is false—i.e., false

even in the ungeneralized form involving only the particular model M . After all, the way that N and n̂ were

chosen in the example above runs exactly parallel to the way that M and m̂ were chosen at the beginning

of this chapter. Hence, everything said about N and n̂ must be true of M and m̂ as well. In particular,

ΩM (m̂) is true and ΩE({m | m ∈ m̂}) is false. So (†′) is false as well.

There are two things we should notice about this argument. First, although I have taken the time to give

an explicit argument against (†′), the actual falsity of (†′) should have been obvious from the role (†′) plays

in Skolem’s Paradox. As we saw in the last section, (†′) is a sufficient condition for one version of argument

(A) to be sound. Since this version of argument (A) leads to a contradiction, the claim that it is sound must

be rejected. Hence, (†′) must be rejected as well.

Second, the fact that (†′) is false renders all versions of argument (A) unsound. As we saw in the last

section, (†′) is a necessary condition for any version of argument (A) to work; so, the falsity of (†′) entails that

no version of argument (A) can possibly work. Even though our explicit argument against (†′) depends on

the role (†′) plays in one particular version of argument (A)—i.e., the version which (†′) renders sound—the

ultimate failure of (†′) undercuts every version of argument (A).

This, then, gives us a solution, of sorts, to the version of Skolem’s Paradox which we have been discussing.

We have isolated a key principle on which argument (A) depends, and we have shown that this principle

provides a necessary condition for any version of argument (A) to be sound. Further, we have given two

m̂ with 6. Next, we modify premise 1 of (A) to reflect our changed model. All of the premises in this new argument are clearly

true, and the argument is valid if (†′G) is true (indeed, just in case (†′G) is true).
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arguments—one direct and one indirect—which prove that this principle is false. As a result, we have an

explanation as to where Skolem’s Paradox actually fails.

All that being said, this “solution” is clearly missing something. Although we know that (†′) is the place

where argument (A) goes wrong, we don’t yet know where (†′) itself goes wrong. Put another way: although

we know that (†′) is false, we have yet to discover why (†′) is false. What we really need, therefore, is an

analysis of the semantic differences between ΩE(x) and ΩM (x) which explains why the former does not entail

the latter (or, at the very least, why the two are sufficiently different that we should not be surprised when

the former fails to entail the latter with respect to a particular model M).

The need for this analysis can be underscored by noting a way in which this “solution” may seem to miss

the point of Skolem’s Paradox. The proponent of Skolem’s Paradox is sufficiently convinced that there exists

a relationship between ΩM (x) and ΩE(x)—a relationship strong enough to ground (†′)—that he is willing

to reconstrue set theory in light of this conviction. In particular, the proponent of Skolem’s Paradox claims

that set theory, when taken at face value, just is contradictory; he then turns to notions like relativity and

perspective to ease the philosophical sting of this contradiction.

Given this, it is highly unlikely that the proponent of Skolem’s Paradox will be persuaded by the kind

of modus tollens argument which I have just given (or even the direct counterexample which precedes it).

The proponent already knows that his assumptions lead to a contradiction—that, after all, is the whole

point of Skolem’s Paradox. By itself, however, this contradiction is not enough to make him abandon his

assumptions. Hence, unless the arguments above are supplemented by a detailed analysis of why (†′) fails—

i.e., of where the semantics of ΩM (x) and ΩE(x) differ and of how this difference leads to the failure of

(†′)—the proponent of Skolem’s Paradox is unlikely to find them very persuasive.

1.3.2 Why (†′) Fails I

How, then, do ΩM (x) and ΩE(x) differ? I think there are two different, and differently significant, answers

to this question. First, to the extent that the semantics of ordinary English involves things like meanings

or senses—i.e., as opposed to being simply referential—this induces a difference between the semantics of

ΩE(x) and ΩM (x). When a formula like Ω1(x) is interpreted at a model, the interpretation does not work

through any intentional apparatus—e.g., any meanings or senses. Instead, the interpretation function directly

associates the symbol “∈” to some particular relation on the domain of M .

Given this, questions about “what ‘∈’ means in M” are somewhat misleading. In model theory, individual

bits of language don’t mean anything at all; they simply sit in the domain of an interpretation function which

takes pieces of a model for its range. So, to the extent that sentences like ΩE(x) do have genuine meanings—

i.e., to the extent that ordinary mathematical English involves meanings—there will be semantic differences

between ΩE(x) and ΩM (x).35

35In practice, these particular semantic differences won’t help to explain Skolem’s Paradox. Hence, readers who are only

interested in Skolem’s Paradox may ignore the remainder of this section and skip directly to 1.3.3.
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To highlight some of these differences, it’s useful to examine the behavior of ordinary English semantics

and model-theoretic semantics in certain modal contexts. Suppose that we are interested in cats (rather than

sets) and that we are considering the sentence: “Gandalf and Katie are the only two cats who live in Tim’s

house.” Following our initial formulation of ΩE(x), we could abbreviate this sentence by the following:36

C(g) ∧ C(k) ∧ g 6= k ∧H(t, g) ∧H(t, k) ∧ ¬∃x[C(x) ∧H(t, x) ∧ x 6= g ∧ x 6= k]

Let’s call this abbreviation “ΨE(g, k, t).” Despite its formal appearance, this is a sentence of ordinary English,

and its relationship to the world is governed by ordinary English semantics.

In contrast, suppose that N is a model for the formal language containing the symbols C,H, g, k, and t.

The domain of N is just the three element set {Gandalf,Katie,Tim}, and the interpretation function for N

works in the obvious way. Following the construction of ΩM (x) in section 1.2.1, we find that N induces a

sentence which is syntactically similar to ΨE(g, k, t), but which gets its semantics via an interpretation in

N . Let’s call this sentence ΨN (g, k, t).

Now, although ΨE(g, k, t) and ΨN (g, k, t) happen to have the same truth-value in this possible world, we

can imagine possible worlds where these truth values differ. Suppose, for instance, that I were to bring some

new kittens into my household. In that case, ΨE(g, k, t) would become false—since there would be extra

cats in the house—but ΨM (g, k, t) would continue to be true—since there would be no extra elements in

{Gandalf,Katie,Tim}. Similarly, suppose that I were to tire of my cats and send them to the pound. Once

again, ΨE(g, k, t) would become false, but ΨN (g, k, t) would remain true as ever.

These examples show that ΨN (g, k, t) has a kind of modal stability which ΨE(g, k, t) lacks. Because some

of the terms in ΨE(g, k, t) acquire their reference through their senses, these references change as we move

from world to world.37 In contrast, terms in ΨN (g, k, t) have their “reference” fixed by the interpretation

function of N ; as this function does not change from world to world, the truth-value of ΨN (g, k, t) does

not change either. This discrepancy between the modal status of ΨE(g, k, t) and ΨN (g, k, t) highlights

the difference between the ordinary English semantics of ΨE(g, k, t) and the model-theoretic semantics of

ΨN (g, k, t).38

Of course, this example does not directly involve the sentences ΩE(x) and ΩM (x), and there are reasons

to think that no similar examples can be constructed for these sentences. After all, ΩE(m̂) is a mathematical
36Actually, this way of putting things skips a step. Ideally, we should first paraphrase our sentence into a more “austere”

formulation—say, “Cats(g, k, t).” We would then use this paraphrase as the basis for abbreviation. As this detour doesn’t add

much to the current exposition, I omit the details here.

37In saying this, I do not mean to suggest that senses can be identified with functions between possible worlds and truth-

values—i.e., with so-called “Carnap Propositions.” It is enough for my purposes that senses help to explain the modal behavior

of sentences like ΨE(g, k, t), and that this modal behaviour, in turn, helps to distinguish sentences like ΨE(g, k, t) from sentences

like ΨN (g, k, t).

38This distinction can also be played out in the other direction. Suppose that my cat Gandalf were to die tomorrow. Then

it is plausible to think that ΨE(g, k, t) would still be meaningful and would still have a truth value. In contrast, ΨN (g, k, t)

would almost certainly become nonsense, since the set {Gandalf, Katie, Tim} and (hence) the model N would no longer exist.

I am grateful to Tony Martin for bringing this kind of example to my attention.
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sentence, and mathematical sentences possess the same kind of modal stability as ΩM (m̂)—i.e., they are

either necessarily true or necessarily false. As a result, the phenomenon discussed in the last two paragraphs

cannot be used (directly) to distinguish between ΩE(x) and ΩM (x).

Nevertheless, we should remember that the modal distinction between ΨE(g, k, t) and ΨN (g, k, t) served

only to highlight a deeper difference between the semantics of these two sentences. This deeper difference

stems purely from the fact that ΨE(g, k, t) is a sentence of ordinary English while ΨN (g, k, t) is a formal

sentence with a model-theoretic semantics. Hence, even if no modal difference between ΩE(x) and ΩM (x)

can be discerned, this deeper difference should still carry over. As a sentence of ordinary English, ΩE(x) has

a semantics which works through the meanings of phrases like “is a set,” “is a member of,” etc. In contrast,

ΩM (x) has a model-theoretic semantics in which no meanings are involved.

Leaving modality aside, it’s possible to give a direct argument for the kind of semantic difference at

issue here. To see this, begin with the sentence Cantor(x), and substitute the phrase “ is a member of

a member of the singleton of , if there exist at least two measurable cardinals” for every occurrence of

“ is a member of ”. Call the resulting sentence Cantor′(x). Next, abbreviate Cantor(x) in the manner

described in section 1.2.1, and abbreviate Cantor′(x) so as to use the symbol “∈” to represent the phrase

mentioned above.39 Call the resulting abbreviations ΩE(x) and Ω′E(x) respectively.40

With respect to these formulas, we should notice four things. First, because of the way they were

constructed, ΩE(x) and Ω′E(x) have exactly the same syntax. Second, although Cantor(x) and Cantor′(x)

are true for the same values of x, they almost certainly have different meanings (since, after all, the one

involves the notion of measurable cardinals, and the other does not). Third, since ΩE(x) and Ω′E(x) are mere

abbreviations for Cantor(x) and Cantor′(x), the former have the same semantics as the latter; in particular,

ΩE(x) and Ω′E(x) also have different meanings. Finally, and as a consequence of the first three points,

meanings do play an important role in the semantics of sentences like ΩE(x): even when two variants of this

sentence look exactly alike and come out true under exactly the same circumstances, we can still distinguish

them in virtue of their meanings.

In contrast, let’s turn to model theory. Let X be some transitive set and let N and N ′ be models for the

language of set theory such that:

• Domain(N) = X and Domain(N ′) = X.

• ∈N= {〈x, y〉 | x, y ∈ X and x ∈ y}.

• ∈N ′= {〈x, y〉 | x, y ∈ X and ∃z [x ∈ z ∈ {y}] and there exist at least two measurable cardinals }.
39Doing this right requires a little care. It is important that we first abbreviate the above-mentioned phrase and then

abbreviate “not,” “if . . . then,” etc. If we try to abbreviate the other items first, then we will inadvertently eliminate most

instances of “ is a member of a member of the singleton of , if there exist at least two measurable cardinals.”

40Throughout the following argument, I assume that (at least two) measurable cardinals exist. If this assumption is mistaken,

then we can simply rephrase the example using “if there are fewer than two measurable cardinals” in place of “if there are at

least two measurable cardinals.” None of the content of the example depends on which way we go here.
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The first thing to notice here is that N and N ′ are really the same model. The second is that, because N

and N ′ are the same model, ΩN (x) and ΩN ′(x) are really the same formula. As a result, there can be no

difference between the semantics of ΩN (x) and ΩN ′(x).

This example shows that model-theoretic semantics cannot “get at” the difference in meaning between

“is a member of” and “is a member of a member of the singleton of . . . ” Even when these phrases are used

to define the interpretation of “∈,” the differences in meaning between the phrases don’t effect the ultimate

semantics of ∈N . Since the semantics of “∈” are totally fixed by N ’s interpretation function—i.e., by the

mere set {〈∈, {〈x, y〉 | x, y ∈ X and x ∈ y}〉}—distinctions in the way this set is described do not, ultimately,

effect these semantics.

This, then, gives us our first difference between the semantics of ΩE(x) and ΩM (x). The semantics of

ΩE(x) are those of an ordinary English sentence. They work through some form of meaning, they have special

behavior in modal contexts, and they allow fine-grained distinctions between truth-functionally equivalent

sentences (e.g., ΩE(x) and Ω′E(x)). In contrast, the semantics of ΩM (x) are those of first-order model theory.

They are purely extensional, they have rather different behavior in modal contexts, and they cannot make

fine-grained distinctions between truth-functionally equivalent sentences.41

1.3.3 Why (†′) Fails II

Leaving these intentional issues aside, let’s examine some of the purely extensional (or truth-functional)

differences in the ways the semantics of ΩE(x) and those of ΩM (x) interpret the specific symbols used in

these two sentences. To begin, the semantics of ΩE(x) interpret the symbol “∈” so that

E-∈: “x ∈ y” is true iff y is a set and x is a member of y,

while the semantics of ΩM (x) interpret “∈” so that

M-∈: “x ∈ y” is true iff 〈x, y〉 is a member of iM (∈),

where iM is the interpretation function for M . As we have already seen, however, there is no reason to

think that these two interpretations of “∈” are coextensive. This is clearest when the elements of M are not

even candidates for entering into the the ordinary membership relation. So, for instance, there exist models

in which the relation ∈M applies between ordinary housecats (cf. p. 10). Similarly, there are models whose

41The key thing to notice here is that this difference in semantics comes into play even when there is no referential difference

between English semantics and model-theoretic semantics. This was certainly the case in my earlier example about cats, and I

think it’s true in the case of set theory as well.

Suppose, for instance, that we abuse Gödel a moment and treat (V,∈) as a model for the language of set theory. In this case,

there would be no truth-functional difference between ΩE(x) and Ω(V,∈)(x); nor would there be a difference in modal stability.

Nevertheless, I think that ΩE(x) involves the meanings of phrases like “is a set” and “is a member of” while Ω(V,∈)(x) does

not. After all, on the assumption that Ω(V,∈)(x) did involve meanings, what would determine whether these meanings lined

up with those of ΩE(x) or those of Ω′E(x)? If they lined up with ΩE(x), would there be another model which lined up with

Ω′E(x)–say, (V,∈)′? What would be the model-theoretic difference between (V,∈)′ and (V,∈)?
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domains contain no sets at all. In these cases, its quite clear that the semantics of ΩM (x) and ΩE(x) are

interpreting the symbol “∈” in very different ways.

Even if a model does contain sets (and even only sets), there is no guarantee that the model’s interpre-

tation of “∈” agrees with the ordinary English interpretation of this symbol. To illustrate this point, let

N be an arbitrary model for the language of set theory, let X be the collection of singletons of mem-

bers of N (e.g., X = {{n} | n ∈ N}), let Y be the collection of doubletons of members of X (e.g.,

Y = {{x1, x2} | x1, x2 ∈ X and x1 6= x2}), and let A ⊂ Y such that |A| = |N |. Using a trick from

footnote 6, we can find a model N ′ such that 1.) N ′ is isomorphic to N and 2.) N ′ has A as its domain.

In N ′, therefore, all of the objects are genuine sets, but there is almost no agreement with ordinary English

concerning the interpretation of “∈.” In particular, there are many sets n1, n2 ∈ N ′ such that N ′ |= n1 ∈ n2,

but there are no sets n1, n2 ∈ N ′ such that n1 ∈ n2.42

These examples show how the semantics of ΩE(x) and those of ΩM (x) sometimes disagree about atomic

formulas. When we move to more complicated formulas, we find further disagreements. In particular, the

semantics of ΩE(x) interpret the expression “∃x” as synonymous with the phrase “there is a set x, such

that” (since, after all, the former is nothing more than an abbreviation for the latter). In contrast, the

semantics of ΩM (x) interpret the expression “∃x” via the recursion clause:

∃. M |= ∃xΦ(x) ⇐⇒ there exists an m ∈ M such that M |= Φ[m].

In effect, this amounts to identifying the expression “∃x” with the phrase “there is an element x ∈ M , such

that.” Since the domain of M cannot be identical with the set-theoretic universe (as M is, after all, a merely

countable model), this introduces a second difference between the semantics of ΩE(x) and those of ΩM (x).

To close out this point, there are three things I want to notice. First, these two differences in the

interpretation of “∈” and “∃x” may lead to many differences between ΩE(x) and ΩM (x). Since each version

of Ω(x) contains several thousand instances of “∈” and “∃x,” there are many places where the semantics

of ΩE(x) and ΩM (x) can differ. Our two basic differences, therefore, have the potential to ramify into

deeper—and more systematic—differences between the semantics of ΩE(x) and those of ΩM (x).

Second, these semantic differences exist even when ΩE(x) and ΩM (x) agree about some particular element

of M—i.e., when ΩE(m) and ΩM (m) are both true (or false). If we check carefully, we often find that these

sentences are true for structurally different reasons. The membership relations which make ΩE(m) true may

have nothing to do with the instances of m1 ∈M m2 which make ΩM (m) true; the particular sets which

make “there exists a set x such that . . . ” true may be different from the elements of M which make “there

exists an m ∈ M , such that . . . ” true. As a result, occasional agreements between ΩE(m) and ΩM (m) may

be little more than happy accidents.

Finally, and most importantly, the differences between the semantics of ΩE(x) and ΩM (x) should lead us

to be unsurprised by the absence of a strong relationship between the truth values of these sentences. Since

42This latter claim follows from the fact that every element of A is a doubleton and that every element of A contains only

singletons. Hence, there can be no two elements a1, a2 ∈ A, such that a1 ∈ a2.
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many of the corresponding parts of ΩE(x) and ΩM (x) have different semantics—and semantics which differ

in ways that effect the truth values of ΩE(x) and ΩM (x)—there is no reason to expect the overall sentences

to have any real relationship. As noted in the last paragraph, the differences between ΩE(x) and ΩM (x)

are sufficiently severe that, if these sentences were to agree on all members of M ’s domain, this agreement

would be the fact in need of explanation. Where such agreement is lacking, we should regard this fact as

ordinary and unsurprising.

This, then, gives a fairly complete solution to the version of Skolem’s Paradox which we have been

examining. In section 1.2.2, I showed that the paradox rests on the assumption that there exists a systematic

relationship between the semantics of ΩE(x) and ΩM (x)—i.e., the relationship captured by (†′). In section

1.3.1, I showed that this assumption is clearly false. Finally, in sections 1.3.2 and 1.3.3, I have examined

the details of ΩE(x) and ΩM (x) and have used this examination to explain why the falsity of (†′) is neither

surprising nor paradoxical.

1.3.4 Four Remarks

Before I conclude this section, I want to make four remarks concerning the solution to Skolem’s Paradox

which I have just given. First, the philosophical upshot of this solution is that Skolem’s Paradox rests on an

equivocation. To make premise 2 in argument (A) plausible, we need to read “Ω(x)” as ΩE(x). In contrast,

premise 3 clearly involves ΩM (x). By using “Ω(x)” in an equivocal manner, we can assimilate ΩM (x) to

ΩE(x) and thereby make argument (A) psychologically plausible. However, ΩM (x) and ΩE(x) are radically

different sentences—so different that even (†′) fails to hold. Hence, no argument which equivocates between

these two sentences can possibly be valid.

Second, this solution to Skolem’s Paradox is clearly tailored to the relatively simple formulation of

that paradox that was presented in 1.1. In chapter 2, I examine formulations of Skolem’s Paradox which

are somewhat more sophisticated (relying, e.g., on the downward Löwenheim-Skolem theorem and/or the

Mostowski collapsing lemma). Nothing in the present section (or chapter) is supposed to “solve” these more

complicated paradoxes. In the long run, I argue that the solution given here does carry over—at least in its

main outlines—to these other paradoxes, but I cannot give this argument until the alternate formulations of

Skolem’s Paradox are on the table. I will return to this topic near the end of chapter 2.

Third, it would be nice to have a solution to Skolem’s Paradox which provides a little more detail about

which of the semantic differences between ΩE(x) and ΩM (x) really leads to the failure of (†′). That is,

we might like to say that this particular instance of “∈” causes ΩM (m̂) to be true and ΩE(m̂) to be false

or to identify one particular instance of “∃x” whose differing interpretations “explain” the failure of (†′).

Unfortunately, I do not think that any such solution is available in general. Without a great deal more

information about the particularities of the model M , there is no way to tell which of the many differences

between ΩE(x) and ΩM (x) “explains” the failure of (†′). To make this problem clear—and to examine some

of the different ways (†′) can fail—we need to examine several different versions of M . This examination will
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also take place in chapter 2.

Finally, the solution to Skolem’s Paradox that I have given here is aimed primarily at the reader who

is merely puzzled by the paradox—i.e., at the reader who finds Skolem’s Paradox perplexing but who can’t

quite put his finger on where it goes wrong. For such readers, my isolation of (†′) and my explanation of

where (†′) goes astray should help to demystify the paradox. On the other hand, readers who have a more

theoretical commitment to Skolem’s Paradox—e.g., readers with philosophical reasons for identifying the

semantics of ΩE(x) with those of ΩM (x)—will clearly find my solution less than satisfactory. I will deal

with these more sophisticated—and more philosophically interesting—interpretations of Skolem’s Paradox

in chapter 3.
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Chapter 2

Some Complicated Paradoxes

How could someone challenge the analysis of Skolem’s Paradox presented in the last chapter? One way

would be to use some more heavy-duty mathematics in the initial formulation of Skolem’s Paradox. The

hope, here, is that new mathematics will allow us to gain more control over the the fine structure of M , and

that this additional control will allow us to make the semantics of ΩM (x) closer to those of ΩE(x). In the

long run, the goal is to make these semantics so close that principles like (†′) wind up being true.

Before discussing particular implementations of this strategy, I want to make a few comments concerning

the strategy’s general features and chances for success. First, because this is (essentially) a strategy for

“patching up” argument (A), the arguments it produces tend to look a lot like argument (A). In particular,

all of these arguments can be fit into the following, generic pattern:

Using theorems T1, . . . , Tj , we obtain a model M such that: 1.) M is countable, 2.) M |= ZFC,
and 3.) M possesses “nice-making” properties P1, . . . , Pk. Now, because M |= ZFC, there must
be an m̂ ∈ M such that M |= Ω[m̂]. Therefore:

1. M is a countable model of ZFC which possesses P0, . . . , Pk.
2. ΩE(x) says that “x is uncountable.”
3. M |= Ω[m̂].

∴ 4. {x | x ∈M m̂} is uncountable.
5. If M is countable and m ∈ M , then {x | x ∈M m} is also countable.

∴ 6. {x | x ∈M m̂} is countable.

Clearly, arguments fitting this pattern have a lot in common with argument (A): in particular, they still focus

on countable models of ZFC, and they still emphasize the fact that such models’ elements satisfy formulas

like Ω(x). At the same time, their use of T1, . . . , Tj and P1, . . . , Pk provides additional information which

makes (or which purports to make) them more plausible than the original argument (A).

Second, arguments following the pattern above can be analysed in much the same way as (A) itself was

analysed. Let (X) be one such argument. As in 1.2.2, we can isolate a principle (†′X) which is both necessary

and sufficient for (X) to be sound. This principle has the same outward form as (†′) itself—i.e.

∀m ∈ M [ΩM (m) =⇒ ΩE({x | x ∈M m})]. (†′X)

However, whereas (†′) involved the relatively nondescript model M which was chosen at the beginning of
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this 1.1, (†′X) involves the new M which was chosen using T1, . . . , Tj and which, in consequence, possess the

nice-making properties P1, . . . , Pk.1

Once we have isolated (†′X), we can continue to follow our earlier analysis and give two, fairly simple,

arguments against this principle. On the one hand, we can note that the very m̂ which was employed in

formulating (X) provides a counterexample to (†′X) (i.e., since ΩM (m̂) is true while ΩE({x | x ∈M m̂}) is

false). On the other hand, we can note that, even if we ignore the details of (†′X), the fact that this principle

makes (X) sound entails that there must be something wrong with it. These two arguments, along with the

fact that (†′X) is necessary for (X) to be sound, allow us to conclude that (X) fails.

Because this all works at a generic level—i.e., without knowing anything about the particular T1, . . . , Tj

and P1, . . . , Pk involved in (X)—I will not run through this analysis for every argument in this chapter.

Instead, I will assume that the basic formulation of arguments like (X) can be taken for granted and that

the basic refutation of such arguments—i.e., that sketched in the last two paragraphs—needs no further

elaboration. In place of such elaboration, then, I will focus on two more philosophically interesting aspects

of arguments like (X): 1.) the exact role that theorems T1, . . . , Tj and properties P1, . . . , Pk play in making

the relevant version of (†′X) seem plausible and 2.) the ways in which ΩM (x) and ΩE(x) continue to differ

even in the presence of P1, . . . , Pk.

Before I begin, a final comment is in order. Up until now, I have assumed very little set theory over-and-

above the axioms of ZFC.2 For the remainder of the chapter, I want to assume a little more. In particular,

I will use ZFC + “there exists an inaccessible cardinal, κ” as my background set theory throughout sections

2.1 and 2.2. Basic information about inaccessible cardinals can be found in [26] and [30] or in sections 1.1

and 4.3.1 of this dissertation.

2.1 Transitivity

In section 1.1, I introduced the notion of a transitive model for the language of set theory. In this section,

I look in more detail at the role these models play (or can play) in the formulation of Skolem’s Paradox.

I begin by recalling the definition of transitivity. We say that a model M is transitive when the model’s

domain is a transitive set (i.e., when all of the members of M are sets and when every member of a member

of M is also a member of M) and the “membership” relation on M is just the real membership relation

restricted to M ’s domain (i.e., when iM (∈) = {〈m1,m2〉 ∈ M ×M | m1 ∈ m2}).

Given this definition, how do we get a transitive model of ZFC? If we follow the argument sketched

on page 8 (cf. fn. 8), it seems that there are three things we should use. First, we use the fact that κ is

an inaccessible cardinal to get that 〈Vκ,∈〉 |= ZFC. Second, we use the so-called “downward Löwenheim-

1In theory, we could eliminate any possible confusion here by employing a whole string of primes: M , M ′, M ′′, etc. However,

since the particular model under discussion will always be clear from context, I will avoid this kind of notational complexity.

2I have, of course, assumed that ZFC is consistent, as this assumption is necessary to obtain models of ZFC! This, however,

is a fairly weak extension of ZFC, and without it Skolem’s Paradox becomes rather boring.
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Skolem theorem” to get a countable, elementary submodel of 〈Vκ,∈〉 (call this model N). Finally, we use

the Mostowski collapsing lemma (see p. 8, fn. 8) to get a transitive M which is isomorphic to N .

At the end of this construction, there are two things to notice. First, M is clearly a transitive model for

the language of set theory. Second, the fact that N ≺ 〈Vκ,∈〉 ensures that N and 〈Vκ,∈〉 are elementarily

equivalent (see p. 7, fn. 6), and the fact that N and M are isomorphic ensures that N and M are elementarily

equivalent. Hence, 〈Vκ,∈〉 and M are elementarily equivalent as well. In particular, M |= ZFC.3

This, then, gives us a way of obtaining a countable, transitive model of ZFC. Let’s call the version

of Skolem’s Paradox which results from employing this model “Argument (T),” and let’s see what the

transitivity of M does for (T). As far as I can see, there are two things which transitivity does for argument

(T)—i.e., two advantages which (T) has over the original, unadorned argument (A).

First, transitivity eliminates the interpretive problem which plagued us in section 1.1. There, we were

forced to conclude that proponents of Skolem’s Paradox use the phrase “x is uncountable” to mean that

{y | y ∈M x} is uncountable. And, while this gives a good reading of Skolem’s Paradox, it’s also somewhat

unnatural. The natural way to use “x is uncountable” is to mean that {y | y ∈ x} is uncountable. This

tension between the natural reading of “x is uncountable” and the reading which makes Skolem’s Paradox

work (or at least makes premise 5 in argument (A) work!) created somewhat of a certain strain in our overall

interpretation of Skolem’s Paradox.

For transitive M , however, this strain goes away. Since the membership relation on a transitive model

just is the ordinary membership relation, there is no difference between the sets {y | y ∈M x} and {y | y ∈ x}.

As a result, we can go ahead and use the “natural” reading of “x is uncountable” while availing ourselves of

all the benefits which accrue to the {y | y ∈M x} reading. This gives us a first advantage of using transitive

models to formulate Skolem’s Paradox.

The second advantage of using transitive models comes from the elimination of (some of the) semantic

differences between ΩM (x) and ΩE(x). At the most basic level, moving to transitive models eliminates

extensional differences involving the interpretation of “∈.” As we saw in section 1.3.3, for arbitrary N

there need be no connection—or even extensional overlap—between the interpretation of “∈” in ΩN (x) and

the interpretation of “∈” in ΩE(x). For transitive N , however, these two interpretations coincide: for any

n1, n2 ∈ N , n1 ∈N n2 ⇐⇒ n1 ∈ n2. In the case of transitive models, therefore, one of the fundamental

differences between the semantics of ΩM (x) and those of ΩE(x) simply disappears.

At a more sophisticated level, the transitivity of M actually ensures that M “gets it right” about a lot

more than just the membership relation. Let me say that a relation R is absolute for transitive models if

3From the standpoint of consistency strength, this construction involves quite a bit of overkill. The assumption that transitive

models of ZFC exist is far weaker than the assumption that inaccessible cardinals exist. Hence, we could have obtained such a

model without employing inaccessible cardinals. However, since we are assuming the existence of a inaccessible, the construction

sketched above is a perspicuous way to get transitive models.
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there is some formula ΨR(x) such that for any transitive N |= ZFC and any n̄ ∈ N :

R holds of n̄ ⇐⇒ ΨR
E(n̄) ⇐⇒ ΨR

N (n̄) ⇐⇒ N |= ΨR[n̄].

The definition of transitive models ensures that the relation “is a member of” is absolute for transitive

models. With a bit more work, we can also show that the following are absolute:

• f is a function; f is injective; f is surjective; f is bijective.

• x = Domain(f); x = Range(f).

• x is finite; x is infinite; x is an ordinal; x is a limit ordinal; x = ω.

Hence, transitive models “know” quite a lot about the sets they contain. For a wide range of set-theoretic

concepts, transitive models of ZFC can pin these concepts down in a way which is guaranteed to be accurate

(at least, that is, for elements in the models’ domains).

These, then, give two ways in which transitivity helps to make Skolem’s Paradox more plausible. By

making M a transitive model, we clear up some awkwardness in our initial formulation of premise 5. We

also ensure that M really does capture a lot of set theoretic concepts—i.e., that for a wide and interesting

range of formulas Ψ, ΨM and ΨE are extensionally equivalent. Our question, then, is why this result doesn’t

carry over to the particular case we are interested in—i.e., to the case of ΩM (x) and ΩE(x).

The answer to this question comes in four stages. At the most rudimentary level, the discussion up to this

point entails that any difference between ΩM (x) and ΩE(x) must be located in the interpretation of “∃x.”

After all, the only extensional differences between ΩE(x) and our original ΩM (x)—i.e., the ΩM (x) which

used the M chosen at the beginning of this 1.1—involved the interpretation of “∈” and “∃x.” Since our new

M is transitive, any differences involving “∈” have been eliminated. Therefore, the remaining differences

must involve the interpretation of “∃x.”

Moving a little deeper, we find that the transitivity of M allows us to isolate just which instance of “∃x”

leads to the crucial difference between ΩM (x) and ΩE(x). To see this, we need to get a little more machinery

on the table. We can begin by reexamining the list of absolute concepts which appeared on page 33. In doing

so, we find that this collection is rich enough to include the two-place relation “f is a bijection between x

and ω.” In other words, there there exists a formula Ψ(f, x) in the language of set theory such that for any

transitive N |= ZFC and any n1, n2 ∈ N ,

n1 is a bijection between n2 and ω ⇐⇒ ΨE(n1, n2) ⇐⇒ ΨN (n1, n2).4

Further, our original formula Ω(x) is closely related to this Ψ(f, x). Specifically,

Ω(x) ≡df ¬∃f Ψ(f, x).
4To get this Ψ, note that we already have formulas Ψ1(f), Ψ2(x, f), Ψ3(y, f), and Ψ4(y), which capture, respectively, the

concepts “f is a bijection,” “x = Domain(f),” y = Range(f), and “y = ω.” Therefore, the formula:

Ψ(f, x) ≡df Ψ1(f) ∧Ψ2(x, f) ∧ ∃y (Ψ3(y, f) ∧Ψ4(y))

must capture the concept “f is a bijection between x and ω.”
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This, then, provides us with all the machinery we need to determine where the two sentences ΩE(x) and

ΩM (x) really differ.

To begin, note that the sentences ΩE(x) and ΩM (x) clearly interpret the symbol “¬” in the same way.

Next, note that the absoluteness of Ψ(f, x) ensures that, for any particular f, x ∈ N , the sentences ΨE(f, x)

and ΨM (f, x) are also (extensionally) equivalent. Combining these two facts, we see that any difference

between the semantics of ΩE(x) and ΩM (x) must involve the interpretation of the existential quantifier

highlighted in “¬∃f Ψ(f, x)”—i.e., the leftmost existential quantifier in Ω(x). This quantifier, therefore, is

the one which “explains” the ultimate failure of (†′M ).

Let’s look a little closer at this “explanation.” Since we already know that the case x = m̂ is an instance

of the failure of (†′M )—i.e., that the conditional ΩM (m̂) =⇒ ΩE(m̂) is both false and an instantiation of

(†′M ), we can focus our attention on this case. Given what we know about Ψ(x), the following two facts

should be clear:

1. For any set f , ΨE(f, m̂) is true if and only if f is a bijection between m̂ and ω.

2. For any f ∈ M , ΨE(f, m̂) is true if and only if ΨM (f, m̂) is true.

Further, the fact that M is countable entails that {m ∈ M | m ∈ m̂} is countable—i.e., that there really is

a bijection f̂ : m̂ → ω.

These facts highlight the relevance of the initial quantifier in Ω(x) to the failure of (†′M ). Since there

really is a bijection f : m̂ → ω, and since the initial quantifier in ΩE(m̂) ranges over the universe of sets—i.e.,

over a domain large enough to contain f̂ , this quantifier “recognizes” the fact that ΨE(f̂ , m̂) is true. As a

result, ΩE(m̂) comes out false. In contrast, neither f̂ nor any other bijection between m̂ and ω actually lives

in the domain of M . Hence, the initial quantifier in ΩM (m̂) doesn’t find any f for which ΨM (f, m̂) is true,

and so ΩM (m̂) winds up being true.

This point can be put in somewhat more ordinary English. Basically, all my talk about “absoluteness”

is a means of ensuring that the following are reasonable paraphrases of ΩE(m̂) and ΩM (m̂) respectively:5

1. There is no f in the set-theoretic universe such that f : m̂ → ω is a bijection.

2. There is no f ∈ M such that f : m̂ → ω is a bijection.

Given these paraphrases, the explanation for (†′M )’s failure cannot be hard to find. Since m̂ really is countable,

there is a bijection between m̂ and ω; hence 1 is false. This, however, does not entail that 2 is false. As long

as none of the f ’s which falsify 1 happen to live in the domain of M , 2 can (and does) continue to be true.

This, then, is the “plain English” explanation for (†′M )’s failure: even though there exist bijections from m̂

to ω—and so, bijections which witness the failure of ΩE(m̂)—none of these bijections lives inside the domain

of M . So, ΩM (m̂) still winds up being true.

5Here, the absoluteness of Ψ serves to ensure that the phrase “f : m̂→ ω is a bijection” can be used fairly (and literally) in

cashing out both ΩE(m̂) and ΩM (m̂).
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There are two things which are worth mentioning about this explanation for the failure of (†′M ). First,

our ability to pin down the particular quantifier which accounts for this failure depends on the fact that M

is a transitive model. It is because M is transitive that we know that ΨE(f, x) and ΨM (f, x) are equivalent,

and it is because we know this equivalence that we can be confident that the initial “∃x” in Ω(x) is the place

where ΩE(x) and ΩM (x) ultimately disagree. If M were not transitive, then any of the (many) instances of

“∃x” and “∈” which occur in Ψ(f, x) could just as well “explain” the failure of (†′M )—i.e., could explain it

just as well as our particular “∃x” does.

Second, there is something which may still seem a bit paradoxical about this whole analysis. As we saw

in our initial discussion of ΩE(x), the concept of uncountability can be defined using only the notion of

membership and terms from ordinary classical logic. How, then, can any semantics which gets the one non-

logical piece of machinery in this definition “right”—i.e., a semantics which interprets “∈” in accordance

with ordinary English usage—still diverge from ordinary English in its understanding of uncountability?

Shouldn’t the fact that we use purely logical machinery to define “uncountable” in terms of “∈” ensure that

any two semantics which agree on “∈” also agree on “uncountable”?

To see what’s wrong with this line of thought, we need to notice two things. First, even in ordinary

English, phrases which use quantifiers are often allowed to vary according to local context. Consider, for

instance, the ordinary English sentence

Owen is the tallest person. (O)

Depending on the context in which this sentence is uttered, it can mean different things. In some contexts,

it means that Owen is the tallest person in the conversation, in others, that Owen is the tallest person

in the room, and in still others, that Owen is the tallest person in the world. The differences between

these interpretations of (O) don’t involve different understandings of who Owen is; nor do they involve

different conceptions of tallness. Instead, they involve different assumptions about the relevant “domain of

discourse”—i.e., about the class of people to whom Owen is being compared.

To connect this point more closely to our discussion of ΩE(x) and ΩM (x), let’s modify the example

slightly and consider the following definition of “Tallest” (phrased in terms of the concept “Taller”):6

Tallest(x) ≡df ¬∃y Taller(y, x). (O1)

As with the case of (O) above, the significance of this definition varies depending on the (contextually

determined) range of the initial existential quantifier. In some contexts, the definition suffices to make me

the “tallest” person (say, if I give the definition while on a walk with my wife and daughter). In other

contexts, it does not (say, when I give the definition while lecturing to an assorted group of Division I

basketball players).

The key point, then, is this: the mere fact that O1 is formulated using “logical vocabulary” does not

ensure that it has a constant significance across all contexts (even across all contexts where the non-logical

6The reader will note that this definition of Tallest has exactly the same form as our canonical definition of “uncountable.”
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vocabulary in O1 retains a fixed significance). Even in ordinary English, quantifiers function in different ways

depending on the (contextually determined) collections over which they are allowed to range. As a result,

definitions which use quantifiers will pick out different objects (or classes) depending on the range these

quantifiers have (even in cases where the rest of the symbols in the definitions have fixed meanings). Given

this, we should not be surprised to find that this phenomenon shows up in the case where “uncountability”

happens to be the definandum in question.

This gives a first reason for thinking that there is nothing to the idea that, insofar as all the symbols

in Ω(x) are either “∈” or logical constants, fixing the interpretation of “∈” must fix the interpretation of

Ω(x). To amplify this point, we should notice two facts about modern model theory. First, the definition

of satisfaction in modern model theory is clearly designed to allow variation in the range of quantifiers. For

models N1 and N2, and for any formula Φ(x), the definition of satisfaction says that:

N1 |= ∃xΦ(x) ⇐⇒ there exists an n ∈ N1 such that N1 |= Φ[n].

N2 |= ∃xΦ(x) ⇐⇒ there exists an n ∈ N2 such that N2 |= Φ[n].

Given this, there is no reason to expect “N1 |= ∃xΦ(x)” and “N1 |= ∃xΦ(x)” to have the same truth-

value. Even in cases where N1 and N2 agree about all elements in their common domain (i.e., even where

N1 |= Φ(n) ⇔ N2 |= Φ(n) for every n ∈ N1 ∩N2), the fact that the recursion clauses for ∃ evaluate different

classes of n’s makes it entirely reasonable to suspect that “N1 |= ∃xΦ(x)” and “N1 |= ∃xΦ(x)” have different

truth-values.

Second, this difference in the way quantifiers are evaluated often leads to the kind of phenomena we are

investigating here. Consider, for instance, the following two models for the language containing only a single,

unary function s:

• Domain(N1) = N; s1 = {〈n, n + 1 | n ∈ N1〉}.

• Domain(N2) = N \ {0}; s1 = {〈n, n + 1 | n ∈ N2〉}.

Next, consider the obvious way to define “Zero” in these models:

Zero(n) ≡df ¬∃x [s(x) = n].

Despite the fact that these two models contain almost exactly the same members (differing only in that

N1 contains 0 while N2 does not), and despite the fact that the models interpret “s” in almost exactly the

same way (agreeing on the value of s(n) for all n ∈ N2), this definition clearly functions differently in the

two models. In particular, N2 |= Zero[1] while N1 |= ¬Zero[1]. The difference here is purely a result of the

different ranges over which the initial quantifier in our definition “Zero” is allowed to range. In one case,

the quantifier ranges over a domain which includes 0, so it makes Zero[1] false. In the other, the quantifier’s

domain is sufficiently limited that it never finds an n such that s(n) = 1; hence, Zero[1] comes out true.
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To emphasize the utter ordinariness of this situation, note that everything I just said about the definition

of “Zero” applies equally to the definitions of “One,” “Two,” etc.7 Further, if we continue to construct

new models by eliminating initial elements from N (i.e., letting Domain(N3) = N \ {0, 1}, Domain(N4) =

N \ {0, 1, 2}, etc.), we obtain a whole chain of models N1 ⊂ N2 ⊂ N3 . . . such that 1.) for any i < j, Ni \Nj

is finite, 2.) for any n ∈ Ni ∩Nj , si(n) = sj(n) and 3.) no two Ni’s agree on the definition of Zero or One,

or Two, etc. That is, if we let i < j, let n ∈ Ni ∩ Nj and let Φ represent one of the formulas, Zero, One,

Two, etc., then

Nj |= Φ[n] =⇒ Ni 6|= Φ[n].

Hence, even in the case of quite simple models (and quite simple definitions), the type of phenomenon which

appeared in our analysis of ΩM (x)—i.e., the phenomenon of a single quantifier “explaining” differences in

the way a definition really functions—appears to be quite commonplace.

This, then, gives a fairly full analysis of the role transitive models play (or can play) in the formulation of

Skolem’s Paradox. As we saw earlier, the insistence that M be transitive allows us to make the semantics of

ΩM (x) and ΩE(x) closer in many interesting and consequential ways. In the long run, however, differences

between the way ΩM (x) and ΩE(x) interpret their initial existential quantifier are substantial enough to lead

to a failure of (†′M ) (and, hence, to a failure of argument T ). Further, we have seen that there is nothing

particularly surprising (still less paradoxical !) about the fact that a single quantifier can play this role. In

model theory, this kind of situation occurs all the time; and, even in ordinary English, variation in the

domain of a quantifier often leads to differences in truth value for sentences in which that quantifier occurs.

Before closing, I want to re-emphasize the fact that it is the transitivity of M which lets us give this

particular analysis of the failure of (†′M )—i.e., which lets us isolate the initial quantifier in Ω(x) as the symbol

which “explains” the difference in truth-value between ΩM (x) and ΩE(x). In the next section, I examine

several cases in which this analysis does not work. In doing so, I illustrate the fact that (†′M ) can fail in

many different ways and that, as a result, there can be no “uniform” solution to Skolem’s Paradox.

2.2 Elementarity

Given what we have seen in the last section, it might be tempting to think that all versions of Skolem’s

Paradox can be solved in the same manner as argument (T)—i.e., by examining differences in the way ΩE(x)

and ΩM (x) interpret the initial existential quantifier in Ω(x). This thought clearly has two things going for

it. First, there are some models for which this analysis really does provide the best solution to Skolem’s

Paradox—e.g., the transitive models discussed in the last section. Second, so long as M is countable, ΩE(x)

and ΩM (x) do interpret their initial existential quantifiers differently (since ΩE(x) reads it as “there is a

set” and ΩM (x) reads it as “there is a set in M ”).

Despite these points, I don’t think a focus on initial quantifiers provides an adequate understanding of

7E.g., when we define One(n) ≡df ∃x s(x) = n ∧ ¬∃x s(s(x)) = n and Two(n) ≡df ∃x s(s(x)) = n ∧ ¬∃x s(s(s(x))) = n, etc.
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what’s really going on in Skolem’s Paradox. To see why, we can begin by looking at a model in which the

“explanation” for the failure of (†′M ), though clearly involving the interpretation of quantifiers, does not

involve the interpretation of initial quantifiers. As in section 2.1, we begin by letting κ be an inaccessible

cardinal and letting M be a countable elementary submodel of Vκ. There are two things to notice about

this model: 1.) M is clearly a countable model of ZFC and 2.) for any Ψ(x̄) in the language of set theory

and any m̄ ∈ M

M |= Ψ[m̄] ⇐⇒ Vκ |= Ψ[m̄].

It is this second property of M which will be of the most interest to us here. I begin, therefore, by saying a

few things about the ways this property helps make (†′M ) appear plausible.

First, note that M ’s being an elementary submodel of a transitive model ensures that M inherits all of

the absoluteness properties which were discussed in the last section. So, let R(x̄) be a property which is

absolute for transitive models and let ΨR(x̄) be the formula which witnesses this absoluteness. Then for any

m̄ ∈ M ,

R holds of m̄ ⇐⇒ ΨR
E(m̄) ⇐⇒ Vκ |= ΨR[m̄] ⇐⇒ M |= ΨR[m̄] ⇐⇒ ΨR

M (m̄). (K)

Here, the first two biconditionals come from the absoluteness of R, the third from the fact that M ≺ Vκ,

and the last from the definition of |= (see p. 17).

Second, the fact that κ is inaccessible ensures that, in addition to all the properties discussed in the last

section, the property of being uncountable is also absolute for Vκ. That is, for any n ∈ Vκ,

n is uncountable ⇐⇒ ΩE(n) ⇐⇒ Vκ |= Ω[n].

When this fact is combined with the one discussed above, we obtain the key fact about M and uncountability:

for any m ∈ M ,

m is uncountable ⇐⇒ ΩE(m) ⇐⇒ ΩM (m).

As a result, M really does “get it right” about uncountability. The fact that M is an elementary submodel

of Vκ, combined with the fact that “being uncountable” is absolute for Vκ ensures that “being uncountable”

is also absolute for M .

Why, then, doesn’t this make (†′M ) trivially true? There are two things to be said here. First, let

m̂ be a member of M such that M |= Ω[m̂]. Then, in contrast to the transitive case, m̂ 6= {m |m ∈M

m̂}. In particular, although every m′ ∈ m̂ ∩ M is also in {m |m ∈M m̂}, there are quite a few (indeed,

uncountably many!) m′ ∈ m̂ \ M (hence, in m̂ \ {m |m ∈M m̂}). As a result, there is no reason to think

that ΩE({m |m ∈M m̂}) and ΩE(m̂) are equivalent, so there is no reason to think that (†′M ) follows from

the biconditionals in the last paragraph. This gives us a fairly simple answer to the question with which this

paragraph began.

Moving somewhat deeper, we should note that the difference between ΩM (m̂) and ΩE({m |m ∈M m̂})

cannot, in this case, be explained by appealing to differing interpretations of the initial existential quantifier
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in Ω(x).8 To be sure, the quantifiers in ΩE(x) do range over a wider domain than those in ΩM (x), and some

(uncountably many!) of the objects in this wider domain are genuine bijections between {m | m ∈M m̂} and

ω. However, this fact is not what explains the difference between ΩM (m̂) and ΩE({m |m ∈M m̂}).

To see this, we need to reexamine the rational for thinking that the initial quantifier in Ω(x) could explain

this difference in the first place. Presumably, the thought goes something like this. There is some particular

function f (or perhaps some class of functions F) which has the following properties:

1. f lives in the range of the initial quantifier in ΩE({m |m ∈M m̂}).

2. f does not live in the range of the initial quantifier in ΩM (m̂).

3. ΨE(f, {m |m ∈M m̂}) is true.

4. If f were a member of M , then ΨM (f, m̂) would be true.9

Given these properties, we reason that if the initial quantifier in ΩM (m̂) could only “know” about f , then

ΩM (m̂) and ΩE({m |m ∈M m̂}) would agree. Hence, we conclude that it’s the difference in the way ΩM (m̂)

and ΩE({m |m ∈M m̂}) interpret their initial quantifiers which “explains” the failure of (†′M ).

In the case of M , however, it’s hard to see what “f” is supposed to represent. On the one hand, we

could look for some bijection f : m̂ → ω. Using the absoluteness properties of M , we could make a plausible

case that this f would have property 4.10 Unfortunately, such an f would not have property 3.11 Still more

unfortunately, it’s easy to show that no such f even exists! From what we have already seen , we know that

m̂ is uncountable ⇐⇒ ΩM (m̂).

Hence, the very fact that M |= Ω[m̂] ensures that there is no bijection f : m̂ → ω. This, together with the

fact that such an f wouldn’t satisfy 3 anyway, shows that looking for this kind of bijection is a mistake.

On the other hand, we could shift our focus and look for a bijection f : {m | m ∈M m̂} → ω. Such a

bijection would clearly avoid the problems just discussed: it would be relatively easy to find, and it would

satisfy properties 1–3. However, it is not clear why this bijection should satisfy property 4. After all, the very

8Note that the argument of the last paragraph only explained why the biconditionals from the penultimate paragraph don’t

entail (†′M ). It doesn’t explain why (†′M ) is wrong. Explaining this is a different, and somewhat more delicate, task.

9Clearly, it’s hard to figure out the significance of this necessarily-contrary-to-fact conditional. Nevertheless, I think that

this conditional, or something very much like it, provides the best formulation of the idea that initial quantifiers explain the

difference between ΩE({m |m ∈M m̂}) and ΩM (m̂).

10Here, the absoluteness properties of M ensure that, for any m ∈M ,

m is a bijection between m̂ and ω ⇐⇒ ΨM (m, m̂).

Hence, and modulo the concerns mentioned in the last footnote, we could conclude that, if f were a member of M , then

ΨM (f, m̂) would have to be true.

11Since the domain of f is m̂ rather than {m | m ∈M m̂}, and since ΨE(x, y) expresses the notion that x is a function between

y and ω, ΨE(f, {m | m ∈M m̂}) cannot be true. Hence, 3 fails for f .
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absoluteness properties which make (†′M ) seem plausible, also entail that, for any f : {m | m ∈M m̂} → ω,

ΨM (f, m̂) ⇐⇒ m̂ = {m | m ∈M m̂}.

Hence, the fact that m̂ 6= {m | m ∈M m̂} seems to entail that ΨM (f, m̂) can’t be true—i.e., that ΨM (f, m̂)

wouldn’t be true even if f were a member of M . If this is right, then looking for an f : {m | m ∈M m̂} → ω

would be just as much of a mistake as looking for an f : m̂ → ω.

Note that this second example actually shows that no f can play the role required by the argument

sketched above. If f is not a bijection between {m | m ∈M m̂} and ω, then 3 will not be true. If f is a

bijection between {m | m ∈M m̂} and ω, then the fact that m̂ 6= {m | m ∈M m̂} makes it highly implausible

to think that ΨM (f, m̂) “would be true” if only f were in M . In no case, therefore, can we find a function

f which gives content to the idea that differences between ΩM (m̂) and ΩE({m |m ∈M m̂}) are “explained”

by appealing to differing interpretations of the initial quantifier in Ω(x).

Of course, the differences between ΩM (m̂) and ΩE({m |m ∈M m̂}) are explained by differing inter-

pretations which these sentences give to their quantifiers (since, after all, ΩM (x) and ΩE(x) agree on the

interpretation of all other symbols in Ω(x)—i.e., on “∈,” “¬,” and “→”). But, the quantifiers in question are

those embedded in the formula Ψ(f, x) and not those which stand at the beginning of ΩM (x) and ΩE(x).12

Hence, although it might be tempting to give a uniform explanation for the failure of (†′M ) in terms of the

differing interpretations ΩM (x) and ΩE(x) give to their initial quantifiers, this uniform explanation cannot,

in the long run, be sustained.

2.3 Membership

In this section, I want to continue exploring the main theme of the last section—the theme that initial

quantifiers can’t explain all instances of Skolem’s Paradox—by examining a situation in which quantifiers

in general don’t explain what’s really going on in Skolem’s Paradox. To set this situation up, we need

to construct (yet) another model. We begin by letting N be a countable, transitive model of ZFC, let-

ting m̂ be an element of N such that N |= Ω[m̂], and letting n̂ be an arbitrary element of N such that

Rank(n̂) > Rank(m̂) + ω.13 Next, we use the fact that m̂ is countable to get a bijection f : m̂ → ω, and we

12Note that it is these internal quantifiers which differentiate the formulas ΨE(f, {m | m ∈M m̂}) and ΨM (f, m̂) that have

been so crucial through the last few paragraphs.

13A few remarks on this choice of n̂ are probably in order. Basically, I have chosen n̂ so as to ensure that n̂ does not live in

the same “part” of N as m̂. In particular, n̂ is not a member of either m̂ or ω. What’s more, n̂ is not equal to any ordered

pair of the form 〈n1, n2〉, where n1 ∈ m̂ and n2 ∈ ω, nor is n̂ equal to any collection of such ordered pairs. As a result, we can

manipulate n̂ in various ways without modifying the parts of N which directly involve m̂, ω, and n̂ × ω. The significance of

this choice of n̂ will become clear as my argument progresses.
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define a function σ : N → (N \ {n̂}) ∪ {f} such that:

σ(n) =

n if n 6= n̂

f if n = n̂

Finally, we use σ to define a new model, M , such that Domain(M) = (N \{n̂})∪{f} and σ is an isomorphism

between N and M (see fn. 6 on p. 7 for the details of this construction).

There are four things which we should observe about the M which results from this construction. First,

because M is isomorphic to N , M is still a countable model for ZFC. Second, and again because σ : N → M

is an isomorphism, M |= Ω[m̂]. Third, the fact that M is countable ensures that there is some bijection

f ′ : m̂ → ω such that f ′ 6∈ M (since there are, after all, 2ℵ0 different bijections between m̂ and ω, not all of

which can live in the countable model M). Finally, the fact that f ∈ M means that M contains at least one

function which witnesses the fact that m̂ is countable. Even though M may not “recognize” this function in

the right sort of way—e.g., as indicated by the fact that M |= Ω[m̂]—M does contain this function.

What are we to make of this example? On my reading, the example provides an instance of Skolem’s

Paradox in which the failure of (†′M ) is due, not to different interpretations of the initial existential quantifier

in Ω(x), but to different interpretations of the “∈” symbol in the embedded Ψ(f, x). To see this, we should

begin by noticing that, because M |= Ω[m̂], ΨM (f, m̂) must be false. In contrast, the fact that f really is

a bijection between m̂ and ω entails that ΨE(f, m̂) is true. These facts, together with the fact that both

ΩM (x) and ΩE(x) “know” about f—i.e., that f is within the range of the quantifiers in both ΩM (x) and

ΩE(x)—entail that any difference between ΩM (x) and ΩE(x) must be located in Ψ(f, m̂) (and not, say, in

the way these sentences interpret their initial existential quantifiers).

Let us, then, look more closely at Ψ(f, m̂). Abbreviating wildly, we can write:

Ψ(f, x) ≡df ∀x ∈ f [x ∈ m̂× ω]

∧ ∀x ∈ m̂ ∃!y ∈ ω [〈x, y〉 ∈ f ]

∧ ∀y ∈ ω ∃!x ∈ m̂ [〈x, y〉 ∈ f ].

When we examine this formula closely, we observe that many of its subformulas receive equivalent interpre-

tations under the semantics of ΨE(f, m̂) and those of ΨM (f, m̂); to use our earlier jargon, these subformulas

are absolute between V and M . In particular, we should observe that for any set s:14

1. s ∈ m̂ ⇐⇒ M |= s ∈ m̂.

2. s ∈ ω ⇐⇒ M |= s ∈ ω.

3. s ∈ m̂× ω ⇐⇒ M |= s ∈ m̂× ω.

4. If s′ ∈ m̂, and s′′ ∈ ω, then s = 〈s1, s2〉 ⇐⇒ M |= s = 〈s1, s2〉.
14Note, here, that it’s our original choice of n̂ which ensures that these four claims are true. By choosing n̂ to be in a different

part of N than m̂ and ω, we ensure that replacing n̂ with f will not effect these properties.
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Finally, we should observe that every s ∈ m̂ ∪ ω ∪ m̂ × ω ∪ n̂ is within the range of the quantifiers of both

ΨE(f, m̂) and ΨM (f, m̂).

Keeping these observations in mind, we can isolate three kinds of differences between ΨE(f, m̂) and

ΨM (f, m̂). First, there are differences that occur within subformulas that are, themselves, absolute between

V and M—e.g., formal differences in the interpretation of quantifiers within expressions like “x ∈ m̂ × ω.”

Second, there are differences in the interpretation of quantifiers where 1.) these quantifiers are explicitly

bounded as they occur in Ψ(f, m̂) and 2.) these quantifiers have ranges, both as they occur in ΨE(f, m̂)

and as they occur in ΨM (f, m̂), which include every element in either of the relevant bounding sets. So, for

instance, the initial quantifier in “∀x ∈ f [x ∈ m̂ × ω]” is bounded by the expression “∈f ,” and the ranges

of the quantifiers in both ΨE(f, m̂) and ΨM (f, m̂) include f ∪ {y | y ∈M f}. Similarly, the initial quantifiers

in “∀x ∈ m̂ ∃!y ∈ ω [〈x, y〉 ∈ f ]” are bounded by “∈m̂” and “∈ω,” and the ranges of the quantifiers in both

ΨE(f, m̂) and ΨM (f, m̂) include m̂ ∪ {y | y ∈M m̂} and ω ∪ {y | y ∈M ω}.

Clearly, these first two kinds of difference cannot explain the difference in truth-value between ΨE(f, m̂)

and ΨM (f, m̂). Because differences of the first kind are isolated within subformulas whose truth-values are

constant between ΨE(f, m̂) and ΨM (f, m̂), these differences cannot be where ΨE(f, m̂) and ΨM (f, m̂) really

diverge. Similarly for differences of the second kind. Since none of the sets which live within the range of

ΨE(f, m̂)’s quantifiers but not within the range of ΨM (f, m̂)’s quantifiers are relevant to the truth-values of

formulas like ∀x ∈ f [x ∈ m̂ × ω] or ∀x ∈ m̂ ∃!y ∈ ω [〈x, y〉 ∈ f ], the differences between these quantifier’s

ranges cannot explain the difference in truth-values between ΨE(f, m̂) and ΨM (f, m̂).

This, then, brings us to the third difference between ΨE(f, m̂) and ΨM (f, m̂): their differing interpre-

tations of the expression “x ∈ f .” As this is the only difference which remains between ΨE(f, m̂) and

ΨM (f, m̂), it must explain the difference in truth-values between these two sentences. Further, this explana-

tion is relatively intuitive: because M doesn’t know what the real members of f are, and because the notion

“being a function between x and y” gets defined in terms of a set’s members, M doesn’t know that f is a

function between m̂ and ω. Hence, it’s not surprising that M fails to satisfy the formula which “expresses”

this notion: i.e., that M 6|= Ψ(f, m̂). This is a simple result of the discrepancy between M ’s understanding

of the membership relation on f and the real membership relation on f .

We have, therefore, an analysis of the failure of (†′M ) which is quite different from our analyses of the

earlier failures of (†′). In each of the other cases, the explanation for the failure of (†′) involved the different

interpretations which ΩE(m̂) and ΩM (m̂) give to their quantifiers. In this case, the explanation involves the

different interpretations which ΩE(m̂) and ΩM (m̂) give to the symbol “∈.” Because this explanation is so

different from our earlier explanations—and, I think, from the “standard line” on Skolem’s Paradox—it is

worth stopping to address two concerns which the explanation might raise.

First concern: why can’t our explanation of the difference between ΩE(m̂) and ΩM (m̂) still rely on

the ways these sentences interpret their initial existential quantifiers? After all, there are 2ℵ0 bijections

g : m̂ → ω which do not live in the domain of M (since the set of such bijections has cardinality 2ℵ0 while M
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is only countable). Why couldn’t one of these other bijections “explain” the fact that ΩE(m̂) is true while

ΩM (m̂) is false? To address this concern, we need to look at two things.

First, we need to recall how a function which doesn’t live in M could “explain” the failure of (†′M ). As

we saw on page 39, there are four things that need to happen for such an explanation to work (or, at least,

to be moderately plausible). The fourth of these is the (somewhat difficult to understand) conditional:

4. If f were a member of M , then ΨM (f, m̂) would be true.

In the case we are considering, this amounts to the claim that, if M were to know about one of the above-

mentioned bijections g : m̂ → ω, then M would recognize this bijection as a bijection. As a result, M would

satisfy some formula of the form Ψ[g, m̂] and, in consequence, would fail to satisfy Ω[m̂].

But why should we accept this? M already does contain a bijection f : m̂ → ω, and M doesn’t recognize

this bijection as a bijection (or, at least, not as the right kind of bijection to make ΨM (f, m̂) true). Why

should M do any better when it comes to other bijections? In the case of transitive M—the case discussed in

2.1—M really did get all bijections “right.” Hence, it was at least plausible to think that M would continue

to get new bijections right, if M could only know about such bijections.15 But, once M misunderstands

some bijections, there’s no reason to think that it will do better with respect to other bijections. Hence,

there is no intuitive reason to think that the concern now at issue is really well-motivated.

Second, we should note that there are cases in which phenomena like Skolem’s Paradox can only be

explained in terms of the different interpretations which models give to the “∈” symbol. So, for instance,

let N be a countable, transitive model of ZFC and let N ′ = N [G] be a generic extension of N such that ωN
1

has been “collapsed” so as to have cardinality ℵ0.16 Next, let X = {n ∈ N | N |= “Rank(n) < ωω”} and

let σ : N → N ′ be a bijection such that σ � X = Id. Finally, using the trick from footnote 6, let M be a

new model such that the domain of M is the same as that of N ′ and such that σ becomes an isomorphism

between N and M .

At this point, we are in a position to formulate a puzzle very much like Skolem’s Paradox except that it

holds between M and N ′. To begin, note that the fact that σ � X = Id ensures that M and N ′ agree about

the membership relation on ωN
1 . That is,

m̂ = {x | x ∈N ′ ωN
1 } = {x | x ∈M ωN

1 }.17

However, M and N ′ do not agree about the countability of ωN
1 . By construction, N ′ |= ¬Ω[ωN

1 ]. In contrast,

the fact that σ : N → M is an isomorphism and that σ(ωN
1 ) = ωN

1 ensures that M |= Ω[ωN
1 ].

15Certainly if M were extended to a new transitive model N which contained these bijections, then the new N would recognize

these bijections for what they are.

16The details of this construction are too complicated to explain fully here. The relevant facts about N ′ are these: 1.) N ′ is

a countable, transitive model of ZFC, 2.) N ′ is an “end extension” of N (i.e., for any n ∈ N , {x | x ∈N′ n} = {x | x ∈N n}),

and 3.) N ′ |= “ωN
1 is countable”. Further details about this type of construction can be found in chapter 7 of [30] or chapter

3 of [26]. For the purposes of this thesis, only the three above-listed facts about N ′ will actually be used.

17The first of these equivalences follows simply from the fact that N ′ is transitive. The second follows from the fact that
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What’s more, there’s no possibility of explaining this divergence by appealing to the different ways

ΩM (ωN
1 ) and ΩN ′(ωN

1 ) interpret their quantifiers. Since M and N ′ have the same domain, ΩM (x) and

ΩN ′(x) interpret their quantifiers in exactly the same way. Hence, the difference in truth-value between

ΩM (ωN
1 ) and ΩN ′(ωN

1 ) must be explained in terms of the different ways M and N ′ interpret the symbol

“∈.” Indeed, following the analysis on pages 40–42, we can show that the difference between ΩM (ωN
1 )

and ΩN ′(ωN
1 ) must be explained by the differing ways these formulas interpret three particular instances of

“∈”—namely the three instances which are highlighted in the “∈f” clauses in the formulation of Ψ(f, ωN
1 ).18

This example shows that there are versions of Skolem’s Paradox—or, at least, of puzzles very much

like Skolem’s Paradox—which can only be resolved by appealing to the ways different models interpret

the membership symbol. The example, of course, differs from Skolem’s Paradox itself in that the example

involves a comparison between two models, while Skolem’s Paradox involves comparing one model to the

entire set-theoretic universe. It’s worth asking, therefore, whether the involvement of the whole set-theoretic

universe makes a real difference to our analysis. To see why I think it doesn’t make a genuine difference, it’s

useful to consider (very briefly) two more examples.

First, let’s assume that the continuum hypothesis is true, and let’s let N be a countable, transitive model

for ZFC. Using techniques pioneered by Barwise, we build a new model N ′ such that 1.) N ≺ N ′, 2.) N ′ is

an end extension of N (i.e., for every n ∈ N , {x | x ∈N n} = {x | x ∈N ′ n}), and 3.) |N ′| = ω1.19 Next, we

let m̂ be an arbitrary element of N such that N |= ΩN (m̂), and we let X = {g : m̂ → ω | g is a bijection}.

Finally, using the fact that |X| = ω1 (by the continuum hypothesis), we build a bijection σ : N ′ → N ′ ∪X

such that σ � N = Id; we then let M be the model naturally induced by this σ—i.e., induced in the manner

of footnote 6.

At the end of this construction, we have a model M and an element m̂ ∈ M such that three things hold:

1.) m̂ = {x |x ∈M m̂} is really countable, 2.) M |= Ω[m̂], and 3.) M contains all of the functions which

witness the fact that ΩE(m̂) is false—i.e., all of the f ’s such that ΨE(f, m̂) is true. Clearly, number 3 rules out

the possibility that the difference between ΩM (m̂) and ΩE(m̂) can be explained by differing interpretations

of the initial quantifier in Ω(x). Nor can we explain M ’s failure to “recognize” instances of ΨE(f, m̂) by

noting that the quantifiers in ΨE(f, m̂) range over a larger domain than those in ΨM (f, m̂). After all, every

N is transitive together with the above-mentioned fact that σ � X = Id. Basically, the fact that σ is the identity in the

“neighborhood” of ωN
1 ensures that “locally-definable” properties of ωN

1 will be absolute between M and N ′ (and, for that

matter, between either of these models and V ). With a little work, we can show that all of the properties listed on page 41 are

absolute once they have been reformulated to hold between M and N ′—i.e., rather than between (our original) M and V .

18Very roughly, the fact that σ � X = Id ensures the vast majority of the symbols in Ω(ωN
1 ) occur within subformulas that

are absolute between M and N ′. This fact, together with the fact that ΩM (x) and ΩN′ (x) agree on the interpretation of

quantifiers, is what allows us to isolate the relevant instances of “∈.”

19The construction here rests upon the following theorem: if N is a countable model for ZF, then N has an countable,

elementary, end-extension. To get an uncountable end-extension for N , we simply apply this theorem ω1 times, using union-

of-chains arguments to get past limit ordinals. Since the properties of “being an elementary extension” and “being an end-

extension” are both preserved through unions of chains, this construction gives us the desired N ′.
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set which is relevant to the truth of formulas like ΨE(f, m̂)—i.e., members of m̂, ω, m̂× ω, etc.—is within

the range of the quantifiers in ΨM (f, m̂), and every set in the range of the quantifiers in ΨM (f, m̂) is in the

range of the quantifiers in ΨE(f, m̂).20 Hence, the only viable explanation for the difference in truth-value

between ΩE(m̂) and ΩM (m̂) stems from the way these formulas interpret the symbol “∈.”21

To give one final example of this kind of phenomenon—one in which the whole set-theoretic universe is

still involved but in which there is no difference between the quantifiers in ΩE(x) and those in ΩM (x)—we

need to make a few more set-theoretic assumptions. Suppose, then, that ωL
1 is countable and that there is

some definable bijective map, F , between L and V .22 In this case, we can assume without loss of generality

that F is actually the identity on some large initial segment of L—say, Lωω
—and we can use F to define

a new membership relation, ∈∗, on V such that F becomes an “isomorphism” between 〈L,∈〉 and 〈V,∈∗〉.

Then, everything I said about the penultimate case applies to this case as well. Even though 〈V,∈∗〉 and

〈V,∈〉 agree regarding the membership relation on ωL
1 , ΩE∗(ωL

1 ) is true and ΩE(ωL
1 ) is false.23 Further,

because both of these sentences take their quantifiers to range over the entire set theoretic universe, the only

possible explanation for this difference involves the sentences’ divergent interpretations of “∈ .” We have, in

short, a close relative of Skolem’s Paradox in which the the (entire) set-theoretic universe plays a crucial role,

but whose “solution” does not involve reflection on the ways different sentences interpret their quantifiers.

This, therefore, gives us a response to the first concern about the explanation of Skolem’s Paradox with

which this section began. Although it’s quite true that the model M , “misses” a large number of bijections

between m̂ and ω, this fact doesn’t explain the failure of (†′M ). For one thing, it’s hard to see how additional

bijections could explain the failure of (†′M ), given that there are no reasons for thinking that M could

recognize these bijections as bijections. For another, the phenomenon at issue in this instance of Skolem’s

Paradox looks remarkably like the phenomenon at issue in other puzzles which live in the near vicinity of

Skolem’s Paradox—e.g., puzzles which arise when we formulate (†′) so as to hold between two models, or

between an uncountable model and the whole set-theoretic universe, or between two different “versions” of

the universe itself. With respect to none of these other puzzles, can we explain the failure of (†′) by appealing

to divergent interpretations of the existential quantifier. Hence, we should eschew this explanation in the

20As in our original example, this point can be put in terms of “bounding sets.” For any particular f : m̂ → ω, all of the

quantifiers in Ψ(f, m̂) are bounded by sets like f , m̂, ω, m̂×ω, etc. Since all of the elements of such sets are in M , the quantifiers

in ΨM (f, m̂) “know” about these elements.

21As with each of the last few examples, a careful analysis of this example allows us to isolate the difference between ΩE(m̂)

and ΩM (m̂) in the different interpretations these sentences give to the three instances of “∈” which occur in the “∈f”-clauses

in Ψ(f, m̂). Since there’s nothing new going on in this particular case, I omit the details of this analysis here.

22How strong are these assumptions? From the standpoint of consistency strength, not very. Given any transitive model of

ZFC, we can build a new model, M , such that M |= ZFC +|ωL
1 | = ℵ0 and such that there is a definable bijection between M

and L ∩M . Hence, the assumptions above are equaconsistent with ZFC.

That being said, these assumptions do go beyond what ZFC can actually prove (so they may be false in the real set-theoretic

universe). Given the purposes of the present example, I don’t think this possibility matters too much; it should, however, be

kept in mind.

23Here ΩE∗ (ωL
1 ) is the obvious modification of ΩE(ωL

1 ) in which our semantics interpret “x ∈ y” as meaning F−1(x) ∈ F−1(y).
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present case as well. This is especially true, given that we have another explanation—i.e., the explanation

in terms of “∈”—which does work in a uniform manner across all four examples.

This brings us to a second concern. Recall how the model M was originally constructed. We began with

a transitive model, N , and we modified N by “replacing” one of its members with the function f ; at the end

of this construction, N and M wound up being isomorphic, and we used this fact in showing that ΩM (m̂)

was true. How, then, can we have arrived at a different analysis of Skolem’s Paradox in this case than we did

in the transitive-models case discussed in section 2.1? If M and N are isomorphic, shouldn’t our explanation

of the difference between ΩE(x) and ΩM (x) be exactly the same—or, at least, structurally similar—to our

explanation of the difference between ΩE(x) and ΩN (x)? How can the one explanation involve (only) the

interpretation of “∈,” while the other involves (only) the interpretation of quantifiers?

The short response to these questions is that the properties preserved under isomorphisms comprise a (far)

smaller class than do the properties which semantics—of either the ordinary English or the model-theoretic

variety—pays attention to. So, even though isomorphisms preserve the overall size of a model, they do not

preserve the specific elements which make up a model’s domain. In contrast, the quantifiers in both ΩE(x)

and ΩM (x) do look at specific elements—e.g., the quantifiers in ΩM (x) range over (exactly) the elements

in M and not over the elements in other, equivalently sized, domains. Similarly, although two isomorphic

models have to share the same overall “pattern” of membership relations—in the sense that their relations

get “lined up” with each other via the relevant isomorphisms—they need not agree on any specific questions

about membership—i.e., for N ' N ′ and n, n′ ∈ N ∩N ′, there is no requirement that n ∈N n′ ⇔ n ∈N ′ n′.

In contrast, the semantics of ΩE(x) and ΩM (x) involve specific understandings of the membership relation.

This gives us an abstract answer to our question: because semantics deals with more fine-grained notions

than isomorphisms can capture, we should not be surprised to find that isomorphic models give rise to very

different versions of Skolem’s Paradox. To make this abstract answer more concrete—and hopefully more

convincing—it’s worth examining one non-set-theoretic case in which a similar phenomenon arises. Consider,

therefore, the following three models in the language containing only a single unary function symbol, s:24

• Domain(N1) = N; s1 = {〈n, n + 1 | n ∈ N1〉}.

• Domain(N2) = N \ {0}; s1 = {〈n, n + 1 | n ∈ N2〉}.

• Domain(N3) = N; s3 = {〈n, n + 1 | n ∈ N1 & 2 < n〉} ∪ {〈1, 0〉} ∪ {〈0, 2〉}

Consider also the obvious way to define “Zero” in these models:

Zero(n) ≡df ¬∃x [s(x) = n].

As noted in section 2.1 (cf. p. 36), N1 |= Zero(0) while N2 |= ¬Zero(0). Further, the only explanation for

this difference stems from the different domains over which the initial quantifier in the definition of “Zero”

24This example is simply a modification of one given on page 36 For expository convenience—i.e., to avoid making the reader

flip back-and-forth—I repeat most of the details of that example here.
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is allowed to range. In contrast, N3 also satisfies ¬Zero(0), but the difference between N1 and N3 cannot

be explained by appealing to differing domains of quantification (since N1 and N3 have exactly the same

domain). Instead, this latter difference must be explained by the different ways N1 and N3 interpret the

function symbol, s.25

For our purposes, the important point about this example is this: even though we get different expla-

nations for the divergence between ZeroN1(0) and ZeroN2(0) and the divergence between ZeroN1(0) and

ZeroN3(0), the models N2 and N3 are clearly isomorphic. What’s more, both N2 and N3 are also isomorphic

to N1. Hence, mere isomorphism is not enough to ensure that two models share the same semantics. Nor

is an isomorphism between two models enough to ensure that semantic differences between these models

and some third model (or ordinary English, for that matter) must have the same “explanation.” For the

purposes of semantics, then, isomorphism is mostly a red herring.

This provides a complete answer to our second concern. Even though M and N ′ are isomorphic, this

gives no reason for thinking that the difference between ΩM (x) and ΩE(x) will run parallel to that between

ΩN ′(x) and ΩE(x). Hence, it gives no reason for thinking that there’s something problematic about an

explanation of Skolem’s Paradox which focuses on the interpretation of “∈” rather than the interpretation

of “∃.” Although this explanation is different from the “usual” explanation of Skolem’s Paradox, it’s clearly

the right explanation for the present case.

2.4 Conclusion

In sections 1.1–1.2, I formulated a fairly simple version of Skolem’s Paradox and showed how that version of

Skolem’s Paradox depends on a particular claim about the relationship between model theory and ordinary

mathematical English—i.e., (†′). In section 1.3, I showed that (and why) this claim has to be false. The

explanation I gave there suffered, as noted on pages 28–30, from three defects. First, it addressed only

the simple version of Skolem’s Paradox developed in 1.1–1.2 and ignored the more sophisticated versions

of Skolem’s Paradox which involve, for example, transitive models and/or elementary submodels of the

universe. Second, although it isolated several semantic differences between ΩE(x) and ΩM (x), and although

it showed that one of these differences had to be responsible for the failure of (†′), it didn’t pin down the

specific difference which actually does the explanatory work. Finally, my whole argument assumed that the

reader was simply puzzled about Skolem’s Paradox—i.e., that they found the paradox perplexing, but had

no theoretical reasons for thinking that the semantics of ΩE(x) ought to be identified with the semantics of

ΩE(x). In particular, I made no attempt to respond to any of the arguments which might be made on behalf

of principles like (†′).
25It’s worth noting here that, because of the way N1 has been defined, the semantics induced by N1 are “essentially” the

same as those of ordinary arithmetical English. In particular, for any formula Φ(x̄) in our language, and any n̄ in Nn, we get

the equivalence: ΦE(n̄) ⇐⇒ ΦN1 (n̄). Hence, everything I say about the differences between ZeroN1 (x) and ZeroN2 (x) (or

ZeroN1 (x) and ZeroN3 (x)) holds also about ZeroE(x) and ZeroN2 (x) (or ZeroE(x) and ZeroN3 (x)).
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The present chapter has tried to deal with the first two defects. On the one hand, I have canvassed

a number of fairly sophisticated formulations of Skolem’s Paradox and have argued that they all fail for

essentially the same reasons as the original (simple) formulation failed. In each case, there was some difference

in the way ΩE(x) and ΩM (x) interpret the symbols “∈” and “∃” which explains—and explains in a fairly

intuitive way—why the relevant version of (†′M ) has to fail. On the other hand, I have argued that the

request for a uniform explanation as to which symbol causes the failure of (†′M ) is misguided. For different

choices of M , different symbols will play the crucial explanatory role. Hence, unless we have quite a bit of

information about the particular model in terms of which Skolem’s Paradox has been formulated, we can’t

say much more than I said in my original discussion in 1.3.

Of course, none of this deals with the third defect. What’s more, insofar as I have missed some obvious

arguments in favor of (†′), my analysis of even the sophisticated cases of Skolem’s Paradox will continue to

be incomplete. In order to remedy this third defect, I turn in chapter 3 to examine some of the arguments

which might be made on behalf of (†′).
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Chapter 3

Two Philosophical Objections

In this chapter, I consider two objections to the (essentially technical) solution to Skolem’s Paradox which

I have developed over the last two chapters. Although I don’t, in the long run, think that either of these

objections is convincing, I do think they uncover much of the philosophical allure of Skolem’s Paradox

and thereby help to explain the philosophical community’s recurrent flirtation with it.1 I also think these

objections raise independent questions concerning the broader philosophical significance of modern model

theory. Hence, whether or not they ultimately support Skolem’s Paradox, these objections are rich enough

to repay a fair bit of close philosophical attention.

3.1 Naive Prattle

One objection which could be raised to my solution of Skolem’s Paradox involves the use this solution makes

of the account of ΩE(x) developed in section 1.2.1. There, I said that the semantics of ΩE(x) can be identified

with those of the sentence Cantor(x), where the semantics of Cantor(x) are those of “ordinary mathematical

English.” I then explained—in 1.3 and 2.1–2.3—how these “ordinary-English” semantics differ from the

model-theoretic semantics of ΩM (x) and how this difference, in turn, explains what’s going on in Skolem’s

Paradox (and, in particular, why the conditional (†′M ) fails).

This whole argument, however, assumes that sentences like Cantor(x) have a determinate semantics. So,

for instance, it assumes that the phrase “x is a member of y” lets us refer to the “real” membership relation

on the set-theoretic universe. Similarly, it assumes that the phrase “there is a set x such that. . . ” allows us to

evaluate “. . . ” at every set in the set-theoretic universe. Without these assumptions, my comparison between

ΩE(x) and ΩM (x) comes apart, and my overall explanation of the failure of (†′M ) becomes ungrounded.

These reflections give rise to an objection to the analysis of chapters 1–2 which I like to call the “naive

1As noted in the introduction, there are really two puzzles associated with Skolem’s Paradox. First, there is the paradox

itself: how can a countable model satisfy the very axioms which prove that uncountable sets exist? Second, there is a problem

concerning the reception of Skolem’s Paradox: why, even though the technical “solution” to Skolem’s Paradox has been pretty

well-understood since the early twenties, have philosophers continued to find this paradox so tempting? The last two chapters

focused on the first of these puzzles; this chapter focuses on the second.
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prattle objection.” The objection begins by raising concerns about the determinacy of “ordinary mathemat-

ical English.” It then argues that these concerns undercut the analysis of (†′M ) which I have provided, and

that, as a result, my overall solution to Skolem’s Paradox is a failure. In short, the fact that my solution

presupposes the intelligibility of ordinary mathematical English—of ordinary talk about sets and classes,

membership and non-membership, countable sets and uncountable sets—renders this solution nothing more

than “so much naive prattle.”

Before discussing specific developments of this objection, I want to make four points about the objection’s

general structure. First, the objection doesn’t challenge the purported connection between the semantics of

ΩE(x) and those of Cantor(x): insofar as ΩE(x) is simply an abbreviation of Cantor(x), the semantics of

these two sentences must be the same. Instead, the objection argues that the semantics of Cantor(x) are

indeterminate to begin with, and it then uses the connection between Cantor(x) and ΩE(x) to show that

this indeterminacy carries over to ΩE(x).

Second, this objection threatens my analysis of Skolem’s Paradox at several different levels. At the most

obvious level, it undercuts my analysis of the semantic differences between ΩE(x) and ΩM (x) (since this

analysis presupposed that we could use phrases like “all sets” or “is really a member of” in a naive manner

when explaining the semantics of ΩE(x)). At a deeper level, the objection undercuts much of my preliminary

discussion of Skolem’s Paradox in sections 1.1–1.2. So, for instance, my insistence in 1.1 that we distinguish

between {x | x ∈ m̂} and {x | x ∈M m̂} depends on the assumption that we can isolate the “real members”

of m̂. Similarly, my argument for reading premise 2 in terms of ΩE(x)—the argument given in 1.2.1 and

1.2.2—assumes that phrases like “x is uncountable” and “x is a member of y” are themselves determinate.

Finally, and most importantly, my initial discussion of premise 5—the discussion in section 1.1 which led to

the conclusion that this premise is true under “interpretation I”—depends on the assumption that we can

use the phrase “is countable” with enough precision to make determinate claims about the “countability” of

models and their subsets.

Third, and as a direct consequence of the second point, the current objection shouldn’t be viewed as a

defense of (†′M ). Because the objection undercuts both my analysis of (†′M ) and my argument for regarding

(†′M ) as the key to Skolem’s Paradox, a proponent of this objection could reject (†′M ) while still defending

Skolem’s Paradox. He might, for instance, claim 1.) that (†′M ) is not the heart of Skolem’s Paradox, 2.) that

(†′M ) is meaningless, and 3.) that the version of Skolem’s Paradox introduced at the beginning of section

1.1 is valid. In this case, the current objection would serve to bolster number 1, while 1 itself would serve to

render 2 and 3 compatible.

That being said, this objection clearly makes room for understandings of set theory on which (†′M ) comes

out true. So, for instance, (purported) difficulties with the “ordinary-English” semantics for ΩE(x) might

lead us to “clarify” this sentence by identifying its semantics—and, by extension, those of Cantor(x) and “x

is uncountable”—with the semantics of ΩM (x). These new semantics would, of course, be “relative” to the

particular M which is under discussion, but they would also validate (†′M ). Further, it’s relatively easy to
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see how such semantics could be used to formulate an interesting version of Skolem’s Paradox.2

Finally, this objection isn’t specifically aimed at my solution to Skolem’s Paradox. Instead, it raises

problems for any solution to Skolem’s Paradox which takes classical set theory at face value and then uses

this set theory to undermine Skolem’s Paradox. So, for instance, even a solution which attributes all failures

of (†′M ) to the interpretation of the initial quantifiers in ΩE(x) and ΩM (x)—i.e., one which resists the

arguments of 2.2 and 2.3—will still be subject to this objection. Hence, whether or not the objection can

ultimately be parlayed into a substantial formulation of Skolem’s Paradox, its scope and generality make it

an effective counter to most “standard” solutions to that paradox.

3.1.1 Three Examples

Why might someone think that the semantics of ΩE(x) are too indeterminate to support the argument

of the last two chapters? As far as I can see, there are three lines of argument which might be used to

support this view. The first, and most obvious, stems from simple incredulity that anything as strong

as classical set theory could simply be presupposed when solving philosophical problems. Surely there is

something problematic about just assuming the existence of all the denizens of the set-theoretic universe—of

uncountable many subsets of N, of cardinal numbers which are so large that they can’t be described in

ordinary English, and of rank-upon-rank of uncountable sets stretching beyond the point where (even) set

theory can count the ranks themselves. Surely there is something even more problematic about assuming

that we can talk about this whole menagerie in a determinate manner. At the very least, these assumptions

seem to demand substantial philosophical arguments before they can be used to “solve” Skolem’s Paradox.

In the literature, this concern about assuming too much when solving Skolem’s Paradox tends to get

phrased in terms of “Platonism.” In [58], for instance, William Thomas argues that it is “the very essence

of Platonism” to assume that ordinary language can be used as “a kind of universal metalanguage” when

discussing Skolem’s Paradox; he also argues that we display “creeping Platonism” when we attempt to talk

about “absolutely uncountable sets” like “the set of all real numbers” (see [58], p. 195 and 196). Similarly,

in [18], Arthur Fine argues that, “unless one is to fall back on some strong form of Platonism,” one must

accept that the phrase “all real numbers” is systematically ambiguous—i.e., since it, or at least its formal

analogue, can be interpreted at various non-isomorphic models (see [18], p. 30). Finally, in [28], Virginia

Klenk characterizes as “Platonists” those who “appeal to the distinction between formal and informal, or

intuitive, [or ordinary-English] mathematics” (see [28], p. 480–481). She then argues that Platonism is far

too problematic a position to ground a satisfactory solution to Skolem’s Paradox.

So far, of course, we have merely put a label on the assumption that ΩE(x) is semantically determinate

2This seems to be the line taken by Fine in [18] and by Thomas in [59]. In both cases it is claimed that the only sense we can

make of phrases like “x is uncountable” comes from interpreting these phrases at a particular model—i.e., from identifying their

semantics with those of sentences like ΩM (x) for a particular choice of M . Since the model under discussion varies according

to context, the phrase “x is uncountable” winds up being intrinsically relative.
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and have hoped that this label is sufficiently pejorative to make people question that assumption. To get

a real argument against the assumption, we need to turn to a second reason for questioning the semantic

determinacy of ΩE(x). This reason stems from reflection on some fairly general concerns about the deter-

minacy of mathematical English—i.e., on concerns which are not specific to the case of ΩE(x) and which

may not even be specific to the case of set-theory. We might, for instance, appeal to the concerns Benacerraf

raises in [2] or [3]. Or, we might appeal to the concerns raised by Field in [16] or Kitcher in [27]. In any

of these cases, general arguments against the determinacy of mathematical language are imported into the

discussion of Skolem’s Paradox and parlayed into specific arguments against the determinacy of ΩE(x).

This “importation” strategy is actually fairly common in the literature on Skolem’s Paradox. In [28], for

instance, Virginia Klenk presents two arguments against “anti-skolemite” appeals to “informal models of set

theory” and/or “ordinary language conceptions of sets.”3 First, she argues that solving Skolem’s Paradox

by appealing to “informally specified models” reverses the real relationship between formal and informal

mathematics, between model-theoretic semantics and ordinary mathematical English. On Klenk’s account,

Our intuitive mathematics should be seen as something less, not more, than our formal mathemat-
ics: less precise, less consistent, perhaps, and less complete (unless, of course, it is inconsistent,
in which case its completeness hardly counts as an advantage).” ([28], p. 482)

On this view, then, there is no reason to think that informal mathematics—or, in our terms “ordinary-

English” mathematics—has any special ability to pick out the “real” notion of set or the “real” conception

of countability. To the extent that formal axioms fail to “capture” or “specify” these notions—e.g., in the

ways highlighted by Skolem’s Paradox—the notions are simply unspecifiable:

Intuitive mathematics must, after all, be couched in language, and there is little reason to think
that the ordinary language of informal mathematics is in any way superior to the formal lan-
guage of first-order predicate logic . . . Once we have formalized the notion, moved from ordinary
language to the formal language, what more could there be to the informal theory, unless one
supposes that vagueness is a hallmark of comprehensiveness. Where is this “real” concept of set
to be found? ([28], p. 482)

At the very least, Klenk argues, those who want to maintain that informal mathematics can do more than

formal mathematics, ought to have a well-developed account of how “ordinary English” gains its special

powers. In the absence of such an account, the retreat to ordinary English seems counterintuitive.

Klenk’s second argument against the use of ordinary English in set theory comes from a concern about

multiple realizations of the set-theoretic universe. To make this concern perspicuous, Klenk begins by

3A bit of background may be helpful here. In [47], Michael Resnik argues that informal mathematics provides a perfectly

good interpretation of the notion “all sets,” and that this interpretation provides us, in effect, with a model for the language of

set theory (the “informal model” mentioned above). Because Skolem’s Paradox only arises when we ignore this model and try to

interpret set-theoretic language at other (specifically, countable) models, the decision to treat this “informally specified” model

as canonical—i.e., canonical for interpreting phrases like “all sets” or “x is uncountable”—allows us to solve Skolem’s Paradox.

In particular, it explains why we should resist the urge to infer “x is uncountable” from mere fact that some (non-canonical)

model satisfies the formal analogue of “x is uncountable.”

Klenk’s paper raises doubts about Resnik’s invocation of “informally specified” models of set theory. In the long run, Klenk

thinks that reflection on Skolem’s Paradox should push us towards some kind of formalism.
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examining a similar problem in the context of number theory. Essentially, she notes that a simple application

of the trick from footnote 6 allows us to build an arbitrarily large collection of models all of which are

isomorphic to the “standard” model of number theory—i.e., to N—but which disagree about the actual

ontology of number theory:4

. . . there are many different sorts of things which could serve as a basis for standard models. We
might take numbers just as indefinable abstract entities, or we could construe them as sets. In the
latter case, of course, there are various possibilities: we could take the number two, for instance,
either as {{0}} or as {0, {0}}. We might even take numbers as collections of inscriptions.

Since all of these models are isomorphic, Klenk sees no reason to privilege one of them as the “real” sequence

of natural numbers. Instead, she suggests that any of these “number sequences” can count as the natural

numbers. As a result, any particular object can count as any particular number, so long as it appears in the

right place in some appropriate “number sequence.”5

Next, Klenk notes that a similar argument can be mounted in the case of set theory. Even if we ignore

the queer models produced by Löwenheim-Skolem arguments, it’s easy to generate nice models using the

same isomorphism tricks deployed in the number-theoretic case. If, for instance, there is something which

lives outside the set-theoretic universe—say, my cat Gandalf—then we can consider a correspondence which

leaves all sets other than ℵ0 fixed while swapping ℵ0 for Gandalf. Similarly, we can take any two sets—say,

ℵ0 and ℵ1—and consider a correspondence which permutes these two sets while leaving everything else fixed.

In either case, we generate an interpretation of set theory which is structurally indistinguishable from the one

with which we started.6 By parity of reasoning—i.e., parity with the reasoning used in the number-theoretic

case—Klenk concludes that all of these interpretations should count as “intended interpretations” for the

language of set theory.7

This conclusion, however, seriously undercuts the kind of analysis of Skolem’s Paradox which I gave in

chapters 1 and 2. My analysis assumed that there is a determinate significance to the English phrase “all

sets.” It assumed, that is, that there is a unique answer to the question “which things count as sets and which

do not?” Now, however, it turns out that any object counts as a set under some (intended) interpretations

4The quote here is from ([28], p. 484). The basic technical point is simple: since any countably infinite set can be put into

bijective correspondence with the natural numbers, we can obtain a model for the language of number theory which 1.) uses

this set as its domain and 2.) is isomorphic to the “real” natural numbers. Further, since any particular element of our set can

correspond to any particular natural number, any element can “serve as” any natural number in the resulting model.

5For a more detailed development of this position, see [3]. It should be noted that this position—commonly dubbed

“structuralism”—has recently become quite popular among philosophers of mathematics. See, for instance, [23] or [49].

6A technical comment is in order here. Since the correspondences under consideration permute the entire set-theoretic

universe, they cannot properly be regarded as isomorphisms (since they are not even sets). Hence the theorem discussed in

footnote 6 does not strictly apply. However, the correspondences in question are so simple that it is trivial to define directly

the interpretations of “∈” and “all sets” which these correspondences naturally induce. Hence, the fact that our argument is

not a strict application of the theorem from footnote 6 doesn’t really matter.

7Again, this kind of position has obtained a good bit of popularity in the recent literature. For an extended discussion (and

defense) of the position, see [23].
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of set theory and that no object counts as a set in all such interpretations. In a similar manner, my analysis

assumed that the word “membership” has a specific “ordinary-English” meaning, and that this meaning is

enough to determine when one thing is really a member of another thing. Now, however, it seems as though

any object can be a “member” of any other object, provided we use the right “intended interpretation” of

set theory. Given all this, the determinacy of “ordinary mathematical English” begins to seem far too fragile

to support the arguments of chapters 1 and 2.

These, then, are Klenk’s two arguments against the naive invocation of “ordinary-English” interpreta-

tions of phrases like “set” and “membership.” Leaving these arguments aside, let me briefly mention two

other objections to such invocation. In [59], William Thomas notes that a philosopher who starts out with

philosophical commitments that are incompatible with traditional set theory will be unimpressed by argu-

ments which assume that set theoretic language has a determinate “ordinary-English” semantics. So, for

instance, a formalist will be unimpressed, because he doesn’t think that any mathematical language has

significance over-and-above its role in formal proofs (certainly he doesn’t think that set-theoretic language

refers to a real set-theoretic universe).8 Similarly, an adherent of Wang’s system of set theory will reject

such arguments because his own positive understanding of set theory entails that there is no “absolute”

significance to phrases like “all sets” or “is uncountable.”9 In both cases, then, the fact that a philosopher

has positive views which tell against the determinacy of “ordinary-English” set theory—at least when this

set theory is assumed to bear a close resemblance to Cantor’s set theory or to informal versions of ZFC—

provides this philosopher with ample reasons for rejecting arguments which use ordinary-English set theory

to “solve” Skolem’s Paradox.

A somewhat different objection to ordinary-English set theory has been raised by Crispin Wright. Follow-

ing Michael Dummett, Wright argues that the significance of terms in ordinary language must be manifested

in the ways we use this language—that, to cite Wittgenstein, “meaning cannot transcend use.” He then

argues that it’s hard to see how our use of set-theoretic language (whether formal or informal) could possibly

be rich enough to fix a unique interpretation for that language. What would be the practical differences

8See [59] pp. 180–181 for this argument about formalism. See also the last section of [28].

9In Wang’s system, sets are stratified into an ascending sequence of levels, 〈Σα | α < δ〉, where δ is an (unspecified) countable

ordinal. (In practice, each Σα can be identified with Lα+ω in the ordinary stratification of L.) The system allows quantification

over particular levels—using explicitly indexed quantifiers ∀α and ∃α—but it does not allow quantification over the totality of all

levels. In addition, although Wang’s system allows that certain sets are uncountable in Σα—i.e., that there are no enumerating

functions for these sets in Σα—it also proves that these sets are countable in Σα+2—i.e., that there are enumerating functions

at this higher level.

Thomas’ point, then, is just that an adherent of Wang’s system is likely to be suspicious of informal appeals to “all sets,”

since his own set theory explicitly forbids such unrestricted quantification. Indeed, as Thomas notes, a proponent of Wang’s

system is likely to balk at (even) notions like “all real numbers” (since the reals in Wang’s system are spread throughout the

hierarchy of Σα’s). Similarly, because the countability of particular sets can change depending on the “level” from which you

look at it, and since every set winds up being countable at some level, informal appeals to “sets which are really uncountable”

are likely to fall on deaf ears.

For more on Wang’s system, see [62] or [63]. For Thomas application of Wang’s system to Skolem’s Paradox, see [58].
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between people who were talking about the whole set-theoretic universe and people who were talking about

some (elementarily equivalent) submodel of the universe?10 Unless we have a reasonable answer to this

question—or at least an idea of how such an answer might start to go—we should be cautious about as-

suming that there is any “ordinary-English” understanding of set theory (or, at least, any understanding

which goes beyond the insistence that we refrain from using set-theoretic language in ways which violate

the axioms of ZFC). In particular, we should avoid falling back on naive appeals to the “ordinary-English”

understanding of ΩE(x) when we set about solving Skolem’s Paradox.11

These, then, are four reasons for questioning the semantic determinacy of ΩE(x). The assumption that

ΩE(x) has a determinate semantics seems to misconstrue the relationship between formal and informal

mathematics (Klenk); it ignores difficulties stemming from multiple realizations of the set-theoretic universe

(Klenk again); it can be resisted by philosophers whose underlying commitments tell against ZFC style set

theory (Thomas); and it runs afoul of Wittgenstein’s dictum that “meaning cannot transcend use” (Wright).

Clearly there are other arguments which could be developed here. Equally clearly, the arguments above

could be developed in (far) more detail. For the present, however, I eschew such development and simply

take the sketches above to illustrative some of the ways in which general concerns about the determinacy

of mathematical language can be imported into discussions of Skolem’s Paradox and used to undercut the

solution to that paradox which I have developed.

At this point, then, I turn to a final argument for questioning the determinacy of sentences like ΩE(x).

Unlike the arguments above, this one does not involve any general skepticism about mathematical language.

Instead, it involves some fairly specific worries about set-theoretic language, worries which arises from the

rather peculiar history of this discipline. Three features of this history warrant special attention here.

First, set theory is often regarded as a discipline “born in the sin of contradiction.” The history of

set theory is full of cases where the naive use of set-theoretic reasoning led to contradictions, with the

10There are two questions here which should be kept distinct (and which Wright takes great pains to distinguish in his

paper). One concerns whether we, as outsiders, could ever tell whether people were talking about the whole universe or only an

elementarily equivalent submodel. The other concerns whether there is anything about the people’s practices—i.e., about the

things they say and don’t say, about their underlying dispositions to say things in the future, about the particular discriminations

they make (or are inclined to make) in particular cases, etc., etc.—which fixes what they’re talking about. Wright’s paper is

concerned only with the latter, and far more difficult, question.

11Wright’s argument here can be found in [65] pp. 126–137. It’s worth noticing that this Wittgenstinian argument is only one

of several which Wright gives in this paper. So, for instance, Wright also develops a variant of Klenk’s argument concerning

the relationship between formal and informal mathematics. After arguing that axioms provide explications of mathematical

concepts, he writes:

. . . a good explication cannot be weaker than the intuitive concept is supplants, cannot be neutral on points
on which the latter is committed. Accordingly if the ZF-axioms, with ‘∈’ interpreted as set membership, did
constitute a satisfactory explication of the intuitive notion of set, the fact that they do not, so interpreted, entail
the existence of uncountable sets would force the conclusion that there is no such entailment from the intuitive
concept of set either. ([65] p. 126)

Wright also follows Klenk in providing an extended discussion of the relationship between Skolem’s Paradox and the problem

of multiple realizations of number theory (see pp. 120–124).
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most famous example being the discovery that unrestricted versions of the comprehension principle lead

to Russell’s Paradox.12 Even leaving this paradox aside, it’s relatively easy to find other instances where

naive reasoning about sets goes wrong. One need only mention Konig’s Paradox, Richard’s Paradox and

the Burali-Forti Paradox.13 This tendency towards contradiction, then, might lead us to be suspicious of

solutions to Skolem’s Paradox which take ordinary-English talk about “all sets” (or about sets which are

“really uncountable”) at face value.14

Second, the response to these early contradictions often involved the establishment of rival, and in many

cases incompatible, versions of set theory. Russell himself dealt with his paradox by adopting the theory of

types.15 Other set theorists turned to Zermelo’s axiomatization of set theory, while still others turned to

axiomatizations by, e.g., Quine and Wang.16 Insofar as each of these theories is intended as an elaboration

of our initial (naive) understanding of set theory, the fact that they wind up in such different places—both

with respect to their underlying intuitive motivations and their actual technical results—might lead us to

think that there isn’t a determinate “ordinary-English” conception of sets from which they all spring.

Third, even if we discount the significance of non-standard versions of set theory and follow the major-

ity of set theorists in accepting Zermelo’s axiomatization as “canonical,” the fact that this axiomatization

leaves many basic questions about the set-theoretic universe undecided might raise worries about the de-

12Here, unrestricted comprehension says that for any property P there is a set X which contains exactly those things that

possess property P : ∀P∃X∀y [y ∈ X ↔ P (y)]. Defining P (y) ≡ y 6∈ y, this principle produces a set X such that y ∈ X ↔ y 6∈ y.

But, this immediately leads to Russell’s Paradox:

X ∈ X ↔ X 6∈ X.

From a historical perspective, there are two things to mention about this paradox. First, the paradox wasn’t originally

formulated in the context of set theory. Russell originally formulated the paradox in the context of Frege’s theory of “concepts”

and “extensions,” and it was this formulation which forced Frege, in the long run, to abandon his theory. Second, the set-

theoretic version of Russell’s Paradox was well-known to Cantor and his early followers, and they had a number of tools for

dealing with it. Hence, although the paradox has serious implications for an absolutely naive approach to set theory—i.e., one

which uses an absolutely unrestricted version of comprehension—it didn’t have much of effect on Cantor’s own understanding

of set theory. For more on Cantor’s understanding of these issues, see [10], [20] or [35].

13See [50], [29] and [8]. It should be noted that, from a modern perspective, these three paradoxes are rather different in

character. The first two are really paradoxes in semantics. The third is a genuine problem in set theory, as it’s solution requires

us to reformulate the basic principles of naive set theory to prevent the class of all ordinals from constituting a set.

14This is particularly true insofar as two of the paradoxes above—Konig’s Paradox and Richard’s Paradox—depend crucially

on our tendency to use ordinary-English in set theory. (Essentially, they exploit this tendency to import semantic paradoxes

about ordinary English into the realm of set theory.) Whatever we think about set theory in general, these paradoxes might

lead us to think that “ordinary-English” set theory is deeply problematic.

15See [51] or [52].

16See [68], [66], [46], [62] and [63]. Note that these axiomatizations disagree with each other about important technical

questions. Quine’s set theory, for instance, proves the existence a universal set; the others prove that no such set exists.

Similarly, Zermelo’s set theory “stratifies” the set-theoretic universe into an uncountable sequence of levels; the theories of

Russell and Wang also stratify the universe, but they only allow countably many levels in their sequences. Finally, Wang’s set

theory ensures that, for any two infinite sets X and Y , there is a bijection f : X → Y ; each of the other set theories allows

(indeed proves) the existence of “absolutely” uncountable sets.
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terminacy of set-theoretic language. So, for instance, the fact that ZFC cannot determine whether all sets

are “constructible” from simpler sets—whether, that is, the axiom V = L is true—raises worries about our

understanding of the notion “all sets.”17 So too does the fact that that ZFC cannot answer fundamen-

tal questions about the “height” of the set-theoretic universe.18 Finally, the fact that ZFC leaves natural

questions about cardinality open—e.g., what is the cardinality of P(ω)? is ωL
1 really uncountable?—raises

concerns about the determinacy of “plain English” talk of cardinality (e.g., is there any “absolute” meaning

of “uncountable” which will settle my question about the cardinality of ωL
1 ?).

These, then, are three “historical” reasons for questioning the determinacy of “ordinary mathematical

English.” The fact that naive set theory has often lead to contradictions makes us worry about the coherence

of ordinary talk about sets; the fact that there are competing versions of set theory makes us worry about

the determinacy of “plain English” appeals to “all sets” or “is really a member of”; the fact that (even) the

standard axiomatization of set theory leaves basic issues in set theory undecided makes us worry about the

absoluteness of notions like “all sets” or “is really uncountable.” In light of all this, it seems hopelessly naive

to think that we can solve Skolem’s Paradox by just assuming that sentences like ΩE(x) have a determinate

semantics and then using a straightforward analysis of this semantics to undermine the paradox.

Before leaving these historical arguments behind, a final comment is in order. Because these arguments

focus specifically on the history of set theory—as opposed to mathematics in general—they may help to

explain why philosophers tend to be more impressed with Skolem’s Paradox than with analogous puzzles

about notions like “finite.”19 So, for instance, it’s relatively easy to show that there is no collection of

sentences Γ such that for any model M ,

M |= Γ ⇐⇒ M is finite.

Similarly, given any axiomatization of set theory, Γ, it’s easy to show that there is no formula Ωf (x) such

that for any M |= Γ and any m̂ ∈ M ,

M |= Ωf (m̂) ⇐⇒ {m ∈ M | M |= m ∈ m̂} is finite.

Thus, to the extent that concerns about Skolem’s Paradox are motivated by general arguments against the

determinacy of mathematical language, these concerns should carry over from the case of “countable”—i.e.,

the case involved in Skolem’s Paradox—to the case of “finite” as well.

17The problem here is not simply that some sentences can’t be decided by ZFC. Rather, it’s that the axiom V = L raises

a conceptual issue about set theory: what is the relationship between set formation and definition? It seems, therefore, to

be the kind of issue on which axiomatizations of set theory should take a stand. Hence, the fact that ZFC cannot settle this

issue—cannot, that is, decide whether the phrase “all sets” includes non-constructible sets—might make us wonder about our

grasp on the notion “all sets.”

18e.g., does the set-theoretic universe contain inaccessible cardinals, or does the class of ordinals, in effect, constitute the first

inaccessible cardinal?

19See, for instance, Crispin Wright’s remarks in section II of [65] or Hartry Field’s extended discussion in [17].
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If, however, part of the worry about Skolem’s Paradox stems from the kinds of historical arguments

sketched above, then it’s easy to see why the parallel between “countable” and “finite” might not seem

compelling. In the “finite” case, we might feel perfectly comfortable distinguishing between the ordinary-

English sense of “finite” and the sense which is captured (or miscaptured) by formulas like Ωf (x). This is

because we don’t have any real qualms about the ordinary-English meaning of “finite” to begin with. In the

case of “countable,” on the other hand, we may well have such qualms. “Countable” is a paradigmatically

set-theoretic notion, and the arguments just sketched raise real worries about the determinacy (and even,

perhaps, the coherence) of “ordinary-English” set theory.

At this point, then, we have a whole battery of arguments—or, at least, sketches of arguments—against

the semantic determinacy of ordinary-English set theory. If any one of these arguments is successful, then

there may well be something wrong with the analysis of Skolem’s Paradox that I gave in the last two

chapters. In particular, since my solution uses the assumption that ΩE(x) has a determinate “ordinary-

English” semantics, these arguments threaten to turn my solution into mere “naive prattle.”

3.1.2 A Response

It seems to me that there are three ways that we might respond to the “naive-prattle” objection raised in

the last section. The first, and the least satisfactory, would be to simply respond to each of the arguments

in the last section individually. We might, for instance, present a counter-history to the one developed on

pp. 55–57, a counter-history which makes set theory look more stable and more historically “continuous”

than the history previously presented.20 Similarly, we could try to explain how Klenk has misunderstood

the relationship between formal and informal mathematics,21 and we could argue that the basic assumptions

behind Wright’s “manifestation argument” are misguided.22

20So, for instance, we might emphasize the real historical continuities which run from Cantor’s set theory to Zermelo’s original

axiomatization to modern-day ZFC. These continuities might lead us to think that non-standard set theories like Quine’s and

Wang’s are sufficiently out of the mainstream that they shouldn’t really count in any historical assessment of that discipline.

Also, we could point up some of the intuitive underpinnings of Zermelo-style set theory—e.g., the iterative conception of sets—

and we could explain why set theories based on these intuitions have never had real problems with the set-theoretic paradoxes.

Finally, we could try to explain why set theory should, at this stage in its development, be in the dark about issues involving

the continuum hypothesis or the axiom of constructibility. Of course, all this this is only a direction, but it gives an idea as to

how an appropriate “counter-history” might begin to go.

21We might, for instance, agree that formal axioms are supposed to clarify informal notions, but deny that this clarification

has anything to do with the axioms model-theoretic properties. Perhaps it’s only through proof theory that axioms clarify our

informal notions—i.e., by making more perspicuous just what these notions really entail.

22Here we could argue that the manifestation challenge winds up making too many things indeterminate. We could notice,

for instance, the ways Dummett uses this challenge to argue against the reality of time (see [14]), or we could look at Putnam’s

use of the challenge to defend his “cats-and-cherries” argument (see [42], ch. 2). From another angle, we could argue that

set-theoretic language actually meets the manifestation challenge (perhaps by developing an account of set-theoretic perception

like that in [32] and then discussing the circumstances under which we are “responsive” to particular sets). In either case, our

response would undercut the use Wright makes of the manifestation challenge in defending Skolem’s Paradox.
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Unfortunately, this piecemeal response has two major disadvantages. First, some of the arguments

sketched in the last section are genuinely challenging, and it’s hard to see just how a convincing response to

them would go.23 More importantly, even if we could respond to all of the arguments in the last section,

we still wouldn’t solve the basic problem. Unless we could ensure that no further arguments against the

determinacy of ordinary-English set theory were forthcoming, we couldn’t be sure that the naive-prattle

objection had really been overcome. In short, the piecemeal response to the naive-prattle objection leaves

our solution to Skolem’s Paradox playing a perpetual game of one-upsmanship against any new objections

to ordinary-English set theory which may happen to be developed.

This brings us to a second, and far more satisfactory, response to the naive-prattle objection. To settle

matters once and for all, we could simply provide an explicitly worked out semantics for ordinary-English

set theory. To do so, we would need to do two things. First, we would need to give an explicit account of

what the set-theoretic universe consists of—i.e., an explicit ontology and metaphysics for set theory. Next,

we would need to explain how ordinary-English expressions like “all sets” and “is a member of” hook up

to this universe. That is, we would need to provide an adequate account of the mechanisms whereby the

terms and phrases of ordinary English gain semantic significance. By providing all this, we would show fairly

definitively that our solution to Skolem’s Paradox is something more than mere “naive prattle.”

However, although this response would clearly defuse the naive-prattle objection, its very size and com-

plexity make it seem like overkill in the present context. Surely we shouldn’t have to accomplish everything

suggested in the last paragraph simply to get a solution to Skolem’s Paradox! This, then, brings us to a

third line of response to the naive-prattle objection. Taking our cue from the shear difficulty of answering

the arguments presented in the last section—whether we do this piecemeal or by giving a full semantics for

set theory—we might ask whether these arguments really need to be answered in the first place. It seems to

me that, in the final analysis, these arguments don’t need to be answered.

To see why they don’t need to be answered, we need to go back and recall the original point of Skolem’s

Paradox. Skolem’s Paradox is supposed to highlight an inconsistency (or perhaps an incoherence) in our

ordinary ways of thinking about set theory. In particular, it’s supposed to show that there is a conflict between

the naive acceptance of Cantor’s theorem and (some instances of) the Löwenheim-Skolem theorems. Since

the Löwenheim-Skolem theorems are, presumably, unassailable, this leads to the conclusion that naive talk

about “absolutely uncountable sets” is to be avoided.24

23In particular, although I think it’s fairly clear that my solution to Skolem’s Paradox can be modified to fit into a structuralist

framework, I think it’s far less obvious how these modifications would actually work. For one thing, spelling out the modifications

in detail would first require developing a fairly complete formulation of set-theoretic structuralism within which to work. Those

familiar with the literature on this topic will see that this is a daunting project (see [23], [24] and [37] for more details).

24It is at this point, of course, that formulations of Skolem’s Paradox begin to diverge quite wildly. Some take the abandonment

of naive set theory as grounds for adopting some kind of formalism. Others take it to show “every set is countable from some

perspective” and that we should look for alternate set theories which respect this maxim (e.g., Wang’s system). As I argued in

the introduction, however, none of these more detailed arguments can get off the ground until after we have exposed the initial

“conflict” between Cantor’s theorem and the Löwenheim-Skolem theorems.
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Notice the order of argument here. We are supposed to start with a naive acceptance of Cantor’s

theorem. (At the very least, we start with an open mind towards this theorem and towards the naive

set theory which accompanies it.) We then formulate Skolem’s Paradox, discover that there is a problem

with our initial naiveté, and therefore abandon our original acceptance of naive—or “ordinary-English”—set

theory. In short: Skolem’s Paradox is supposed to do the philosophical work here, and the overthrow of

ordinary-English set theory is supposed to be the philosophical payoff.

However, once we accept some version of the naive-prattle objection, we reverse this order of argument.

Instead of beginning with Skolem’s Paradox and using this paradox to show that there’s a problem with

ordinary-English set theory, we begin with a rejection of ordinary-English set theory and use this rejection

to bolster Skolem’s Paradox. Diagrammatically, we want to give an argument which looks something like

this:

Skolem’s Paradox =⇒ ordinary-English set theory is unacceptable.

But, as the argument has actually developed, it looks far more like this:

Various Arguments =⇒ ordinary-English set theory is unacceptable

=⇒ Skolem’s Paradox works

=⇒ ordinary-English set theory is unacceptable.

Clearly this latter argument is far less impressive than the first. If we begin with a rejection of ordinary-

English set theory, then it’s not too surprising that we can, after taking a little detour through Skolem’s

Paradox, wind up with an argument against the ordinary-English use of “uncountable.”

From the standpoint of investigating Skolem’s Paradox, then, there are two problems with the naive-

prattle objection. First, because the objection starts with a rejection of ordinary-English set theory—starts,

that is, with the very thing that Skolem’s Paradox is supposed to establish—it renders Skolem’s Paradox

itself superfluous. In the presence of any of the arguments discussed in the last section, we can argue directly

against ordinary-English understandings of “uncountability” without mentioning Skolem’s Paradox at all.

In effect, then, the naive-prattle objection reduces Skolem’s Paradox to mere technical window-dressing.

Second, the naive-prattle objection seems to require that we solve all problems with ordinary-English

set theory before we can be said to solve any of them. Since the solution to any particular problem will,

presumably, involve a little bit of set theory (or, at least, using words like “set” and “membership”!), an

objector could always respond to the solution by raising other problems about the set theory in question. If

the ability to raise these new problems entailed that our original solution was inadequate, then no problem

would ever have an adequate solution. Since this conclusion is clearly ludicrous, the naive-prattle objection

should be abandoned.25

25It is as though someone required us to solve both the liar paradox and Descartes’ puzzle about the “evil deceiver” before

we tackled problems in ethics. After all, when we investigate ethical problems, we might want to use the word “truth” and/or

refer to ordinary material objects (e.g., Bill Clinton)!
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I propose, therefore, that the proper response to the naive-prattle objection is to sidestep it. As long as

there is no explicit conflict between the Löwenheim-Skolem theorems and “ordinary-English” set theory, there

is no reason to worry about Skolem’s Paradox. Further, in showing that these two (purportedly conflicting)

pieces of mathematics are compatible, we should feel free to use all the ordinary-English set theory we want.26

We do so, not because we think that there are are no other problems with ordinary-English set theory, but

simply out of a recognition that these are, in fact, other problems. Hence, their solution is not a prerequisite

to the use of ordinary set theory in solving Skolem’s Paradox.

3.1.3 The Paradox of the Three Men

Since this “sidestepping” response to the naive-prattle objection may seem like a bit of a cheat, I’d like to

end this section by constructing an analogy that will make the response seem more plausible. The structure

of my argument will be simple. I’ll begin by presenting, and then solving, a puzzle which bears a close

resemblance to Skolem’s Paradox. I’ll then notice that a variant of the naive-prattle objection can be raised

with respect to my solution, but that, in this particular case, the objection is clearly misguided. Finally, I’ll

argue that, by parity of reasoning, the original naive-prattle objection must also be misguided.

My puzzle goes as follows. Three men walk into a bar. They order drinks. At the end of the evening, the

bartender presents them with a bill for $30. Each man pays $10, and the three men leave the bar. Once they

have left, the bartender realizes that the bill should only have been $25, so he gives the busboy $5 to take

to the three men. The busboy, being a dishonest chap, gives each of the men $1 and pockets the remaining

$2 for himself. At the end of the day, then, each of the three men has paid $10 and gotten $1 back. Now,

10− 1 = 9, and 3× 9 = 27. So, if we add in the $2 in the busboy’s pocket, we are left with $29.

However, since we started our story with $30, something has clearly gone wrong. For our purposes,

it doesn’t really matter what this “something” is. Perhaps it involves problems with our traditional un-

derstanding of the arithmetic operators (e.g., addition, subtraction and multiplication); perhaps it involves

problems with the identity of the numbers themselves (maybe there is a hidden sorites paradox here); per-

haps it involves problems with the way we refer to specific numbers (maybe there’s an indeterminacy in our

use of the numerals “29” and “30”). In any case, the fact that we can start with $30 and wind up with

$29 shows that there’s some problem with traditional “naive” arithmetic. As sophisticated philosophers,

therefore, we should eschew such arithmetic in our philosophical deliberations.

This, then, is the paradox of the three men. It’s solution is relatively simply. As suggested above, the

three men did pay $27. This $27 can be split into two parts: $25 which is inside with the bartender and $2

which is in the busboy’s pocket.27 There is also $3 which the men received back from the bartender (via the

busboy). As expected, 27 + 3 = 30. The puzzle turns, therefore, on a simple trick. Instead of adding the $3

26In 4.4.4 I present another justification for this attitude towards the use of ordinary set theory in solving Skolem’s Paradox.

See the discussion of conditionals on pp. 102–103.

27The $2 is, after all, money which the three men originally gave to the bartender and which they never got back.
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which the men received to the $27 which they payed, the puzzle tries to convince you to add the $2 which is

in the busboy’s pocket to the $27 and to simply ignore the $3. Since the $2 is already part of the $27, this

is clearly illegitimate.

Notice, however, that an objection, structurally analogous to the naive-prattle objection, can be made

to this solution. After all, the solution makes (naive) reference to all sorts of natural numbers: 2, 3, 25, 27,

29 and 30. It also employs higher-order operations on these numbers: addition, subtraction, multiplication,

etc. Further, there are clearly reasons to be skeptical of naive arithmetic. We might, for instance, appeal

to the arguments Benacerraf gives in [3] to motivate worries about the determinacy of naive talk about the

natural numbers. Similarly, we could appeal to the arguments in [2] to motivate worries about how we could

come to know about natural numbers (since, we don’t, presumably, have causal interactions with natural

numbers). Finally, we could appeal to physicalist worries: unless there happen to be infinitely many things in

the material universe, it’s not clear that there is enough stuff to provide a satisfactory ontology for ordinary

arithmetic (see [17]). In light of these skeptical worries, then, it might seem as though my solution to the

paradox of the three men—relying, as it does, on a good bit of ordinary arithmetic—amounts to just “so

much naive prattle.”

Clearly, however, something is wrong with this analysis. The paradox of the three men is not a genuine

paradox, and the solution given above explains why it is not a genuine paradox. The mere fact that we can

raise other worries about arithmetic does not show that this particular paradox is well-conceived; nor does

it show that we cannot use ordinary arithmetic to explain why the paradox isn’t well-conceived. In short:

in the context of solving a puzzle about arithmetic—i.e., of showing why a particular arithmetical argument

does not, in fact, lead to a contradiction—the use of arithmetic is both expected and unproblematic. In this

context, therefore, the naive-prattle objection is simply misguided.

The same thing can be said about the original naive-prattle objection. To solve Skolem’s Paradox, we

need only show that there is no conflict between ordinary-English set theory and the Löwenheim-Skolem

theorems. In showing this, we can use all the ordinary set theory we want to. We do not need to give a

preliminary defense of this set theory before we begin; nor do we need to answer miscellaneous objections

to this set theory. As long as we show that the Löwenheim-Skolem theorems do not, themselves, lead to a

contradiction with our set theory, we have done all that is necessary to resolve Skolem’s Paradox. In this

context as well, therefore, the naive-prattle objection is simply misguided.

3.2 Axioms and Mathematical Content

At this point, I turn to a second objection to the solution to Skolem’s Paradox which I developed in chapters

1 and 2. The basic structure of this objection is simple. The objection first argues that, for both historical

and philosophical reasons, the semantic content of ordinary-English set theory should be identified with the

content captured by first-order model theory. It then argues that this identification entails that ΩE(x) and
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ΩM (x) share the same semantics. As a result, it concludes that (†′M ) winds up being true and that argument

(A) winds up being sound.28

Clearly, both parts of this objection deserve closer consideration. Without further elaboration, it’s not

clear why the semantics of ΩE(x) should be viewed as having any relationship to first-order model theory;

further, even if we grant that they have some relation to first-order model theory, it’s not clear why they

should be identified with the semantics of any particular ΩM (x).29 Since the first part of this objection is

clearly the heart of the matter—and since I don’t think this first part is plausible enough to make the second

part particularly relevant—I begin by examining the general arguments for relating ΩE(x) to (some form

of) first-order model theory.

3.2.1 Axioms and Implicit Definition

It seems to me that there are two kinds of reasons for thinking that the semantics of ΩE(x) are—or, at least,

could be—related to model theory. Both involve the roles which axioms play in formalizing and clarifying

our mathematical notions. The first involves examining these roles from a historical perspective. It begins by

noting that set theorists often resort to axiomatization to show that set theory can avoid various problems

or paradoxes. So, for instance, Zermelo’s original axiomatization of set theory was a direct response to

Konig’s “proof” that the set of real numbers cannot be well-ordered: Zermelo believed that every set can

be well-ordered, so he constructed an axiomatization of set theory in which this result could be proved, but

in which Konig’s competing result could not be proved.30 Similarly, when Quine wanted to show that there

was nothing problematic about a universal set—i.e., about a set of all sets—he provided an axiomatization

of set theory in which the existence of such a set could be proven, but which did not allow the (obvious)

derivation of Russell’s paradox (see [46]).

These examples highlight the ways in which set theorists use axiomatization as a means for clarifying and

making precise the notions with which thy have been working (especially when these notions come under

pressure from various sorts of paradox). The historical significance of axiomatization can be further high-

lighted by noticing the degree to which ZFC has become, at least partially, constitutive of the mathematical

notion of set. Note, for instance, that anyone who works in a set theory which conflicts with ZFC is taken to

have a “non-standard” conception of sets. More tellingly, we often find philosophers arguing about whether

various informal conceptions of sets can be adequately squared with our (assumed) commitment to ZFC.

In [6] and [64], for example, Boolos and Wang respectively argue that the so-called “iterative conception of

sets” provides a good informal justification for the axioms of ZF. In [38], Pollard challenges this argument,

claiming that the iterative conception cannot provide a good resolution of the Burali-Forti paradox and,

28So, in contrast to the naive-prattle objection, this objection should be understood as a direct defense of (†′M ).

29e.g., why not identify them with Ω1(x)? Why identify them with ΩM (x) rather than ΩM′ (x)?

30Or, at least, could not be proved in the way that Konig had originally proved it. See [29] for Konig’s proof and [68]

for Zermelo’s response (including his initial axiomatization of set theory). See [35] for an interesting discussion of the whole

incident.
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hence, must be weaker than ZF. Similarly, Boolos and Menzel have disagreed about whether the iterative

conception can really justify the axiom of choice (see [6] and [34]).

For our purposes, the interesting thing about these discussions is the degree to which ZFC is taken for

granted. The philosophical question is not whether ZFC can live up to some normative, philosophically-

developed conception of sets. Instead, the question is whether we can find a philosophical explication of the

set theory we already have—i.e., ZFC. In this context, ZFC serves as a kind of fixed-point for our reflections:

we know that ZFC is essential to our understanding of sets and we simply want to find out whether a

philosophical analysis can deepen this understanding. The fact that ZFC has this fixed-point status provides

yet another reason for thinking that axiomatization plays a crucial role in clarifying—and perhaps even

constituting—our ordinary notion of sets.31

These, then, are two historical reasons—or, better, sociological reasons—for thinking that axioms are

central to our understanding of set theory. From a more philosophical perspective, we should focus on the role

axioms play in (at least a certain conception of) mathematical rigor. One of the things which distinguished

mathematics from other branches of learning is the degree to which the notions of mathematics have been

formulated “rigorously.” Given a mathematical claim, we can usually say fairly precisely what that claim

means: we can break down it’s notions into their constituent parts, we can explain (exactly) what kinds of

things this claim entails, and, while we may not have a proof of the claim ready-to-hand, we can usually

explain pretty well what such a proof would consist in.

This rigor—or precision—can often be attributed to the use of axiomatization in mathematics. When

we axiomatize, we force ourselves to get clear about what the basic concepts and principles of a particular

discipline are, and we provide a notational framework for defining our less-basic notions. We also, at least if

we axiomatize in a system which has a worked-out proof theory, commit ourselves to a specific standard of

proof—i.e., we accept precise rules governing what does and does not count as “proving something” from our

axioms.32 Finally, we provide an important mechanism for tracking down errors in our reasoning: because

axiomatization employs a precise notion of proof, it makes it relatively easy to figure out where an error has

crept into a particular mathematical argument. In all of these ways, then, axiomatization helps to ensure

the rigor of pure mathematics.

In the case at hand, therefore, the very fact that set theory is a rigorous mathematical discipline seems

to ensure that the content of terms like “set” and “membership” is captured—or at least can be captured—

by axioms. Axiomatization is the standard way of ensuring mathematical rigor. Set theory is a rigorous

31Nothing here should be taken to imply that there cannot be more to our notion of sets than that which is given by ZFC.

Clearly, part of the purpose of the discussions mentioned above is to find something more. Also, we may find that, over time,

new axioms get added to our standard axiomatization of set theory—e.g., large-cardinal axioms. In either case, however, ZFC

remains a part of our understanding of sets.

32In practice, of course, we very seldom write our proofs out in full detail. Nevertheless, the fact that we can write them in

such detail—and that we have a standard governing what counts as “full detail”—contributes to the rigor of mathematics.
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mathematical discipline.33 Hence, in some manner or another, axioms must capture the real content of set

theoretic language.34

Before developing this line of argument any further, a brief comment is in order. The arguments I have

just sketched are not intended to contrast axiomatic set theory with ordinary-English set theory (showing,

I suppose, that axiomatic set theory is good while ordinary-English set theory is bad).35 Instead, they are

supposed to show that axiomatic presentations of set theory are at least partially constitutive of the modern,

ordinary-English notion of sets. The historical arguments show that axiomatic set theory has gained this

special status, while the philosophical arguments explain why this status is warranted—i.e., because of the

imperative to make set theory rigorous.

If these arguments are correct, then, ordinary-English talk about sets serves to abbreviate (substantially

more cumbersome) talk within a fully axiomatized set theory—i.e., it abbreviates expressions written in a

formal language and evaluated against the backdrop of an explicit set of set-theoretic axioms. Because the

expressions of ZFC are so messy to write down (see fn. 19), it is more convenient to use phrases like “un-

countable” or “is measurable” then to use the (completely formal) expressions that these phrases abbreviate.

In saying this, we neither criticize ordinary-English set theory nor imply that it lacks semantic content: we

simply explain how ordinary-English set theory gains the semantic content that it actually has.36

Of course, saying that ordinary-English set theory gains its semantic content through some relationship

to axiomatized set theory leaves it unclear just how this process is supposed to work. How, for instance, does

axiomatized set-theory get its semantic content? How exactly is this content transmitted to ordinary-English

talk about sets. For our purposes, however, there is really only one way to answer such questions. To make

Skolem’s Paradox work, we are going to have to say that 1.) the semantics of ordinary-English set theory

are identified with those of axiomatized set theory and 2.) the semantics of axiomatized set theory are fixed

by the model theory of first-order ZFC.

The idea, then, is something like this. The semantics of a phrase like “x is measurable” are fixed by what

remains constant when we interpret the formal analog of this phrase across different models of ZFC. More

concretely, we start with a specific formal expression corresponding to “x is measurable,” and we examine

the elements that this expression picks out in various models of ZFC. If all such elements share a common

33And one which actually does make extensive use of axioms in the course of its day-to-day practice.

34This is not to say that there is no room for intuition in set theory. We need intuition to tell us, for instance, which

axioms we want to accept. It’s just to say that, as set theory has developed into a serious mathematical subject, intuition

has gradually given ground to axiomatics. This is an inevitable part of the “maturation” of set theory as a genuine—i.e.,

rigorous—mathematical discipline.

35This line of argument was discussed in the last section. See 3.1.1.

36A proponent of this position might take the analysis at the beginning of 1.2.1 to illustrate his position. He would first claim

that sentences like “x is uncountable” get their semantic content from their relation to sentences like Cantor(x). He would then

claim that Cantor(x) gets its content from a relation to the formula Ω(x) and that Ω(x) gets its content from being embedded

within a larger formal system. How, exactly, this last step is supposed to work is somewhat mysterious (and will be discussed

shortly); the remainder of the analysis, however, seems fairly clear.

65



structural property—say, having infinitely many “members”—then this property is part of the content of “x

is measurable.”37 If some property is not shared by all such elements, then this property is not a genuine part

of the content of “x is measurable.” Similarly, but more importantly, only those properties which remain

constant when we interpret Ω(x) at different models of set theory count as a genuine part of the content of

“x is uncountable.”

This idea could be motivated by noting that something very similar goes on in other branches of mathe-

matics. In algebra, for instance, we write down a series of axioms to characterize—or perhaps to “implicitly

define”—the notion of “group.” Any structure which satisfies these axioms counts as a group and, hence,

as a suitable context for interpreting other definitions in group theory. So, for example, we can write down

formulas which say—at least against the backdrop of the axioms of group theory—that a particular element

is the identity, that a particular element has order five, or that a particular element lives in the center of a

group. We can also write down axioms which characterize the notion of an “element with infinite order.”

In a very real sense, then, these axioms and formulas provide the content of phrases like “is a group,” “has

order five,” or “has infinite order.”38

There are two things to note about this example. First, the use of axioms to characterize the notion of

“group” leads to a kind of “relativity” that is similar to the “relativity” that is often discussed in connection

with Skolem’s Paradox. “The identity element,” for instance, is a phrase which is relative to the particular

group about which we are speaking: it is possible for my cat Gandalf to be the identity element of group G,

to have infinite order in group H, and to be completely absent from group A. Nor is there an “absolute,”

ordinary-English sense of “identity element” which will solve this problem—a sense of “identity element”

which will determine whether Gandalf “really is” the identity. Instead, the entire content of the phrase “x

37In this case, if we interpret the notion of “membership” as being relative to the particular model in question—e.g., as

discussed in 1.1—then having infinitely many members will indeed be a part of the content of “x is measurable.”

38Philosophers sometimes write as though the axioms in algebra serve primarily as a basis for deductions. We start by writing

down a series of axioms, then we see what conclusions “follow” from these axioms—i.e., which conclusions can be deduced from

the axioms in some formal system. This position has been dubbed “if-thenism” or “deductivism.” See [48], ch. 3 or [39] for

more on this position.

However, this position is fairly clearly false, even as applied to axiomatic disciplines like group theory. While the axioms of

group theory suffice to prove fairly trivial results about groups—e.g., every group has a unique identity, every element has a

unique inverse—they don’t take us through (even) the first week of a typical undergraduate course in the subject. They will

not, for instance, let us prove theorems which compare various groups—e.g., which let us show that one group is a subgroup

of another, that two groups are homomorphic to each other, or that one group is the quotient of two other groups. Indeed,

theorems of this kind can’t even be formulated in the language in which the axioms of group theory are usually written. As a

result, the axioms of group theory play only a minor role in the actual proof of theorems like the first isomorphism theorem—

theorems which involve stepping outside the groups we are interested in to discuss the structural relationships between these

groups.

In practice, then, the axioms of group theory serve almost purely to pick out the structures about which group theorists

intend to talk—or, in other jargon, to “implicitly define” the concept of group. Once these structures have been isolated, group

theorists step back to talk about these structures in a relatively non-axiomatic manner. This fits far better with the account of

axioms sketched in the main text than with the account suggested by “if-thenism.”
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is the identity element” is bound up with the way an associated bit of formalism—∀y [x · y = y · x = y]—

gets interpreted in different models of group theory. Since these interpretations vary, the phrase itself is

unavoidably “relative.”39

Second, none of this is peculiar to group theory. Field theorists use axioms to characterize the notion “field

of characteristic zero,” and ring theorists use axioms to characterize the notion “divisible ring.” Outside

of algebra, topologists use axioms to characterize the notion of a “topological space,” and geometers use

the Eilenberg-Steenrod axioms to characterize the notion of a “homology theory.” In each of these cases,

new formulas can be used to define additional concepts against the backdrop of the structures picked out

by the initial axioms. Hence, far from being some kind of oddity, the use of axioms to characterize—or to

“implicitly define”—mathematical notions is quite widespread.

At this point, then, we have a rough outline of an argument which serves to bolster Skolem’s Paradox.

We begin by arguing that ordinary-English set theory gets its semantic content through its association with

axiomatized set theory. We then argue that axiomatized set theory gets its semantic content from its model

theory (spelling this claim out by appealing to an analogy with cases from, e.g., algebra). At the end of the

day, we conclude that the content of ordinary-English talk about “sets” and “membership” is fixed, in its

entirety, by the model theory of first-order ZFC. Once this position is on the table, we have a clear rationale

for taking puzzles like Skolem’s Paradox (far) more seriously than we did before.

To tie this argument to the material from chapters 1 and 2, we should notice two things. First, the

argument provides a justification for being skeptical about my assumption that the “ordinary-English”

semantics of ΩE(x) can be blithely distinguished from the formal semantics of sentences like Ω1(x) and

ΩM (x). If the present argument is correct, after all, then something like these latter semantics will have to

be the semantics of ΩE(x). Second, the present argument lays the groundwork for further arguments which

would, at least in certain contexts, identify the semantics of ΩE(x) with those of ΩM (x). If these more

detailed arguments go through, then Skolem’s Paradox will also go though (as shown in 1.2.2).

3.2.2 Why Model Theory?

There are two concerns that I want to raise about the line of argument just sketched.40 The first involves

the transition between the view that axioms are constitutive of our ordinary notion of sets and the view

39The same point holds for other phrases. It is entirely possible to build a sequence g ∈ G ⊂ G′ ⊂ H such that 1.) g is in

the center of G but not in the center of G′ or H and 2.) G is a maximal subgroup of G′ but not of H. This shows that notions

like “center” and “maximal subgroup” are also relative to the particular group under discussion.

40There are, of course, more than two concerns that could be raised here. We could, for instance, raise concerns about the

initial argument for viewing axioms as constitutive of our ordinary notion of sets. We could also ask for a lot more detail about

the exact ways in which first-order model theory “captures” the content of phrases like “x is uncountable.” Finally, and as

noted on page 63, we could raise concerns about whether the mere argument that set theory has a model-theoretic semantics

can really be parlayed into argument for identifying the semantics of ΩE(x) with those of any specific ΩN (x). For the present,

however, I think it is best to sidestep these concerns and focus solely on the issues mentioned above.
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that it’s the model theory of these axioms that does the actual constitutive work. In principle, the mere

assumption that axioms play some role in fixing the content of our notion of set, combined with the fact

that some axioms fix content though model theory, is not enough to ensure that the axioms of set theory

fix content through model theory. Further, there are at least two reasons for being skeptical of the idea the

axioms of set theory fix content in this manner.

First, if we look at the original arguments for taking axioms to play a constitutive role in fixing the notion

of “set,” we find that these arguments have more to do with the proof-theoretic properties of axioms than with

their model-theoretic properties. It was by looking at what ZFC can prove—or, more precisely, what kinds

of proofs don’t work in ZFC—that mathematicians determined that ZFC doesn’t generate Russell’s Paradox,

Konig’s Paradox or the Burali-Forti Paradox. Similarly, it was the proof-theoretic properties of axioms which

helped to explain how axioms contribute to mathematical rigor. In no case did anything model-theoretic

enter into these initial arguments for connecting axioms to the content of set-theoretic language.

Given this, why shouldn’t we think that the proof-theoretic properties of axioms do most (or even all)

of the work in explaining how axioms contribute to our understanding of sets? We might, for instance,

think that the axioms of set theory serve to state our basic intuitions about sets. To determine what these

intuitions amount to—i.e., what the content of these axioms really is—we look to see what the axioms of set

theory are able to prove (rather than looking at what remains stable across all models of set theory). So, the

fact that the axiom of extensionality is among our axioms ensures that extensionality is part of the content

of our notion of set (even though the same object may get different “members” as we move from one model

of set theory to another). Likewise, the fact that ZFC proves Cantor’s theorem is enough to ensure that our

conception of sets is rich enough to include uncountable sets. The fact that the model theory of ZFC fails

to “capture” this notion of uncountability—i.e., fails in the ways exposed by Skolem’s Paradox—is simply

beside the point.

Clearly, this picture would need a lot of elaboration before it would constitute an adequate account of

the way axioms contribute to the content of ordinary-English set theory. But even this sketch is enough to

highlight my basic point: the (mere) assumption that axioms play some role in fixing the content of our

notion of “set” doesn’t show that there is a specifically model-theoretic process by which this content-fixing

takes place. As long as there are other processes on the table—and, in particular, processes that are better

tied to our initial arguments for looking at axioms in the first place—we should be quite skeptical of the

claim that the content of ordinary-English set theory is fixed by the model theory of first-order ZFC. Hence,

we should also be skeptical of the thought that reflection on the role of axioms in mathematics will provide

support for Skolem’s Paradox.

Second, there are obvious dissimilarities between the ways mathematicians think about the axioms of

set theory and the ways they think about the axioms of subjects like group theory (i.e., subjects where it is

clear that axioms provide “implicit definitions” of mathematical concepts). For one thing, mathematicians

do tend to talk as though there is an absolute understanding of “set” which determines, once and for all,
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which objects count as sets. They do not engage in similar talk about “group elements.” So, for instance,

few mathematicians would be willing to say that my cat Gandalf is a set, still fewer that he is some particular

set like ℵ17.41 In contrast, it’s absolutely uncontroversial that Gandalf is an element of many groups and

that he is the identity element in at least some of these groups. This shows that there is a real difference

between the ways mathematicians think about set theory and the ways they think about group theory.

For another thing, mathematicians tend to treat the axioms of set theory as being less fixed than those

of group theory or topology. In set theory, mathematicians sometimes raise the question as to whether the

ZFC axioms are correct—i.e., they talk as though there is an intuitive notion of set against which the ZFC

axioms might be checked and found wanting. In group theory and topology, it simply makes no sense to

talk about “intuitive notions” which could diverge from the notion specified by the relevant axioms.42 In a

similar vein, set theorists sometimes debate whether we should add new axioms to the standard axioms of

set theory—e.g., large cardinal axioms, or axioms like V=L, or even just axioms like Con(ZFC). In contrast,

no one would dream of making additions to the axioms of group theory or topology.

I conclude, therefore, we have no reasons for thinking that the content of ordinary-English set theory is

fixed by the model theory of ZFC. Even if we grant that ZFC plays an important role in fixing the significance

of ordinary talk about sets, we have no reasons for thinking that this works by way of model-theory. For

one thing, alternate accounts of how ZFC could fix such significance are clearly available, and some of these

accounts fit better with our reasons for thinking that axioms play any role in fixing content. For another,

there are obvious dissimilarities between the ways axioms are treated in set theory and the ways they are

treated in other disciplines which involve some form of axiomatic “implicit definition.” Given this, we should

be quite skeptical of the move from the view that axioms are constitutive of our ordinary notion of sets to

the view that it’s the model theory of these axioms that does the actual constitutive work.

3.2.3 The Supermodel

In this section, I turn to a second concern about the argument sketched in 3.2.1. Even if we assume that the

axioms of set theory do function to provide “implicit definitions” of set theoretic concepts, this still won’t

be enough to ground the position sketched on pp. 65–67. To see why, we need to look a little closer at the

ways axioms can be used to “pick out” mathematical structures and/or concepts. To help this examination

along, I begin by describing a particular (and rather peculiar) model and looking at this model’s relationship

to several sets of axioms.

The model I want to discuss—which I shall call the “supermodel”—is relatively straightforward. It’s

domain consists of a single object (Tim), and its “membership” relation is defined so as to be as large as

41Presumably, they would say something like this—at least in some contexts—if they thought that all it took to be a set was

to be an element of some model of ZFC.

42As noted earlier (p. 63), some philosophers take a similar line about ZFC. But, in the case of ZFC, it is at least an open

question whether this is the right line to take. In the case of group theory or topology, it is the only line which makes any real

sense.
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possible (given this domain). More formally,

• S = {Tim}

• ∈S= S × S

• S = 〈S,∈S〉

Since the supermodel is supposed to be a model for the language of set theory, this is all we need to say to

give a complete specification of that model.

Now, the supermodel comes with it’s own satisfaction relation—which I shall call “supersatisfaction”—

and it is this (non-standard) satisfaction relation which makes the supermodel unusual. The definition of

supersatisfaction is exactly like that of ordinary (first-order) satisfaction, except that negation is stipulated

to be a redundant operator. More formally, the recursion clause for ¬ reads: for any formula φ and any

assignment of variables ν,

S, ν |=s ¬φ ⇐⇒Def S, ν |=s φ. (3.1)

Thus, so long a formula does not use negations, supersatisfaction treats that formula just the way ordinary

satisfaction treats it. Once a formula does use negations, however, supersatisfaction treats it differently.

Before discussing the supermodel’s philosophical significance, I need to make three technical points about

the model and its associated “satisfaction” relation. First, and most important, the supermodel supersatisfies

everything. That is, for any formula φ in the language of set theory and any assignment of variables ν,

S, ν |=s φ.43 (3.2)

Hence, if we redefine the notion “M is a model of T” in terms of supersatisfaction (rather than ordinary

satisfaction), then S will be a “model” for every theory T .

Second, the fact that the supermodel supersatisfies everything—i.e., fact 3.2 above—can be preserved

through various kinds of tampering. So, for instance, we can change the size of S or even the underlying

language of S while maintaining the fact that S supersatisfies all formulas. To illustrate this point, and to

lay the groundwork for several later points, I provide four brief examples.

First, suppose we want to expand the supermodel by adding new predicates, constants, and functions to

its language. As all constants must be mapped to Tim, and as functions are trivial in a one-element model,

the only potential choices involve our new relation symbols. And, if we expand the supermodel so as to make

43The argument for this claim involves a straightforward induction on the structure of φ. The fact that S contains only one

element, along with the fact that ∈S is maximal, ensures that S supersatisfies all atomic formulas. Given this, the passage

through → is trivial (since → maps (T, T ) to T ), and the passage through quantifiers is equally trivial since S contains only

one element (so, S |=s φ[Tim] ⇐⇒ S |=s ∃x φ(x) ⇐⇒ S |=s ∀x φ(x) ). Finally, the fact that negation is redundant allows us to

move from S |=s φ to S |=s ¬φ.

Note that this argument continues to work even if we take ∨, ∧, and ↔ as logical primitives (since each of them also maps

(T, T ) to T ). For the remainder of this section, therefore, I will go ahead and treat ∨, ∧, and ↔ as though they were logical

primitives (instead of using them to abbreviate more complicated expressions involving only ¬ and →).
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all relations maximal—i.e., if we make the expanded supermodel interpret all predicates by S and all n-ary

relations by Sn—then we can preserve the fact that S |=s φ for every φ in our (expanded) language.44

Second, suppose we want to increase the size of the supermodel by replacing the one-element set {Tim}

with some arbitrary set S. In this case, our original definition of |=s does not ensure that 3.2 continues to

hold: if there exist s1 6= s2 ∈ S, for instance, then S 6|=s ∀x∀y(x = y). However, if we simply redefine |=s so

as to make equality trivial (i.e., define |=s so that M |=s m1 = m2 for any model M and any m1,m2 ∈ M),

then our new version of S will, once again, supersatisfy all formulas.45

Third, suppose we want to move beyond first-order notation to consider formulas with a more complicated

syntax. Clearly, fact 3.2 will not be changed by moving from first-order logic to any logic of the form Lκ,λ

(since quantifiers, conjunctions, and disjunctions are trivial in the supermodel). More significantly, there is

a straightforward way of extending 3.2 to cover formulas of second (and higher) order logic. We begin by

extending our definition of S so that every nth-order, m-ary relation is interpreted by [Pn−1(S)]m. We then

extend our definition of |=s so that, for any sequence of nth-level objects 〈S1, . . . , Sm〉, any n + 1st-level

m-ary relation variable R, and any assignment of variables ν,

S, ν |=s R[S1, . . . , Sm]. (3.3)

Together, these two modifications ensure that all atomic formulas (even higher-order atomic formulas) wind

up being supersatisfied by S. This supersatisfaction then extends to more complicated formulas just as it

did in the last two examples (cf. footnotes 45 and 44).

Fourth, suppose we want to accomplish all three of the tasks from the previous examples at the same time.

Then, if we simply combine the modifications to S and |=s that were discussed in the previous examples,

we obtain a variant of the supermodel and supersatisfaction relation such that: 1.) the supermodel uses

an arbitrary set S for its domain, 2.) the supermodel’s interpretation function ”knows about” an arbitrary

collection of primitive constant, relation and function symbols (including n-th order relation symbols for

any/every finite n), and 3.) the supersatisfaction relation deals with arbitrary sentences in the language

Lω
∞,∞.46 Further, it is easy to check that the resulting supermodel still supersatisfies (in, of course, a revised

sense of “supersatisfies”) every sentence in Lω
∞,∞. So, fact 3.2 continues to hold.47

44The argument for this claim is essentially identical to that for 3.2. The fact that all relations are maximal ensures that all

atomic formulas come out true (equalities being trivially true in one-element models); from here, we just follow the inductive

argument of footnote 43.

45As usual, the argument for this claim proceeds by induction on φ. The fact that ∈S= S×S ensures that S |=s s1 ∈ s2 for all

s1, s2 ∈ S; similarly, equalities are taken care of by our new definition of |=s; so the claim holds for all atomic formulas. Given

this, propositional connectives work as in footnote 43, and, since this whole argument works for any assignment of variables,

quantifiers don’t change anything.

46i.e., sentences which involve (arbitrarily large) infinitary conjunctions, disjunctions and quantificational blocks and which

include nth-order quantifiers for any (or, indeed, for all) finite n.

47The technical details of this construction go as follows. We begin by letting S be an arbitrary non-empty set and letting

ŝ be an arbitrary element of S. We then define an interpretation function such that 1.) all constants are mapped to ŝ, 2.) all
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To recap this second point, then, although the simplicity of the original supermodel makes that model

more accessible than the ones we have just been considering, this simplicity plays no essential role in proving

3.2. If we employ enough tricks—i.e., if we are creative enough in modifying either S or |=s as the need

arises—then we can preserve 3.2 through a whole variety of changes in the underlying structure of S. Hence,

although I will now revert to using the terms “supermodel” and “supersatisfaction” to refer only to the

original model and relation defined on page 70, the flexibility of the supermodel construction should be kept

in mind throughout the remainder of this discussion.

This brings me to a final technical point, a point concerning the supermodel’s problematic relationship

to the principle of bivalence. Clearly, part of the reason S supersatisfies every sentence is because the

supersatisfaction relation fails to conform to bivalence (this, in turn, is a result of the relation’s failure to

“correctly” interpret the symbol “¬”). It is important, though, that we be clear about just how this failure

of bivalence really works.

First, note that the supermodel does supersatisfy each of the formal sentences which may, at first blush,

seem to characterize bivalence. That is, for every sentence φ in the language of set theory,

S |=s φ ∨ ¬φ. (3.4)

Of course, this is true simply because the supermodel supersatisfies everything. Hence, to the extent that

worries about bivalence are motivated by the thought that S should fail to supersatisfy some things, 3.4

doesn’t help very much. In particular, it doesn’t help to ensure that, for any sentence φ, S supersatisfies

either φ or ¬φ but not both.

Although this worry is undoubtedly correct, we should note that the game played with the original

version of bivalence can be played in cascades. The formal sentence which corresponds to the demand that

S supersatisfy only one of φ and ¬φ is, itself, supersatisfied by S. That is, for any sentence φ in the language

of set theory,

S |=s ¬(φ ∧ ¬φ) (3.5)

and, indeed,

S |=s (φ ↔ ¬¬φ). (3.6)

Hence, none of the formal sentences which may initially seem to characterize bivalence can be used to deter-

mine whether or not S really conforms to that principle. Because, S supersatisfies every sentence, it clearly

supersatisfies these particular sentences. Just as clearly, this fact entails nothing about the supermodel’s

actual adherence to the principle of bivalence.

n-ary function symbols are mapped to the constant function fn : Sn → {ŝ}, and 3.) all nth-order, m-ary relation symbols are

mapped to [Pn−1(S)]m. Finally, the relation |=s gets the same definition as ordinary satisfaction (i.e., ordinary satisfaction

for languages of the form Lω
∞,∞), modulo the modifications discussed in previous examples: interpreting ¬ according to 3.1,

interpreting “=” as a maximal relation, and interpreting the predication of higher-order variables according to 3.3.

Given these definitions, it is easy to check that 3.2 holds for all atomic formulas. From there, the induction proceeds as usual

to give 3.2 for all formulas.
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To summarize: the supermodel’s failure to satisfy bivalence is not the result of its failure to satisfy—or,

rather, to supersatisfy—some particular sentence or sentences in the language of set theory. Instead, it is

the result of the supermodel’s failure to respect a certain pattern in the way it supersatisfies these sentences.

In particular, we would like the supermodel and supersatisfaction relation to respect the pattern

S |=s φ ⇐⇒ S 6|=s ¬φ (3.7)

for every sentence φ in our language. But, as the examples above illustrate, respect for this pattern cannot

be reduced to the requirement that S supersatisfy some particular sentence (or even collection of sentences)

The supermodel does supersatisfy all such sentences and collections, but it manifestly fails to respect the

pattern at issue.

These, then, are my three technical points concerning the supermodel. 1.) the supermodel supersatisfies

all formulas. 2.) this fact has little to do with the supermodel’s having a one-element domain or having

a language which contains only one symbol (although these facts make the proof of 3.2 somewhat more

perspicuous). 3.) the fact that the supermodel and supersatisfaction relation fail to satisfy basic logical

principles cannot be cashed out in terms of particular sentences (or collections of sentences) which the

supermodel fails to supersatisfy. With these three points under our belt, we can turn to examine some of

the philosophical implications of the supermodel/supersatisfaction construction.

3.2.4 Philosophical Implications

There are, I think, four lessons to be learned from our examination of the supermodel. First, a model

can only satisfy an axiom—or a collection of axioms—against the backdrop of a particular understanding

of the “satisfaction” relation. In principle, there are many different ways to understand this relation: as

first-order satisfaction, second-order satisfaction, intuitionistic satisfaction, supersatisfaction, etc.48 These

understandings give rise to different answers to questions of the form “does this model satisfy that sentence.”

The supermodel, for instance, supersatisfies many sentences which it doesn’t “satisfy” on any ordinary

understanding of “satisfaction.”49 Hence, it is only when we have a specific background semantics for our

language—i.e., a specific understanding of what counts as a “model” for our language and a specific account

of how these models “satisfy” particular sentences—that it makes sense to talk about a model “satisfying”

an axiom or a collection of axioms.

Second, the background semantics for a language are themselves fixed from outside that language. To

define a specific “satisfaction” relation we need to step back, both from the language in question and from

48For another “oddball” satisfaction relation, see section 4.4.2. For non-standard satisfaction relations with more in the way

of philosophical and mathematical motivation, see [36], [57] or chapter 2 of [23].

49A similar example involves so-called “Henken models” of second-order logic. On a second-order understanding of “satis-

faction” these structures don’t even count as “models” for second-order formulas; hence, they don’t satisfy any second-order

sentences. On an alternate (first-order, many-sorted) understanding of “satisfaction,” they do count as “models,” and they

“satisfy” all kinds of second-order sentences.
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the intended models for that language, to discuss the relationship between language and models. So, for

instance, we need to write down the recursion clauses which determine how our “satisfaction” relation

understands symbols like “¬”: does it understand “¬” in the manner of ordinary satisfaction, in the manner

of supersatisfaction, or in some other manner altogether? These clauses determine whether our satisfaction

relation winds up respecting patterns like that in 3.7. It is only from this external standpoint, therefore,

that we can define the crucial notions—i.e., of models and satisfaction—which make sense of talk about a

model “satisfying” a particular axiom.

As a corollary to this point, the background semantics for a set of axioms cannot be specified by means

of further axioms. We cannot explain why the supermodel constitutes a “bad” interpretation for the axioms

of set theory simply by finding other axioms—whether in the language of set theory or in some expanded

language—which the supermodel fails to “satisfy.”50 This was the moral of my discussion of the principle

of bivalence and of the stability of the supermodel construction under expansions of our language. Instead,

we have to step outside our axioms to notice an unfortunate pattern in the way the supermodel relates to

negation (i.e., that it regularly supersatisfies both φ and ¬φ). Nor is this point specific to the supermodel.

For any set of axioms, there will be many (non-equivalent) ways to interpret symbols like “¬,” “→” and

“∃” which make the relevant axioms come out “true.” Hence, any set of axioms will be “compatible” with

a wide variety of background semantics for the so-called “logical” terms.

Third, and as another corollary, it makes no sense to talk in any generic sense about axioms “picking out”

models and/or “implicitly defining” concepts. If we are willing to deploy enough tricks—i.e., tricks of the

kinds discussed on pp. 70–72—then we can make essentially any structure “satisfy” essentially any axioms.

So, if we want our axioms to pick out certain models with respect to every conception of satisfaction—i.e.,

to pick out exactly the same models no matter what conception of satisfaction we happen to be using—

then no axioms will “pick out” any models. On the other hand, if we merely want our axioms to pick out

models with respect to some conception of satisfaction—i.e., if we only demand that there be a conception

of satisfaction against which our axioms pick out the models in question—then every set of axioms will “pick

out” every model. Without a fixed background semantics for interpreting our axioms, therefore, talk about

these axioms “picking out” models or “implicitly defining” concepts is pretty-much meaningless.51

This third lesson is important and deserves to be emphasized. Philosophers sometimes talk as though

axioms themselves should be able to determine their own semantics. That is, they talk as though, if we

could only write down enough axioms using a rich enough syntax, we could force those axioms to take on

a certain meaning.52 But this is clearly false. The mere act of writing down axioms does nothing towards

50Since the supermodel will, after all, satisfy all further axioms.

51Of course, if we do have a fixed semantics for some of the symbols in our language—and, at least, a proto-semantics for the

other symbols (see 1.2.1)—then it makes sense to ask whether certain collections of axioms “pick out” models and/or “implicitly

define” concepts. But, this is very different from the idea that axioms alone can do this kind of work.

52See, for instance, [28], [43] and [65]. In each case, the authors talk as though the semantics of mathematical language should

be totally fixed by axioms. If the meaning of these axioms is unclear, then further axioms should be used to “fix” the problem.
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fixing the interpretation of those axioms; as we saw in our discussion of the supermodel, it can’t even fix the

interpretation of symbols like “¬.” Hence, the mere act of writing down axioms—no matter how many we

happen to write or how much semantic vocabulary we happen to include—does nothing towards “picking

out” a model for these axioms or “implicitly defining” a mathematical concept.53

Fourth, this all shows just how hard it will be for the proponent of the line sketched in 3.2.1 to make a

convincing defense of Skolem’s Paradox. In 3.2.2 we saw that the mere assumption that axioms play some

role in fixing the content of set-theoretic language does not imply that these axioms’ model theory does

the actual work. Now we see that even the assumption that model theory does do the real work won’t

be enough. Unless we have reason to think that the content of set-theoretic language is captured by the

specifically first-order model theory of set-theoretic axioms, the argument of 3.2.1 will fall apart.

Of course, the fact that Skolem’s Paradox rests on first-order model theory is in no way surprising. This

fact was emphasized as far back as section 1.1. But, I hope the discussion of the last few pages has made

several things more clear. First, there is no sense in which the axioms of set theory themselves force us to

understand them via their first-order model theory. Second, the mere fact that the axioms of set theory can

be given a first-order model theory doesn’t show that the semantics of set theory are no more determined

than this first-order model theory would imply; after all, the mere existence of supersatisfaction doesn’t

show that the supermodel provides a legitimate “interpretation” of set theory. Third, the decision to treat

first-order model theory as canonical for the purposes of fixing content is just that, a decision. There are

lots of other—and lots of more attractive—options on the table. Hence, the proponent of first-order model

theory needs to give an explicit argument for taking such model theory as the “right” background for fixing

the content of set-theoretic language.

What are the prospects for such an argument? As far as I can see, very poor. There are at least three

things which tell against the success of such an argument. First, the claim that the meaning of terms like

“set” and “membership” is fixed by the first-order model theory of ZFC is prima facie implausible. It

amounts, after all, to the claim that such meanings can be fixed purely on the basis of a fixed meaning

for the symbols ¬ and → and a proto-semantics which determines that ∈ is a binary relation and that ∃

ranges over some domain. But there is simply no reason to think that understanding the meaning of “not”

and “if. . . then” (along with some grammatical categories for “membership” and “there exists”) should be

enough to explain the general notion of sets.

Nor do things get better when we turn to, e.g., the transitive submodel version of Skolem’s Paradox

or the version based on elementary submodels of some Vκ (see 2.1 and 2.2). To be sure, these arguments

allow us to start with a fixed meaning for “membership.” But, as we saw on pages 35–37, it is quite normal

for differences in the interpretation of “there exists” to lead to wildly different interpretations of concepts

defined by means this phrase. Hence, we have no reason to expect that fixing the meaning of “not,” “all,”

53The “nothing” here is meant fairly literally. I don’t just mean that there is a lot more to be done; I mean that the act of

writing axioms down doesn’t really fix anything about what these axioms might ultimately be taken to mean.
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“if. . . then,” and “membership” (while keeping the phrase “these exists a set” unfixed) will allow us to define

notions like “all sets” or “is uncountable” with any degree of precision. In short, then, we have no prima

facie reasons for thinking that the first-order model theory of ZFC is even a good candidate for fixing the

significance of set-theoretic language.

Second, we cannot bolster the case for first-order model theory by examining the ways mathematicians

use axioms in other branches of mathematics. In some cases, of course, mathematicians do use first-order

axioms—e.g., in group theory or field theory. But in many cases, their axioms are not first-order. So, for

instance, neither the axioms used to define topological spaces nor the axioms used to define linear continuums

are first-order.54 Nor are the Eilenberg-Steenrod axioms in algebraic topology. Thus, no examination of

general mathematical practice can support a bias towards first-order axioms.

To reinforce this point, note that mathematicians have very good reasons for eschewing first-order axioms

(at least in certain circumstances). Many trivial concepts of ordinary mathematics just can’t be “captured”

in first-order model theory. Most famously, and as we noted near the end of 3.2.1, first-order model theory

cannot capture the notion of “finitude.” As a result, it cannot capture the notion of the closure of a set

under algebraic operations, nor can it capture recursively defined properties of (or relations on) the natural

numbers. Since all of these concepts are basic to modern mathematics, mathematicians have good reason to

refuse to limit themselves to first-order axiomatization.

Third, even an examination of modern set theory won’t really support the first-order position we are

examining. To be sure, set theorists do make extensive use of first-order ZFC in their research. But set

theorists also think about non-first-order axioms. Zermelo’s original axiomatization of set theory was second-

order, and many of his contemporaries also made use of second-order axiomatizations.55 Further, the study

of second-order ZFC continues to be an active area of mathematical investigation, especially in connection

with large cardinal axioms (see [13], [23], and [33] for interesting surveys of this literature).

More importantly, the only reason for believing some of the axioms of first-order ZFC is because we

already believe certain (related) second-order axioms. In particular, first-order ZFC contains two “axiom

schemes” which serve to capture the principles of separation and replacement. In each case, an principle

which has a relatively natural second-order formulation gets replaced with an infinite list of (substantially

54In the case of topology, we need to go second-order to ensure that arbitrary unions of open sets wind up being open. In

the case of linear continuums, we need second-order axioms to formulate the right notion of completeness.

55For Zermelo’s axiomatization, see [68]. For evidence that Zermelo intended this axiomatization to be second-order, see [67].

For other works from the early part of the twentieth century, see [9] or [55].
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more complicated) first-order axioms.56 As far as I can see, however, the only reason to accept these first-

order axioms is because we already accept the (far more natural) second-order axioms from which they

follow. To the extent that this is right, set theorists’ mere use of first-order ZFC doesn’t show very much

about the actual content of their notion of set.57

To conclude, therefore, there is very little reason to accept the claim that the content of set-theoretic

language is captured by the first-order model theory of ZFC (even if we do accept that this content is

captured by some form of model theory). The claim is prima facie implausible, it gets no support from the

general use of axioms in mathematics, and it doesn’t even fit very well with the use of axioms in set theory.

Since it does, on the other hand, tend to lead us into problems like Skolem’s Paradox, the claim should

simply be rejected.

3.3 Conclusion

In this chapter I have looked at two objections to the analysis of Skolem’s Paradox presented in chapters

1 and 2. The first was based on a suspicion that my analysis of Skolem’s Paradox relied overly-much on a

naive acceptance of ordinary-English set theory. It bolstered this suspicion with several arguments against

ordinary-English set theory. In 3.1.2, however, we saw that this kind of argument is out of place in the

context of solving Skolem’s Paradox. Because Skolem’s Paradox purports to uncover a problem with (and

56In the case of separation, we start with the second-order axiom

∀P∀x∃y∀z[z ∈ y ←→ z ∈ x ∧ P (z)].

To make this axiom first-order, we replace it with a whole series of axioms, one for every formula φ(x̄, y) in our language. These

axioms all have the form:

∀x̄∀x∃y∀z[z ∈ y ←→ z ∈ x ∧ φ(x̄, z)].

In effect, then, we use an explicit list of formulas to replace the “∀P” in our original axiom, and we use a new axiom to take

care of each one of these formulas. A similar strategy allows us to replace the “∀R” in the natural second-order formulation of

replacement:

∀R∀x[∀y(y ∈ x→ ∃!zR(y, z)) −→ ∃x′(∀y(y ∈ x′ ↔ ∃z(z ∈ x ∧R(z, y))))].

Instances of the resulting schema look like this:

∀x̄∀x[∀y(y ∈ x→ ∃!zφ(x̄, x, z)) −→ ∃x′(∀y(y ∈ x′ ↔ ∃z(z ∈ x ∧ φ(x̄, y))))].

Clearly, however, the schemes which result from this kind of substitution are nowhere near as natural and perspicuous as the

second-order axioms for which they are substituted.

57In practice, I think set theorists like to use first-order ZFC because its proof theory is so perspicuous. In particular, the

back and forth between proof theory and model theory guaranteed by the completeness theorem, along with some powerful

methods for manipulating the models of first-order ZFC (e.g., forcing), make first-order ZFC a nice place to prove things. Since

there are no similar techniques for second-order ZFC, set theorists tend to work in the first-order realm.

On my view, then, second-order axiomatization captures the real intuitions lying behind ZFC. Since second-order ZFC entails

first-order ZFC, anything proved in first-order ZFC follows from second-order ZFC as well. So, we can use first-order ZFC for

the purposes of doing proofs—for the reasons described above—while maintaining that second-order ZFC captures our real

commitments.
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perhaps even a contradiction in) ordinary-English set theory, it is legitimate to use ordinary-English set

theory in solving that paradox. Even if there are other problems with ordinary-English set theory, these

problems are topics for another time; the mere existence of other problems does not impune my solution to

this one.

The second objection was based on a worry that I had overlooked something about the role which axioms

play in fixing the content of our notion of set. Here, I argued for three claims. First, even if axioms do fix

the content of our notion of set, there is no reason to think that they do this by means of their model theory

(and good reasons to think that they don’t do it this way). Second, even if axioms do fix the content of set

theory through their model theory, there is no reason to think that it’s their first-order model theory which

does the trick. Third, when these first two points are set alongside the fact that first-order, model-theoretic

conceptions of content tend to lead straight into Skolem’s Paradox, we obtain a fairly decisive argument for

rejecting such conceptions.

At the end of the day, therefore, the analysis of Skolem’s Paradox presented in chapters 1 and 2 stands.

There is no reason to think that reflection on other puzzles in the philosophy of set theory will dislodge this

analysis. Nor is there reason to think that reflection on the role that axioms play in mathematics will create

any difficulties. Therefore, I take my solution to Skolem’s Paradox—or, at least, to the classical forms of

Skolem’s Paradox which we have been considering—to be complete. In the next chapter, I turn to examine

a new formulation of Skolem’s Paradox, Putnam’s so-called “model-theoretic argument against realism.”
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Chapter 4

On Putnam and his Models

It is not my claim that the ‘Löwenheim-Skolem paradox’ is an antinomy in formal logic; but I
shall argue that it is an antinomy, or something close to it, in philosophy of language. Moreover,
I shall argue that the resolution of the antinomy—the only resolution that I myself can see as
making sense—has profound implications for the great metaphysical dispute about realism which
has always been the central dispute in the philosophy of language.

Hilary Putnam: Models and Reality

For the past twenty years or so, Hilary Putnam has advanced a family of arguments which go under the

patronymic “the model-theoretic argument against realism.” These arguments purport to show that basic

theorems of model theory entail that realistic accounts of truth and reference are untenable and that, as a

result, realistic metaphysics is incoherent. On the basis of these arguments, Putnam urges philosophers to

abandon traditional realism—or “metaphysical realism,” as he likes to call it—and to adopt Putnam’s own,

new-and-improved, “internal realism” instead.

In the present chapter, I discuss three issues concerning Putnam’s model-theoretic argument. First, I

examine one version of the argument—a version closely connected to the traditional Löwenheim-Skolem

paradox—and try to explain exactly how this version is supposed to work. Second, I show that a key

step in this argument rests on an outright mathematical mistake, and I discuss some of the philosophical

ramifications of this mistake. Third, I argue that, even if Putnam could get his mathematics to work, his

argument would still fail on purely philosophical grounds. At the end of the day, therefore, I conclude that

realists have little to fear from Putnam’s model-theoretic argument.

4.1 Two Preliminary Clarifications

Before I begin, two clarifications are in order. The first is terminological. As Putnam uses the term “realism,”

it refers to a doctrine which has at least as much to do with semantics as it does with ontology. To be a

“realist,” one must both accept the existence of certain objects and be committed to the claim that words

and phrases of ordinary English refer to these objects in a determinate manner. So, for instance, a realist

about cats will believe that the world is populated by cats; she will also think that the word “cat” refers to

79



(and only to) cats and that names like “Fluffy” and “Puffy” pick out specific cats in a determinate fashion.

Similarly, a realist about set theory believes in the existence of a set-theoretic universe; she also thinks that

words like “set” and “membership” refer to this universe in a determinate way.

This terminological point is important, because Putnam’s model-theoretic arguments are aimed almost

exclusively at the semantic side of “realism.” Putnam doesn’t argue that certain objects don’t exist; instead

he argues that nothing in our use of language fixes determinate reference relations between these objects and

the words and phrases of ordinary English. As a result, Putnam’s “anti-realist” conclusions really amount

to claims of semantic indeterminacy: the word “cat” could refer to cherries, the word “mat” could refer to

trees, and “set” and “membership” could refer to almost anything at all.1

Second, and as I noted in the introduction, Putnam has advanced several different versions of the model-

theoretic argument. These versions all share certain family resemblances. They all argue against realistic

accounts of truth and reference, and they all employ model theory in making their case. Nevertheless, they

differ both with respect to the exact targets of their attack and with respect to the specific model-theoretic

results they employ. On the target side, some versions of the model-theoretic argument focus exclusively

on the semantics of mathematical English, while others widen this focus to discuss the semantics of more

commonplace forms of English—e.g., ordinary talk about cats and mats, cherries and trees, flies and spiders.

On the results side, some versions of the model-theoretic argument employ the Löwenheim-Skolem theorems,

while others rely on theorems concerning the permutation of a model’s domain.

This chapter focuses on a version of Putnam’s argument which has two distinctive features: 1.) it limits

itself to the case of mathematical (and, in particular, set-theoretic) language, and 2.) it uses the Löwenheim-

Skolem theorems as its chief model-theoretic tool. In my view, this version of Putnam’s argument is fairly

1It is significant, here, that these examples all involve a fairly radical form of semantic indeterminacy. In particular, Putnam’s

candidate references for words like “cat” and “set” have essentially no connection with independently plausible stories about

the metaphysics of cats and sets. This radical indeterminacy is characteristic of Putnam’s arguments and is part of what makes

them so interesting.

To better appreciate this point, it’s worth contrasting Putnam’s arguments with arguments which make semantic indetermi-

nacy “ride piggy-back” on genuine metaphysical questions. So, for instance, we might have a genuine question as to whether

cats should be thought of as four-dimensional space-time worms or as objects which exist (in their entirety) at many different

times; similarly, we might wonder whether cats should be identified with the mereological sum of their component parts or be

regarded as something more substantial than these sums. Further, our difficulty in answering such questions might lead us to

think that there is an underlying indeterminacy in the way we use our language: perhaps there isn’t anything about our use of

the word “cat” which determines whether this word refers to space-time worms or to temporally located objects, to mereological

sums or to substantial individuals. In these cases, and in others like them, genuine indecision about the metaphysics of cats

motivates a (limited) argument for the semantic indeterminacy of the word “cat.”

Putnam’s model-theoretic arguments, in contrast, do not rely on such “metaphysical motivations,” and their conclusions are

not limited by the need to find multiple, equally metaphysically plausible, candidates for the “references” of particular words.

Instead, Putnam’s arguments purport to show that almost any object can serve as the referent of almost any word. At one

point, for instance, Putnam argues that the word “cat” could well refer to cherries and the word “cherry” to cats (see [42] ch.

2). This complete disconnect between the intuitively plausible reference(s) of our words and the reference(s) “uncovered” by

Putnam’s model-theoretic arguments is part of what makes these arguments so interesting (and so infuriating!).

80



representative: most of the philosophical issues raised by other versions of the argument are present here as

well, and most of my criticisms of this version carry over, mutatis mutandis, to these other versions. In the

present context, however, a full discussion of these comparative issues would take us too far afield; hence, I

eschew such discussion here.2

4.2 Putnam’s Argument

The version of Putnam’s argument which I want to consider occurs in the first fifteen pages of a paper

entitled “Models and Reality” ([43]). The paper begins with a short discussion of Skolem’s Paradox and

then proceeds to “spin” this paradox through three different transformations. For expository convenience, I

follow this same progression in laying out Putnam’s argument.

To begin, recall the generic formulation of Skolem’s Paradox which appeared at the beginning of Chapter

1. We began by choosing a standard, first-order axiomatization of set theory, ZFC. We then noticed that,

on the assumption that this axiomatization has a model at all, the Löwenheim-Skolem theorems entail that

it has a countable model (call this model M). Further, we saw that Cantor’s theorem—or, more properly,

the fact that ZFC proves Cantor’s theorem—entails that M contains an element m̂ such that:

M |= “m̂ is uncountable.”

Finally, we noticed that, since M itself is only countable, there are only countably many m ∈ M such that

M |= m ∈ m̂. Hence, cardinality seems to be relative: from one perspective m̂ seems to be uncountable,

while from another perspective, m̂ is clearly countable.
2That being said, let me assuage my intellectual conscience by making three brief points concerning the significance of this

version of Putnam’s argument. First, it is clearly the most widely accepted version of this argument. Critics like David Lewis and

Michael Devitt have sharply criticized other versions of the argument, but they have focused on aspects of those versions which

are not present in the version examined here (in particular, they have focused on those versions’ treatment of non-mathematical

language). More tellingly, several prominent philosophers—notably, Hartry Field and Crispin Wright—have explicitly endorsed

the present version of the model-theoretic argument, while rejecting Putnam’s other versions of this argument (see [17] and

[65]).

Second, the fact that this version of Putnam’s argument deals only with mathematical language renders it immune to

challenges based on the “causal theory of reference” and/or simple demonstratives. In the case of talk about cats, we might

think that causal interactions between people and cats help to constrain our theory of reference; similarly, we might think that

our ability to point to cats while saying “that’s a cat” partially determines the reference of “cats.” In the case of mathematical

talk, however, such considerations play no role: there aren’t any causal interactions between people and ℵ1, and no one could

point to the powerset of ℵ37. Indeed, as Paul Benacerraf has noted, the causal theory of reference poses its own problems for

realism about mathematics (see [2]).

Third, because this version of Putnam’s argument employs the Löwenheim-Skolem theorems—rather than theorems about

the permutation of a model’s domain—it is immune to an obvious response from mathematical structuralists. Without going

into any of the details, suffice it to say that structuralists should have no objection to Putnam’s permutation arguments: indeed,

they may even think that these arguments support a certain kind of mathematical realism. On the other hand, no structuralist

should be happy with the conclusions of Putnam’s Löwenheim-Skolem argument. As a result, this version of Putnam’s argument

packs a stronger “punch” than other versions do.
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Putnam begins his analysis of this paradox by noting that, whatever it might show about the countability

or uncountability of m̂, the paradox highlights the fact that ZFC has many different models.3 Further, these

models interpret many of the central definitions of classical set theory in structurally different ways. Some

models satisfy “m is uncountable” only if m really is uncountable, while other models (like the M above)

satisfy “m is uncountable” even when m is really countable. Similarly, some models satisfy sentences like

“m is finite” or “m is the power set of n” if and only if m really is finite or really is the power set of n, while

other models satisfy these sentences under (quite) different circumstances. Therefore, to the extent that the

meanings of phrases like “is countable,” “is finite” and “is the power set of” are fixed only by the model

theory of first-order set theory, these phrases will be semantically indeterminate.

To put this point using Putnam’s own terminology, Skolem’s Paradox shows that it is impossible to pin

down the “intended interpretation” of our set-theoretic vocabulary simply by means of (first-order) axioms.

Further, Putnam thinks it is highly unlikely that anything other than axioms could make this situation

better: “but if axioms cannot capture the ‘intuitive notion of set’ what possibly could?” ([43], 3) We have,

therefore, a preliminary version of Putnam’s argument:

1. Axioms cannot fix the intended interpretation of set theory.

2. Nothing other than axioms can fix the intended interpretation of set theory.

So, 3. Set-theoretic language is semantically indeterminate.

Here premise 1. follows—or is supposed to follow—from the Löwenheim-Skolem theorems, while premise 2.

is just an undefended assumption. Finally, the conclusion (line 3.) is the specialization of Putnam’s general

anti-realism to the particular case of set theory.

Next, Putnam tries to parlay the semantic indeterminacy of set-theoretic language into more specific

indeterminacies regarding the truth-values of set-theoretic sentences. He writes: “If I am right, then the

‘relativity of set-theoretic notions’ extends to a relativity of the truth value of ‘V = L’ (and, by similar

arguments, of the axiom of choice and the continuum hypothesis as well)” ([43], 7-8). Putnam’s idea here is

simple. It is a result of modern set theory that V = L is “independent” of ZFC—that, on the assumption

that ZFC itself is consistent, so are ZFC + V=L and ZFC + V 6= L. Hence, if the intended model of set

theory is fixed only by the axioms of ZFC—and if there is, in fact, some such intended model—then there

is an intended model in which V = L is true and another one in which V = L is false.4

Finally, Putnam tries to show that, where axiomatics fail us, physical science cannot pick up the slack.

In particular, physical science cannot fix a unique “intended interpretation” for the vocabulary of set theory,

nor can it restrict such interpretations so as to eliminate the indeterminacy in truth-values of set-theoretic

sentences. Now, at first glance, this last argument may seem somewhat unmotivated: how, after all, could

3Assuming, of course, that ZFC has at least one model to begin with.

4More formally, the fact that ZFC has a model entails that ZFC is consistent. From here, the independence of V = L entails

that both ZFC + V=L and ZFC + V 6= L are also consistent. So, by completeness, both ZFC + V=L and ZFC + V 6= L have

models. For more on the independence of V = L (and the axiom of choice and the continuum hypothesis), see [26] or [30].
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physical science affect the interpretation of basic set-theory? Later glances, however, reveal that Putnam

has a reason for concern here, and that this reason is closely connected with his goal of proving that V = L

has an indeterminate truth-value.

Suppose that we have constructed a machine which takes a measurement—of something, it doesn’t matter

what—every three or four seconds. Suppose also that this machine gives a reading of 1 or 0 depending on

the results of its measurements. Finally, suppose that this machine manages to run for an infinite period of

time and (so) produce an infinite sequence of measurements. In theory, then, the sequence of ones and zeros

which results from these measurements could “code up” some non-constructable set—i.e., some set which

lives in V but not in L. In this case, it might seem like nature itself has managed to falsify the hypothesis

that V = L. This possibility is why Putnam thinks he needs an explicit argument regarding the impact of

physical science on the interpretation of set theory (at least, that is, if he wants to continue to maintain his

claim that sentences like “V = L” have indeterminate truth values).

Putnam’s explicit argument involves modifying and defending each of the two premises in the “prelim-

inary” argument sketched a moment ago. He begins with the first premise of this argument, and modifies

it to care of the quasi-empirical concerns mentioned in the last paragraph. His principle tool here is the

following extension of the Löwenheim-Skolem theorem (see, [43] 6):

Theorem 1: ZF plus V=L has an ω-model which contains any given countable set of real numbers.

Given this theorem, Putnam argues as follows. Let OP be a countable collection of real numbers which codes

up all of the measurements human beings will ever make. By Theorem 1, there is a model of ZF + V=L

which contains OP (or, at least, a formal analog of OP). Since this model satisfies ZFC it must be an

“intended model”; since it both satisfies V = L and contains OP, it takes care of the measurement problem

from the last paragraph. Hence, Putnam’s problem with physical science seems to be solved.

Further, Putnam thinks this particular problem is the only problem with physical science that needs to

be solved—i.e., the only problem that might impede his project of finding a model which both takes physical

science into account and satisfies the axiom V = L. Putnam writes:

Now, suppose we formalize the entire language of science within the set theory ZF plus V = L.
Any model for ZF which contains an abstract set isomorphic to OP can be extended to a model
for this formalized language of science which is standard with respect to OP ; hence. . . we can find
a model for the entire language of science which satisfies ‘everything is constructable’ and which
assigns the correct value to all physical magnitudes ([43] 7).

Thus, as long as the only constraints on the interpretation of our set-theoretic vocabulary come from the

formal structure of our scientific theories (including the explicit axioms of our set theory) and from the

physical measurements we happen to make, there will be an interpretation of set theory on which V = L

comes out true. On the flip side, Putnam simply assumes that there will be some interpretation of our set

theory—again, an interpretation compatible with the rest of our scientific theories and with all the physical

measurements we might ever happen to make—on which V = L comes out false.5

5Putnam makes this assumption for two reasons. From a dialectical perspective, Putnam takes himself to be arguing
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This, then, gives us a revision of the first premise in Putnam’s “preliminary” argument. If we let

“theoretical constraints” refer to the set of sentences which provides our best theory of the world—i.e., our

best physical theory together with our standard axioms for set theory—and if we let “operational constraints”

refer to all the measurements we might ever happen to make, then we obtain:

1′. Theoretical and operational constraints do not fix a unique “intended interpretation”
for the language of set theory.

Putnam also accepts the obvious analog of premise 2. in our “preliminary” argument. His reasons for

accepting this premise will be discussed in section 4.4. For now, let me simply lay out the remainder of his

argument:

2′. Nothing other than theoretical and operational constraints could fix a unique “intended
interpretation” for the language of set theory.

So, 3′. There is no unique “intended interpretation” for the language of set theory.

Finally, because different, equally “intended,” interpretations of set theory disagree on the truth value of

V = L, there simply is no determinate truth value for this sentence: it is, in Putnam’s words, “just true in

some intended models and false in others” ([43] 5).

This, then, is the overall structure of Putnam’s argument. The goal is to show that set-theoretic lan-

guage is semantically indeterminate. To reach this goal, we first note that the axioms of set theory do not

determine a unique interpretation for set-theoretic language. Next, we observe that throwing in scientific

information—e.g., the physical theories and measurements which fill out Putnam’s “theoretical and opera-

tional constraints”—does not improve the situation. Hence, to the extent that the “intended interpretation”

of set-theoretic language is determined by theoretical and operational constraints, there will be many differ-

ent “intended interpretations” of set theory. Finally, we notice that these different “intended interpretations”

disagree on the truth value of sentences like V = L, and we conclude that these truth values are, themselves,

indeterminate.

4.3 The Mathematics of Premise 1

In this section, I slow down and examine more carefully the details of Putnam’s mathematics. My main

theses are straightforward. I argue 1.) that Putnam’s proof of Theorem 1 is mistaken, 2.) that this mistake

cannot be “patched up” without weakening the overall force of Putnam’s argument, and 3.) that even the

weakened version of Putnam’s argument leaves the realist with some significant problems.

against Gödel. Gödel thought there was a unique “intended interpretation” of set theory and that V = L was false on this

interpretation. Hence, the existence of an intended model satisfying V 6= L isn’t really at issue in this context.

From a somewhat deeper perspective, it’s fairly easy to start with a model which does satisfy V = L and expand it to one

which does not (and to preserve nice properties like “being an ω-model” in the process). It’s substantially more difficult to start

with a model which does not satisfy V = L and expand it to one which does. This is undoubtedly the main reason Putnam

puts so much effort into obtaining a model which satisfies V = L and so little into obtaining one which satisfies V 6= L.
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To begin, consider Putnam’s proof of Theorem 1. The theorem says that if X is a countable collection

of real numbers, then there exists an ω-model, M , such that M |=ZF+V=L, and M contains an “abstract

copy” of the set X. Putnam’s proof begins by noting that, in the special case in which we allow M to be

countable, we can code both M and X by single reals. In this case, the theorem can be formulated as a Π2

sentence of the form: (For every real s) (There is a real M) such that (. . .M, s, . . .). From here, Putnam

argues as follows:

Consider this sentence in the inner model V = L. For every s in the inner model—i.e., for every
s in L—there is a model—namely L itself—which satisfies ‘V = L’ and contains s. By the down-
ward Löwenheim-Skolem theorem, there is a countable submodel which is elementarily equivalent
to L and contains s. (Strictly speaking, we need here not just the downward Löwenheim-Skolem
theorem, but the ‘Skolem Hull’ construction which is used to prove that theorem.) By Gödel’s
work, this countable submodel itself lies in L, and, as is easily verified, so does the real that codes
it. So, the above Π2-sentence is true in the inner model V = L.

But Shoenfield has proved that Π2-sentences are absolute: if a Π2-sentence is true in L, then it
must be true in V. So the above sentence is true in V. ([43] 6)

Ironically enough, the problem with this “proof” involves Putnam’s application of the Löwenheim-Skolem

theorem. The “short version” of the problem is quite simple: the downward Löwenheim-Skolem theorem

applies only to structures which have sets for their domains, and L—the structure to which Putnam applies

the downward Löwenheim-Skolem theorem—doesn’t have a set for its domain. Hence, Putnam cannot

(legitimately) use the downward Löwenheim-Skolem theorem to obtain “a countable submodel which is

elementarily equivalent to L and contains [the real] s.” Without this submodel, Putnam cannot ensure that

L satisfies the Π2 sentence which he needs it to satisfy; hence, he cannot apply Shoenfield absoluteness to

“reflect” this sentence up to V. In the absence of this countable submodel, therefore, Putnam’s overall proof

simply collapses.6

6The “long version” of this problem simply expands the “short version” with a fair bit of terminological clarification. To

begin, set theorists typically distinguish between sets and proper classes. Roughly, sets are classes which are “small enough”

to be members of other classes, while proper classes are classes that are “too big” to count as sets. Examples of sets would

include ∅, ℵ0, and the power set of N. Examples of proper classes would include the class of all sets, the class of all ordinals,

and the class of all countable sets. Most pertinently, the class of all constructable sets—i.e., L—is a proper class.

It is important here, for reasons which will become clear shortly, that that proper classes are usually required be definable.

That is, for some formula in the language of set theory, φ(x, y1, . . . , yn), and some sequence, a1, . . . , an, of sets, we can consider

the class of all sets b such that φ(b, a1, . . . , an) is true. To insist that proper classes be definable is to insist that all classes be

picked out by a formula of this kind.

Second, we need to distinguish between two interpretations of the terms “model” and “satisfaction.” In ordinary model

theory, the term “model” refers exclusively to structures which have sets for their domains. In turn, the “satisfaction” relation

is defined as a relation between sets—i.e., between the sets which constitute the domain (and relations) of a model and those

which code up the formulas of our language.

Set theorists often use the terms “model” and “satisfaction” somewhat differently. They often speak of “class models” when

they want to refer to proper classes in which certain collections of sentences hold, and they often use “satisfaction” to refer to

the fact that certain sentences become true when their quantifiers are relativized to a proper class—i.e., when they are explicitly

relativized using the formula which defines the class in question (see above). It is in this latter sense, for instance, that Putnam

refers to “inner models.”
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4.3.1 Five Technical Comments

Before I discuss the philosophical ramifications of the failure of Putnam’s proof, I want to make five technical

comments about the failure itself. First, Putnam’s proof is not saved by his qualification: “Strictly speaking,

we need here not just the downward Löwenheim-Skolem theorem, but the ‘Skolem Hull’ construction which

is used to prove that theorem.” To be sure, the Skolem Hull construction allows us to prove so-called

“reflection” theorems in which some finite collection of sentences is “reflected” from a proper class to a set.

That is, if we start with a proper class which “satisfies” some finite collection of sentences, then the Skolem

Hull construction lets us find a countable set which satisfies the same collection of sentences.7 However, this

construction only works when when we try to reflect finite collections of sentences. In particular, then, it

does not allow Putnam to reflect the infinite collection, ZF + V = L.

Second, there is nothing particularly surprising about the fact that Putnam’s proof fails. Leaving aside

the details of this proof, consider just the form of Theorem 1: for any countable set of reals X, there is

an ω-model M , such that M |= ZF+V=L and X ∈ M . Now, since any model of ZF + V=L is also a

model of ZFC, Theorem 1 entails that there is a model for ZFC. And since this, in turn, entails that ZFC

is consistent, Theorem 1 also entails that ZFC is consistent.

However, by Gödel’s second incompleteness theorem, the consistency of ZFC cannot be proved from

within ZFC itself (assuming ZFC is consistent). As a corollary, then, Theorem 1 cannot be proved in ZFC.

Therefore, we should not be surprised to find that there is a mistake in Putnam’s proof: Putnam’s proof

must be mistaken, because Theorem 1 can’t be proved using the set theory with which Putnam is working.

Unless Putnam is willing to adopt some stronger set theory, his overall argument is bound to fail.8

For our purposes, the key fact concerning all this terminology is the following: the Löwenheim-Skolem theorems apply to set

models, but they do not apply to class models. Hence, we cannot use the downward Löwenheim-Skolem theorem to find an

elementary submodel of some class model of ZF. In particular, Putnam cannot use the downward Löwenheim-Skolem theorem

to find a (countable) model which is elementarily equivalent to L.

Given this, Putnam faces a dilemma. On the one hand, if he intends the term “model” to refer to set models, then his

proof goes wrong when he says: “for every s in L—there is a model—namely L itself—which satisfies ‘V = L’.” For, since L

is not a model at all, it is not a model satisfying ZF + V = L. On the other hand, if Putnam intends the term “model” to

refer both to set models and to class models, then he can legitimately call L a “model.” But even then, he cannot apply the

downward Löwenheim-Skolem theorem to this model. On either hand, then, Putnam’s proof is mistaken. Whichever way the

term “model” gets defined, Putnam’s proof requires that we apply the downward Löwenheim-Skolem theorem to L; as we have

seen, this is just not possible.

7Here, we have an example of a legitimate shift between the two uses of “satisfies” that I mentioned in the last footnote.

8In conversation, several people have suggested that Putnam might not be working in ZFC in the first place—i.e., that he

might already be working in some stronger form of set theory. But, while this suggestion helps to save Putnam’s mathematics,

it faces two major difficulties. The first is textual: Putnam’s entire paper is about ZFC, and throughout the paper Putnam

writes as though ZFC is the obvious set theory in which to work. Hence, it would be strange to find that Putnam’s entire

argument rests on an (utterly unmentioned) version of set theory which Putnam keeps hidden in the background. The second

difficulty is philosophical: for reasons which will be discussed shortly, working with a stronger set theory would not, in the long

run, save Putnam’s argument (although it might, in the short run, allow Theorem 1 to be proved properly).
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Third, Putnam’s proof is relatively easy to “patch up.” If Putnam is willing to adopt a stronger set

theory, then he can easily salvage his theorem (and, for the most part, his proof). So, for instance, if

Putnam were willing to accept the existence of inaccessible cardinals, then his proof could be reconstituted

with only minor modifications.9 Similarly, if Putnam were willing to extend ZFC with a collection of axioms

governing the behavior of proper classes, then he could probably prove “full reflection theorems” which would

allow him to obtain (elementary) submodels of proper classes like V and L; this would, once again, allow

him to reconstitute the essentials of his original proof. In either case, therefore, a slight strengthening of

Putnam’s background mathematics allows Putnam to save his proof from the problem discussed above.

Fourth, although these “patching strategies” allow Putnam to salvage his proof, they do very little

towards salvaging his overall philosophical argument. Very roughly, patchings of the type just mentioned

leave Putnam’s critics with two fairly obvious lines of response. On the one hand, some philosophers might

reject Putnam’s argument simply because they reject his new mathematics. Whereas ZFC is a relatively

widely-accepted axiomatization of set theory, the extensions discussed above are less-widely accepted. Hence,

a philosopher (or mathematician) who has reservations about inaccessible cardinals and/or strong class

axioms might well reject Putnam’s new argument just because it employs this extra mathematics. Indeed,

such a philosopher might even think that she has been given new reasons for rejecting Putnam’s extra

mathematics: “if Putnam’s new math generates arguments for semantic indeterminacy, then so much the

worse for Putnam’s new math.”

On the other hand, even philosophers who do accept Putnam’s strengthened mathematics—say, those

who accept the axiom of inaccessible cardinals—have ample grounds for rejecting Putnam’s overall argument.

In particular, they should reject Putnam’s claim that his model M—the model guaranteed by Theorem 1—

satisfies “all theoretical constraints.” Since Theorem 1 does not guarantee that M satisfies the sentence

“there exists an inaccessible cardinal,” M may not even satisfy the “theoretical constraints” imposed by set

theory. Contra Putnam, then, there is no reason to think that M provides an “intended interpretation” for

set-theoretic language.

Recall, here, the philosophical point of Putnam’s theorem. Putnam wants a model of ZF + V=L which

“satisfies all theoretical constraints. . . [and] all operational constraints as well” ([43] 7). His theorem is

supposed to provide such a model (where the theory of the model takes care of “theoretical constraints” and

some countable collection of real numbers takes care of “operational constraints”). With this model in hand,

Putnam tries to argue that V = L is true in the (or at least in an) intended model of set theory.

My point is simply this: if our working set theory is stronger than ZFC—because we accept inaccessible

cardinals, or class axioms, or whatever else is needed to patch up Putnam’s proof—then it’s hard to see

how Putnam’s theorem accomplishes its goal. Given that we accept more mathematics than ZFC, this new

9To see this, let κ be the inaccessible cardinal in question. At the point in Putnam’s proof where he claims that L is a model

for ZF + V=L and that L contains the real s, Putnam can simply argue that Lκ is a model for ZF + V=L and that Lκ contains

the real s. Since Lκ really is a set model for ZF + V=L, Putnam can proceed to apply the downward Löwenheim-Skolem

theorem to obtain his desired model M . From here, Putnam’s proof proceeds just as before.
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mathematics should count as part of our “theoretical constraints.” Thus, it’s not enough for Putnam to

build a model which satisfies ZF + V=L; Putnam needs a model which satisfies ZF + V=L plus whatever

else we happen to have added to ZFC. Since Putnam’s theorem does not, so far as we know, provide a model

satisfying this extended theory, it doesn’t do what Putnam wants it to do.

Fifth, this problem is intrinsic to the kind of argument Putnam wants to make. Returning again to the

incompleteness theorem, we note that there is no way for Putnam to both 1.) use a particular axiomatization

of set theory (say, ZFC + XYZ) as his background set theory and 2.) prove the existence of a model satisfying

ZFC + XYZ +V=L. Hence, whatever version of set theory Putnam winds up working in, he will be unable

to tailor his overall argument so as to take care of the “theoretical constraints” this version imposes.

As a result, Putnam faces an inescapable dilemma. If he pitches his argument towards philosophers

who accept less set theory than he himself does, then these philosophers will reject his argument simply

because they reject the set theory used in proving Putnam’s key theorem. If he pitches his argument towards

philosophers who accept the same set theory that Putnam does, then his argument can’t take care of these

philosopher’s “theoretical constraints.” At the end of the day, therefore, no philosophers will have adequate

grounds for accepting Putnam’s model-theoretic argument.10

This, therefore, gives us a first, and essentially technical, response to Putnam’s argument. Putnam’s

argument depends on a key theorem which Putnam is not in a position to prove. Nor, for reasons relating

to Gödel’s second incompleteness theorem, can he place himself in such a position without jeopardizing the

very philosophical point which his theorem is supposed to support. In short: the mathematical mistake

which we discussed at the beginning of this section is one which cannot be fixed without undercutting the

model-theoretic argument as a whole.

4.3.2 Two Philosophical Comments

How strong is this argument which I have just sketched? Unfortunately, much as I like the argument, I’m

afraid the answer is: “not very.” On the positive side, the argument shows that Putnam cannot conclusively

prove that set theory is semantically indeterminate. That is, if we want Putnam to stand toe-to-toe with

the realist and prove that semantic anti-realism is true, then the argument of the last section shows that he

cannot do it.11

In addition, the argument provides what I like to call the “cocktail party” response to the skeptic. Here,

the realist simply demands that Putnam prove that “unintended interpretations” of set theory really exist.

If Putnam uses some non-ZFC mathematics to give his proof, the realist professes to disbelieve this new

mathematics. If Putnam then gives reasons for accepting the new mathematics, the realist readily accepts

10Note that this argument is not specific to the search for a model satisfying V = L; it works equally well against attempts

at finding models for ZFC±CH or ZF±C. Indeed, when framed as a simple incompleteness problem, it even applies to the

“plain vanilla” version of Putnam’s argument which merely tries to obtain structurally dissimilar models of ZF.

11At least, not using the kind of argument which we have so-far been examining.
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those reasons (and the new mathematics), but she then questions whether her (newly acquired) “theoretical

constraints” have really been met. At no point in the resulting dialectic will Putnam obtain the upper hand,

so our realist can leave the party in relatively good spirits.

Unfortunately, this “cocktail party” response is better suited to APA smokers than to a serious analysis

of the model-theoretic argument. For, even if Putnam can’t get himself into the right dialectical position

to prove semantic indeterminacy, he has clearly given the right kinds of arguments to raise the possibility

of such indeterminacy. Suppose that premise 2′ in Putnam’s argument is correct. Then the only way for

set-theoretic language to be semantically determinate is for there to be a unique model satisfying all of our

“theoretical and operational constraints.” To the extent that other such models happen to exist, set theory

winds up being semantically indeterminate.

In this context, then, the mere fact that Putnam cannot prove his central theorem—or whatever exten-

sions of this theorem are needed to take care of our theoretical constraints—provides very little comfort. If

the technical response to Putnam’s argument is all we have to go on—if, that is, we are willing to accept

premise 2′ and to rest our challenge to premise 1′ solely on the considerations discussed above—then realism

depends on the mere hope that Putnam’s non-standard models don’t happen to exist. This not much to

stake an entire metaphysics on!12

All that being said, this argument clearly depends on the assumption that premise 2′ is true. If it not,

then the existence of non-standard models for our “theoretical and operational constraints” is considerably

less troubling. It is high time, therefore, that we turn and examine premise 2′.

4.4 The Philosophy of Premise 2

Although premise 1′ of Putnam’s model-theoretic argument has attracted a great deal of attention in the

literature, it should be fairly clear that premise 2′ is where the real philosophical action takes place. For one

thing, premise 1′ only eliminates one possible method for fixing the intended interpretation of set theory;

premise 2′ tries to eliminate all other methods in one fell swoop. For another thing, most of the methods

which have actually been proposed for fixing the intended interpretation of our language—e.g., causation in

the case of other versions of the model-theoretic argument and set-theoretic “perception” in the case of the

present version (see, [11] and [32])—clearly fall under premise 2′ rather than premise 1′. Hence, 2′ is the

premise which warrants the most sustained philosophical attention.

In this section, I consider three arguments which Putnam might use to defend premise 2′. The first

two arguments have played only a minor role in Putnam’s own discussions of the model-theoretic argument,

but I think they shed a great deal of light on that argument’s overall structure. In particular, I think they

12Note, for instance, that we have to hope that there are no large cardinals which are stronger than the ones explicitly

mentioned in our “theoretical constraints.” Leaving large cardinals aside, we have to hope that a great many small models of

set theory just happen to be left out of the set-theoretic universe. And, while this is certainly a consistent hope, that’s about

all that can be said for it.
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highlight, if only through their failures, exactly what Putnam needs to do if he wants to give a philosophically

substantial defense of premise 2′. The third argument—the so-called “just more theory” argument—has

played a large role in Putnam’s own writings (and has received an enormous amount of attention in the

recent literature). In 4.4.3–4.4.4, I explain what’s wrong with this third argument, and in 4.5, I discuss some

connections between the failure of this argument and the more technical failures discussed in section 4.3.

4.4.1 The No-Explanation Argument

The first argument—which I shall call the “no-explanation” argument—is Putnam’s most straightforward

defense of premise 2′. Although the argument does not appear in Putnam’s original development of the

model-theoretic argument, Putnam has recently started to use it as something something of a fall-back

position. Further, this argument is regarded as the key to the model-theoretic argument by at least one

(friendly) commentator on Putnam.13

The no-explanation argument rests on two observations. First, realists need a plausible account of how

mathematical language refers to mathematical objects. If we maintain that the truth of “ℵ0 < ℵ1” depends

on the fact that ℵ0 is smaller than ℵ1, then we need an account of how “ℵ0” is related to ℵ0 and “ℵ1” is

related to ℵ1. Indeed, even if we simply maintain that there is an objective fact of the matter concerning

the truth-value of “ℵ0 < ℵ1,” we need some story to explain this objectivity.

Second, realists have yet to provide a plausible account of how reference to mathematical objects is

supposed to work. Although such an account is necessary for realism, and although this necessity has been

obvious for some time, no attractive candidates (at least by Putnam’s lights) have yet been put forward.

Hence, until such candidates are forthcoming, we should give (at least provisional) support to premise 2′. In

short: the need for an explanation of mathematical reference, combined with the lack of a good suggestion

as to how such an explanation might go, leads to the thought that no explanation is possible.14

13See [45] for Putnam’s use of this argument as a fall-back position. See [1] for a recent discussion of the argument and for a

defense of the view that this argument is central to Putnam’s overall project.

14It is worth noting that the no-explanation argument can be supplemented by more detailed arguments against specific

realistic proposals. In Putnam’s case, this supplementation comes in two varieties: insults and substantial arguments against

the causal theory of reference. On the insults side, Putnam gets a fair bit of mileage out of sounding incredulous when various

reference-fixing mechanisms are proposed. Platonistic accounts of “grasping concepts” and “intuiting mathematical objects”

are rejected as “unhelpful as epistemology and unpersuasive as science” ([43] 10). Similarly, Chisholm’s account of intentionality

is rejected as “unhelpful epistemology and almost certainly bad science as well” ([43] 14). Finally, David Lewis’ appeal to the

theory of universals is dismissed as “medieval” ([44] xii), and causal theories of reference are derided as follows:

In the context of a twentieth-century world view, to say in one’s most intimidating tone of voice ‘I believe that
causal connections determine what our words correspond to’ is only to say that one believes in a one-knows-not-
what which solves our problem one-knows-not-how. ([44] xii )

On the more substantial side, Putnam has presented a number of detailed arguments against the causal theory of reference (see

[40], [44] essays 11–13, and [45]). If these arguments were correct, then they would show that one particular mechanism for

fixing the reference of our language does not work. However, since the causal theory is largely irrelevant to the (mathematical)

languages at issue in this chapter, and since ruling out a particular account of reference doesn’t really suffice to establish 2′, I

will say no more about these (admittedly more substantial) arguments here.
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At it heart, this no-explanation argument amounts to a (relatively well-motivated) case of burden-

juggling. Putnam claims that it’s up to realists to provide an adequate semantics for mathematical language.

Until realists can meet this burden, we should default to the view that mathematical language has no fixed

semantics (or, at least, that its semantics are no more fixed then “theoretical and operational constraints”

can ensure). What’s more, realists’ historical failure to provide an account of mathematical language which

even comes close to meeting this burden, should lead us to think that our “default” position is actually

pretty solid.

Unfortunately, this kind of burden-juggling suffers from two fairly obvious flaws. First, it really amounts

to more of a theoretical challenge to realists than to a genuine argument against realism. Although the

no-explanation argument highlights a particular problem which realists need to solve—and notes that this

problem has not yet been solved—the argument does nothing towards showing that the problem can’t be

solved. That is, the argument gives no positive reasons for thinking that realists can’t, in the long run, explain

the mechanisms that fix the interpretation of set theory, and it certainly gives no reasons for thinking that

such mechanisms fail to exist.

It is important, here, to recall the strength of the claims that Putnam’s model-theoretic argument is

supposed to defend. Putnam’s argument is intended as a defense of claims like the following:

The idea that it is something other than operational and theoretical constraints that singles out
the right reference relation . . . is an incoherent idea. ([45], 215)

The supposition that even an ‘ideal’ theory (from a pragmatic point of view) might really be
false appears to collapse into unintelligibility. ([41], 126)

The ‘Löwenheim-Skolem paradox’ is an antinomy, or something close to it, in philosophy of
language. ([43], 1)

The no-explanation argument, however, doesn’t support all this talk of “incoherence,” “unintelligibility” and

“antinomy.” At best, it supports talk of “puzzles yet to be solved” and “phenomena yet to be explained.”

This talk, however, is very different (and substantially weaker) than the talk which Putnam’s model-theoretic

argument was originally supposed to defend.

Second, the no-explanation argument is not even remotely model-theoretic. No model-theoretic insight

is involved in either of the two observations on which the argument depends. Nor does model theory

play any role in explaining how these observations provide prima facie evidence for 2′. Thus, the no-

explanation argument can be presented in its entirety without invoking any model theory. As Putnam’s

overall argument is supposed to be deeply model-theoretic, this lack of model-theoretic entanglement is

somewhat embarrassing.

Of course, Putnam’s argument for 1′ is still model-theoretic. But, as I have already noted, the argument

for 2′ is where the real meat of Putnam’s argument has to lie; hence, using model theory in defense of 1′

is simply not enough. This is particularly true given that no one has ever adopted the kind of “implicit

definition” account of reference-fixing which 1′ purportedly rules out. If no one accepts the account of

reference-fixing which Putnam’s model theory rules out, and if model theory plays no role in eliminating any
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other accounts of reference-fixing, then it’s hard to see why Putnam’s overall argument should really count

as “model-theoretic.”

The situation here can be compared to one in which a philosopher gives an “astronomical argument

against realism.” After some careful work with his telescope, this philosopher claims to have refuted the

hypothesis that little green men from Mars fix the reference of human language.15 Good astronomy, after

all, shows that martians don’t exist! This philosopher could then go on to endorse the obvious analog of

premise 2′ in Putnam’s argument: “nothing other than martians could possibly fix the reference of human

language.” If challenged on this premise, our philosopher could defend it by appealing to Putnam’s own

no-explanation argument.16

Clearly, however, the resulting argument would not be attractive to philosophers. Even more clearly, it

wouldn’t deserve the name “the astronomical argument against realism.” The astronomy in this argument

serves only to eliminate a hypothesis which no one has ever taken seriously (or even proposed as a joke!);

all the philosophical work takes place in a completely non-astronomical portion of the argument. The same,

then, holds of Putnam’s argument. Since no one has ever proposed the account of reference-fixing that

premise 1′ rules out, the philosophical work in Putnam’s argument must live entirely in his defense of 2′.

If Putnam defends 2′ using the no-explanation argument, then his overall argument will wind up being no

more model-theoretic than the argument above was astronomical.17

To summarize: the no-explanation argument is simply a philosophical optical illusion. It purports to

provide a model-theoretic argument against the very coherence of realism. It actually provides no argument

against realism per se, and it uses model theory only to refute a proposal which no one ever has (or, in

my view, was ever likely to) put forward. Hence, if the no-explanation argument is the only defense of

premise 2′ that Putnam has to offer, then Putnam’s overall model-theoretic argument fails—and fails rather

spectacularly—to live up to its advance billing.

All that being said, the no-explanation argument does have one real virtue: it makes explicit just what

Putnam needs to do to if he wants to give a genuine defense of premise 2′. First, he need an argument which

provides positive reasons for thinking that realists can’t explain the mechanisms which fix the reference of

mathematical language (or, even better, an argument which shows outright that no such mechanisms exist).

Second, he needs to ensure that this argument makes intrinsic use of model theory (to avoid being classed

with the “astronomical argument” above). Only if Putnam can meet these two conditions will he have a

defense of premise 2′ which allows his overall model-theoretic argument to work “as advertised.”

15For the purposes of this example, it doesn’t matter how the martians are supposed to do this. Perhaps they look very

quickly from the people using a bit of language to the things to which that language refers. Perhaps they have direct contact

with the denizens of Frege’s third realm, and they use this contact to help us in our linguistic endeavors.

16The no-explanation argument, after all, says nothing about the particular hypothesis ruled out by premise 1′. It simply

notes that none of the stories about reference-fixing which realists have actually proposed have managed to stand up to careful

philosophical scrutiny. Hence, it can be deployed in conjunction with almost any variation on Putnam’s 1′.

17Actually, given the similarities in these two arguments’ overall structure, I think they should probably be taken equally

seriously. I don’t, however, find the astronomical argument compelling.
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4.4.2 If axioms can’t. . .

But if axioms can’t fix the intended interpretation of set theory, what possibly could?

Hilary Putnam: Models and Reality

A second way that Putnam might argue for premise 2′ is through reflection on the role that axioms play

in formalizing and clarifying mathematical notions. Very roughly, Putnam could try to show that there is

something about the way mathematicians use axioms which makes the kind of “implicit definition” at issue

in premise 1′ the most likely candidate for fixing the intended interpretation of set-theoretic language. He

could then use the relative unlikeliness of other candidates to give some support to premise 2′.

Since I have already discussed the role of axioms in mathematics in some detail in section 3.2, and since

Putnam does not elaborate on his own reasons for focusing on axioms as much as he does, I will avoid a full

rehash of these matters here.18 Instead, I will simply highlight two reasons why this kind of argument might

prove attractive to Putnam. I will then examine what I take to be the most pressing problem for this kind

of argument in the context of Putnam’s overall project.

To begin, one reason that Putnam might like this kind of argument is because it clearly meets the two

conditions laid down at the end of the last section. If Putnam can show that treating axioms as implicit

definitions is the best way to fix the intended interpretation of set-theoretic language, then he will have

satisfied condition 1. Further, since any discussion of implicit definitions will have to focus fairly heavily on

model theory—e.g., in giving its analysis of what implicit definitions are and how they work—condition 2

will be satisfied as well.

A second reason that Putnam might like this kind of argument is because it has the potential to persuade

philosophers who remain unpersuaded by other versions of Putnam’s argument. In particular, philosophers

who object to Putnam’s extension of the model-theoretic argument to the case of non-mathematical language

might find the present defense of premise 2′ somewhat reassuring. If the best reasons for accepting 2′ involve

reflection on the role of axioms in mathematics, then it’s fairly clear why these reasons don’t generalize to

non-mathematical cases. Even if there are strong similarities between the ways reference gets fixed in the

mathematical case and the ways it gets fixed in non-mathematical cases, these similarities will not involve

the (unusually large) role which axioms play in mathematics.19

These, then, are two reasons why a focus on axioms might prove attractive to Putnam. Unfortunately,

however, there are serious difficulties with the idea that the axioms of set theory serve to provide “implicit

definitions” for the vocabulary of set theory (see 3.2.2–3.2.4). Further, at least one of these difficulties

highlights a real problem for Putnam’s overall project (i.e., not only for the “if axioms can’t. . . ” defense of

18Readers who may desire such a discussion should consult section 3.2 directly.

19I’m not sure that this second point sheds much light on Putnam’s own reasons for discussing the role of axioms in math-

ematics. Clearly, the project of distinguishing different versions of the model-theoretic argument (with the express goal of

rejecting at least some of them!) will not prove attractive to Putnam. Nevertheless, it will prove attractive to many other

philosophers, so it warrants at least some mention here.
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premise 2′, but also for the more general line of reasoning in the model-theoretic argument as a whole). To

get this problem on the table, we need to begin by recalling just how many different kinds of background

semantics can be used to provide a “model-theory” for the axioms of set theory.

For convenience—and since I have already discussed some of this material in 3.2.4—I will focus here only

on three broad classes of background semantics: trivial semantics, rich semantics and standard first-order

semantics. A trivial semantics connects axioms to models in a manner which preserves little, if any, of our

ordinary understanding of what the axioms in question mean (and, more importantly, of how they manage

to mean this). So, for instance, suppose that M is a model and that Γ is a collection of sentences. Then we

can define a relation |=M,Γ such that for any model N and any sentence φ,

N |=M,Γ φ ⇐⇒ N = M and φ ∈ Γ.

Given this definition, M is the only model which “satisfies” any sentences, and M “satisfies” exactly the

sentences which happen to be in Γ. Since M and Γ are completely arbitrary, this amounts to a trivialization

of the notion of “satisfaction.” After all, the reason why M |=M,Γ Γ has nothing to do either with the

structure of M or with the particular sentences in Γ; instead, the definition of |=M,Γ just stipulates that M

“satisfies” Γ. A similar point could be made about the supermodel construction from section 3.2.3.

In contrast, a rich semantics connects axioms to models in a manner which preserves much, if not all,

of our ordinary understanding of what the axioms in question mean (and how they mean it). The simplest

example here would be the semantics of a “fully-interpreted language” in which phrases like “is a set” and “is

a member of” are connected to the world through their ordinary English meanings; hence, sentences come out

true at the world just in case they are really true. For a somewhat less rich example, we might consider the

semantics of second-order set theory, in which the satisfaction relation requires that second-order quantifiers

range over the full power set of the domain of any given model.

Finally, we can consider the case of first-order semantics. Here, our conception of satisfaction requires

that the symbols ¬, →, =, and ∃ have their ordinary significance, but it allows other symbols to vary quite

wildly as we move from model to model. Hence, first-order semantics is intermediate between the trivial

semantics discussed two paragraphs ago and the rich semantics discussed in the last paragraph: it doesn’t

make the satisfaction relation as arbitrary as |=M,Γ (or as weak as |=s), but neither does it insist that this

relation “go right” about as many things as the second-order satisfaction relation (or the relation associated

with a “fully-interpreted language”).

These, then, are three broad classes of background semantics under which we can interpret the axioms

of set theory. To keep the relevant examples handy, I provide the following table:

Trivial First Order Strong

|=M,Γ |=fin

|=s |=1 |=2

|=true |=sets
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With these three kinds of background semantics in mind, I want to make four points about the role axioms

play in mathematics.20 First, axioms pick out models only against the backdrop of a fixed semantics under

which those axioms are interpreted. This involves at least two things: 1.) a specific understanding of what

counts as a “model” for the language of our axioms and 2.) a specific “satisfaction” relation which determines

when a particular “model” can be said to “satisfy” a particular axiom. Only when these things are in place

does it make sense to talk about the collection of “models” which a particular set of axioms “picks out.”

Second, the axioms used in mathematics often assume a rich background semantics. So, for instance,

the axioms used to define topological spaces and homology theories assume a fairly complicated second-

order semantics. The axioms used in analysis assume that we can use notions like “order-complete” with

their ordinary significance (e.g., to pick out the class of linear continuums). Even the classical axioms

for arithmetic and set theory—i.e., the original second-order Peano axioms and Zermelo’s second-order

formulation of ZFC—assume a second-order semantics in the background.

Third, Putnam’s argument assumes that the only way axioms can pick out their own models is through

some form of first-order implicit definition. From a structural standpoint, this assumption is needed to make

Putnam’s defense of 2′ “mesh” with his defense of 1′. Since his defense of 1′ rests on first-order model theory,

his argument for 2′ has to rule out all other forms of model theory—e.g., second-order model theory—as

legitimate means of fixing the intended interpretation of set-theoretic language. Thus, if Putnam’s argument

for 2′ focuses on the role axioms play in clarifying our mathematical concepts, then part of what he has to

show is that this clarification only involves first-order semantics.

From a more textual standpoint, this assumption is fairly explicit in Putnam’s own presentation of the

model-theoretic argument. In some places (especially [43] and [45]) Putnam simply starts with the as-

sumption that we have “formalized” our mathematical and scientific theories and then characterizes this

“formalization” in terms of recasting our theories in first-order notation. In other places, Putnam considers

non-first-order theories and argues that these theories don’t impede his project because they can be reinter-

preted so as to take on first-order semantics. Examples of this latter maneuver can be found at, for instance,

[43] pp. 8–9 (for the case of language involving counterfactuals) and [43] p. 23 (for the case of second-order

languages). Thus, not only is the assumption that axioms must (really) be first-order an assumption which

is necessary for Putnam’s argument, it is also an assumption which Putnam is willing to make explicit.

Finally, points two and three entail that Putnam cannot (legitimately) use insight into the sociology

of mathematics to support an account of axioms which would help him to defend premise 2′. Even if

Putnam could show that axioms serve to clarify mathematical notions by providing implicit definitions of

our mathematical vocabulary, and even if he is right that this use of axioms provides the best mechanism

for fixing the “intended interpretation” of set theory, this still won’t give him 2′. To get 2′, Putnam would

have to show that mathematicians only use axioms to provide first-order implicit definitions (point 2); this,

20The first two of these points were also made in section 3.2.4. Since each of them is both short and important, it is convenient

to repeat them here. See 3.2.4 for a more extensive discussion of these two points.
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however, directly conflicts with actual mathematical practice (point 3). Hence, no sociological argument for

2′ can ultimately be sustained.

How might Putnam respond to this criticism? It seems to me that there are two lines he might take.

First, he might deny that his attention to axioms is supposed to be based on sociological considerations. In

particular, he might claim that, to the extent that there are differing ways of giving background semantics

to our axioms, each of these ways gives rise to an “intended interpretation” of these axioms. On this line,

then, the actual practice of mathematicians is more-or-less irrelevant. The mere fact that the axioms of set

theory can be given a first-order semantics is enough to make Putnam’s argument for 2′ go through.

Note that if Putnam takes this line, he might think that my distinctions between trivial, rich and first-

order semantics actually supports his overall argument. After all, Putnam showed that any interesting set of

axioms has a whole menagerie of first-order “intended interpretations”; my examples of “trivial semantics”

show that these axioms have even more “intended interpretations.” Hence, to the extent that Putnam’s

argument shows that things are bad for the realist, my examples show that things are even worse.

There are three things which should be said concerning this bluff response to my criticism of Putnam’s

argument. First, this is clearly a response which has some appeal for Putnam. At several places Putnam

hints that he’s “holding back” in using only first-order model theory to find the intended interpretation(s) of

set theoretic language. He suggests, for instance, that if we were willing to use intuitionistic model theory, we

would find even more “intended interpretations” of set theory. Given this, my examples of trivial semantics

should simply provide more grist for Putnam’s mill.

Second, this response makes Putnam’s overall argument even less plausible than it was before. Whatever

worries we might have about countable models of ZFC, it’s hard to generate much concern about the fact

that any model can “satisfy” ZFC in the sense of |=M,Γ (or that S can “satisfy” ZFC in the sense of |=s).

If Putnam’s argument turns out to be this cavalier about the notion of “intended interpretations,” then it’s

hard to take Putnam’s argument very seriously.

Third, this response abandons any pretense of giving a genuinely model-theoretic argument against real-

ism. Part of the appeal of Putnam’s argument stems from his claim that basic theorems of model theory—

e.g., the Löwenheim-Skolem theorems, the Shoenfield absoluteness theorem, etc.—entail that set theory has

many different “intended interpretations.” When filled out in the way we have been discussing, however,

the argument actually depends on the more-or-less trivial observation that if you get to reinterpret anything

you want, any way you want , then you can make any sentences you want true under any circumstances you

want. We didn’t need model theory to tell us that.

To avoid this trivialization of his argument, Putnam needs a different strategy for shoring up the “if

axioms can’t. . . ” defense of premise 2′. In particular, he needs a strategy which lets him argue that

first-order semantics are canonical with respect to picking out “intended interpretations.” Such a strategy

will involve (at least) two things: 1.) an argument that first-order semantics always generates intended

interpretations for a set of axioms (even when those axioms seem to presuppose a “richer” semantics) and
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2.) a proof that this argument doesn’t ramify so as to allow trivial forms of semantics to generate still more

intended interpretations.

There are two things to note about this second strategy. First, it isn’t enough for Putnam to simply

argue that certain axioms can be reinterpreted so as to take on first-order semantics. After all, these same

axioms can be reinterpreted so as to take on various kinds of trivial semantics (e.g., |=M,Γ or |=s). Instead,

Putnam needs to show that there is something special about first-order semantics: something which makes

first-order model theory—and only first-order model theory—semantically normative.

Second, something like this second strategy is necessary whether or not Putnam relies on the “if axioms

can’t . . . ” defense of premise 2′. Whatever Putnam’s defense of 2′ happens to be, if it leads to the conclusion

that trivial semantics generate intended interpretations, then Putnam’s overall argument is in trouble (for

the reasons discussed above). Thus, any argument for 2′ will have to satisfy the two conditions mentioned

at the end of the penultimate paragraph. It will have to show that first-order reinterpretations of sentences

which seem to presuppose richer background semantics really count as intended interpretations, and it will

have to explain why this claim doesn’t extend to make trivial reinterpretations count as intended.

Now, as far as I know, Putnam has never seriously attempted to give this kind of argument. As a result,

his model-theoretic argument against realism is incomplete. Further, this is not an incompleteness which can

easily be remedied: as far as I can see, there simply is no good reason for thinking that first-order semantics

has some special normativity vis-a-vis the interpretation of set-theoretic axioms. More significantly, I think

it is impossible to give an argument for such normativity that will square with Putnam’s own theoretical

commitments. To understand this impossibility, we need to move beyond the “if axioms cannot. . . ” defense

of premise 2′ to examine Putnam’s third (and final) defense of that premise.

4.4.3 Just more theory I

The “just more theory” argument is Putnam’s most famous (and boldest) defense of premise 2′. It has

been deployed most explicitly—and been subject to the most analysis—in cases where causality is supposed

to pick out the interpretation of a piece of language. Nevertheless, the structure of the argument is quite

general and applies to any realistic account of the nature of reference.21

The substance of the “just more theory” argument lies in the observation that the phrase “theoretical

constraints” is broad enough to cover philosophy as well as mathematics and natural science. In particular,

any philosophical account of the way set theory gets its “intended interpretation” can itself be viewed

as just one more theoretical constraint. Hence, no such philosophical account can be adequate: since

Putnam can find an assortment of models which satisfy both our original theoretical constraints and our

philosophical semantics, the philosophical semantics cannot force our language to take on a unique “intended

interpretation.”

21For commentary on the “just more theory” argument, see [7], [11], [21], [22], [31], and [60]. For some recent revisionary

interpretations of the argument, see [1] and [12].
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To illustrate this point, consider the following theory (or schematic of a theory) concerning the “intended

interpretation” of set theory:

HYP In order to be an intended interpretation for the language of set theory, a structure must satisfy

conditions C1,. . . , Cn.

There are two things we should notice about this schematic. First, it is relatively easy to come up with

conditions C1,. . . , Cn which restrict—and restrict in a fairly plausible fashion—the structures which count

as intended interpretations for the language of set theory. At the simplest level, we can insist that such

structures be well-founded or transitive.22 More boldly, we can insist that such structures satisfy second-

order ZFC or that they correctly interpret some primitive notation for power-sets (e.g., up to isomorphism).

Finally, and most audaciously, we can insist that any intended interpretation for the language of set theory

include all and only sets in its domain and interpret “∈” as referring to real, set-theoretic membership.

If Putnam’s argument is correct, however, none of these conditions help the realist. If HYP is a good

theory concerning the interpretation of set-theoretic language, then HYP should be added to our overall

theory of the world. In Putnam’s terms, HYP should be added to our “theoretical and operational con-

straints.” But, since premise 1′ already takes care of theoretical and operational constraints, this addition

does not effect Putnam’s overall argument. Because the phrase “theoretical and operational constraints” is

flexible enough to commandeer rival mechanisms for fixing the intended interpretation of set theory, no such

mechanisms can possibly threaten Putnam’s argument.

It is useful, at this point, to sketch a fairly standard response to this move of Putnam’s.23 The response

has two parts. First, we draw a distinction between describing the features of a model which make it

an “intended interpretation” and simply adding sentences which a model must satisfy in order to be an

intended interpretation. Put more perspicuously: we distinguish between changing the semantics under

which a collection of axioms is interpreted—e.g., by restricting the class of models for our language and/or

strengthening the notion of “satisfaction” which ties sentences to models—and simply adding new sentences

which get interpreted under the same old semantics.

Second, we note that the proponent of conditions like those discussed above—i.e., in the examples of ways

to fill out C1, . . . , Cn—typically uses those conditions to describe the features which make a model intended.

In other words, she is using them to explain which semantics she intends her axioms to be interpreted under,

not just listing additional sentences which are to be interpreted under the (first-order) semantics of Putnam’s

choosing. If, for instance, condition C1 says that a model should be well-founded, then the proponent of

22Note that, although these are fairly weak conditions, they are strong enough to eliminate many of the “intended interpreta-

tions” proposed by Putnam (e.g., the one induced by Theorem 1). This highlights the point, made in footnote 1, that Putnam’s

model-theoretic argument involves a radical form of semantic indeterminacy: even weak restrictions on the structures which

serve as “interpretations” for our language will eliminate the kinds of indeterminacy which this argument purports to uncover.

23This response has its home in the literature concerning the relationship between Putnam’s argument and the causal theory

of reference. Its structure is quite general however. See [11] or [31].
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HYP will demand that candidate models actually be well-founded. She will not consider it enough for these

models to satisfy a first-order axiom of the form: ¬∃x (x is an infinite descending chain of ordinals).

Now, as noted above, this kind of objection to the “just more theory” argument is quite well known. It

is not surprising, therefore, that Putnam has a well worked-out response. Basically, Putnam claims that

this objection begs the question against the model-theoretic argument. The argument, after all, involves

the question of whether mathematical language has a unique “intended interpretation.” Hence, realists

cannot assume that mathematical language has such an interpretation when they try to answer Putnam.

In particular, they cannot assume that words and phrases like “well-founded,” “transitive,” and “complete

power-set” have determinate interpretations when they set out to “describe” their notion of intended models

(or to “explain” the semantics under which they intend their axioms to be interpreted). To paraphrase a

passage of Putnam’s:24

Here the philosopher is ignoring his own epistemological position. He is philosophizing as if naive
realism were true of him (or, equivalently, as if he and he alone were in an absolute relation to the
world). What he calls ‘transitivity’ really is transitivity, and of course there is a fixed, somehow
singled-out, correspondence between the word and one definite property in his case. Or so he
assumes. But how this can be so was just the question at issue. ([44] xi)

In Putnam’s view, then, as long as the determinacy of mathematical language is still in question, realists

cannot—on pain of begging the question—use this language to specify the intended interpretation of their

axioms. As a result, they cannot use claims like HYP to describe the intended interpretation of set theoretic

language; instead, they have to view HYP as a mere addition to their “theoretical constraints.” But this

amounts, in Putnam’s words, to the addition of “just more theory.”

To summarize: Putnam’s “just more theory” defense of premise 2′ comes in two stages. First, Putnam

considers realistic theories of interpretation and argues that these theories can be regarded as additional

“theoretical constraints.” As such, they do they do not add anything new to the “theoretical and operational

constraints” of premise 1′. Second, Putnam considers the claim that realistic theories describe the ways

interpretations are fixed (or, equivalently, describe the kinds of semantics under which our axioms are to

be interpreted). Since this claim assumes that such description is ultimately possible—i.e., that we can use

mathematical language to describe, in a determinate fashion, the intended interpretation of set theory—

Putnam dismisses it as question-begging.25

24My paraphrase here consists solely of tailoring a passage of Putnam’s to make it fit the mathematical case. In particular,

I have replaced the term “causality” with “transitivity” in two places, and replaced the phrase “one definite relation” with the

phrase “one definite property.” Clearly these changes do not affect the argumentative structure of the passage.

25The interpretation of the “just more theory” argument which I have given is fairly standard (see [11], [31], and [60]). In

[1] and [12], Anderson and Douven challenge this interpretation. Without going into too many details, I find these revisionary

interpretations of Putnam’s argument uncompelling. For one thing, I don’t think they fit Putnam’s texts as well as the

standard interpretation (especially Putnam’s comments in the introduction to [44] and section 8 of [43]. For another, I think

they both make Putnam’s argument less interesting than it was on the standard interpretation. Hence, even if these revisionary

interpretations did fit the texts, we would still want to focus our attention on the standard interpretation.
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4.4.4 Just more theory II

In this section, I give three responses to Putnam’s “just more theory” argument. First, I show that this

argument is incompatible with some of Putnam’s other theoretical commitments; hence, whatever merits

it may have in its own right, it is not an argument which is available to Putnam. Second, I show that an

analogous argument can be made in situations where it clearly doesn’t work, and I argue that, by parity of

reasoning, Putnam’s own argument doesn’t work either. Finally, I give a straightforward explanation as to

why Putnam’s argument doesn’t work: in essence, I show that Putnam’s charge of question begging rests

on a (fairly trivial) logical mistake. At the end of the section, then, I conclude that Putnam’s “just more

theory” argument provides no support for premise 2′.

To begin, note that Putnam’s charge of question begging in the last section both introduces and rests

upon a certain assumption: that it is illegitimate to use semantically indeterminate language to describe the

intended interpretation of set theory. After all, the problem with realists’ attempts to use conditions like

C1, . . . , Cn to describe the interpretation of set theory was that they could not show that these conditions

had determinate interpretations (and that simply assuming that they had determinate interpretations would

beg the question). For this objection to have force, however, we must first think that there is something

wrong with using semantically indeterminate language to describe the intended interpretation of set theory.

Only against the backdrop of this assumption would the realist even need to claim that C1, . . . , Cn are

semantically determinate.

Next, we need to recall three technical facts about first-order logic. First, this logic lacks the resources

to capture the notions of finitude and/or recursion. On the finitude side, there is no collection of formulas

Γ which will characterize exactly the finite models (or finite subsets of models). On the recursion side,

there is no collection of formulas Γ which lets us capture the notion of a recursive definition.26 Second,

the notion of finitude is needed to characterize the syntax of first-order logic: the sentences of first-order

logic can have arbitrarily finite length, but they cannot be infinite.27 Third, the standard definition of

first-order satisfaction is recursive: it starts with a definition of satisfaction for atomic formulas and then

supplies recursion clauses—one for each connective and quantifier in our language—to extend this definition

to arbitrary formulas.

Combining these technical facts with the assumption from the antepenultimate paragraph, it should be

obvious that Putnam has gotten himself into hot water. The following four claims are on the table:

1. The notions of finitude and recursion are needed to describe first-order model-theory.

2. First-order model theory cannot capture the notions of finitude and recursion.

26For details on the problem with the notion of finitude, see p. 57. This problem extends to recursion, because recursive

definitions try to capture a finite—but arbitrarily finite—number of steps in a single definition.

27It is important, here, to notice that first-order ZFC makes explicit use of this convention. Insofar as two of its axioms—

comprehension and replacement—are really axiom schemas (see fn. 56 in ch. 3), these axioms cannot even be formulated without

a firm grasp on the notion of finitude.
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3. It is illegitimate to use semantically indeterminate notions to describe “intended interpretations.”

4. Only those notions which can captured by first-order model theory are semantically determinate.

Here, claims 1 and 2 are just repetitions of the technical facts discussed in the last paragraph, and claim 3 is

the assumption on which Putnam’s charge of “begging the question” was seen to rest. Claim 4 is a version

of Putnam’s own premise 2′. It is needed to ensure that realists do not use axioms with a rich semantics to

pin down the intended interpretation of set theory, and it was discussed in a fair bit detail near the end of

section 4.4.2.

Together, these four claims cause serious problems for Putnam. From claims 3 and 4, it follows that

only notions which can be captured by first-order model theory can be used to describe the “intended

interpretation” of set theory. Combining this with claim 2, we get that the notions of finitude and recursion

cannot be used to describe the intended interpretation of set theory. Together with claim 1, this entails that

first-order model theory cannot be used to describe the intended interpretation of set theory. Since this is

precisely what Putnam’s own argument requires us to do (cf. 4.4.2), Putnam’s overall position reduces to a

contradiction.

This, then, is what I call the “stability” objection to Putnam’s “just more theory” argument. The

argument rests on the assumption that we cannot use semantically indeterminate language to describe

“intended interpretations.” But, by Putnam’s own standards, the notions needed to formulate first-order

model theory turn out to be semantically indeterminate. Hence, since Putnam’s own technique for obtaining

intended interpretations of set theory involves applying first-order model theory to the axioms of ZFC, his

overall position is internally inconsistent.

Leaving this stability objection aside, we should note that portions of Putnam’s “just more theory”

argument can be viewed as structurally analogous to arguments concerning other puzzles I have examined

in this dissertation. Consider, for instance, the “paradox of the three men” from section 3.1.3. Suppose that

someone proposes this paradox as a serious challenge to the determinacy of ordinary talk about the natural

numbers, and suppose that we respond to this challenge by solving the paradox in the manner sketched in

3.1.3. Why, in this case, couldn’t the proponent of the paradox simply follow Putnam and claim that our

solution “begs the question”? After all, the paradox is supposed to challenge the determinacy of ordinary

talk about numbers, and we assume the determinacy of such talk for the purpose of giving our solution.

A similar problem can be raised concerning the supermodel construction from section 3.2.3. Suppose

that someone suggests that the supermodel should count as an “intended interpretation” for the language

of set theory. If we respond that this model has obvious defects—e.g., it contains only one thing and it

fails to respect bivalence—our interlocutor could claim that this response is “just more theory.” What’s

more, he can easily show that the supermodel takes care of such theory. After all, the supermodel trivially

(super)satisfies all sentences of the following forms: ∃x∃y(¬x = y), ∃x∃y∃z(¬x = y ∧ ¬y = z ∧ ¬x = z),

φ ∨ ¬φ, ¬(φ ∧ ¬φ), etc.
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At this point, we might object that our interlocutor has failed to understand our initial response. We

weren’t interested in whether S |=s ∃x∃y (¬x = y); we were interested in the fact that S contains only one

thing. Similarly, we weren’t interested in whether S |=s φ ∨ ¬φ; we were interested the fact that S fails to

respect the pattern,

S |=s φ ⇐⇒ S 6|=s ¬φ.

Here again, though, our interlocutor can simply follow Putnam. Since our objection assumes that we can

talk about sets in a determinate manner—e.g., those sets needed to formulate notions like “one-element

domain”—it seems to beg the question against the advocate of the supermodel. Why, then, shouldn’t our

objection be summarily dismissed?

At this point, therefore, we have two arguments that are structurally analogous to the “just more theory”

portion of Putnam’s model-theoretic argument. Clearly, neither of them is very effective. The “paradox of

the three men” is not a real paradox; the solution given in 3.1.3 is perfectly adequate; and we do not beg

any questions in giving this solution. Similarly, the supermodel is not an “intended interpretation” for

the language of set theory; the fact that it has a one-element domain is part of why it is not an intended

interpretation; the fact that it supersatisfies ∃x∃y(¬x = y) is irrelevant; and we don’t beg any questions in

saying all of this. Hence, given the obvious structural similarities between these two failed arguments and

Putnam’s “just more theory” argument, I think we have ample grounds for rejecting this latter argument (if

only for reasons of parity).

Of course, it would be nice if we didn’t have to rely on parity—or on theoretical conflicts with Putnam’s

other views—to get a response to the “just more theory” argument. Fortunately, it’s relatively easy to explain

why Putnam’s charge of begging the question misses the mark. In evaluating Putnam’s model-theoretic

argument we are interested in the following question: does Putnam’s model theory entail that mathematical

language is semantically indeterminate? To answer this question, we have to evaluate a conditional of the

following form:

Putnam’s Model Theory =⇒ Semantic Indeterminacy.

Now, as a general rule, conditionals of the form P =⇒ ¬Q are evaluated by asking whether we can accept

both P and Q. If we can, then the conditional has to be rejected.

Turning to the case at hand, therefore, we ask whether we can accept both Putnam’s model theory and

the semantic determinacy of mathematical language. That is, we (tentatively and hypothetically) accept

these things, and we then check to see whether the resulting combination leads to a contradiction. In this

context, therefore, our hypothetical acceptance of semantic determinacy does not constitute an instance of

“begging the question.” It’s just part of the way we go about evaluating conditionals.28

28Similar comments apply to the two examples discussed a moment ago. It’s precisely because the paradox of the three men

is a puzzle in arithmetic that we should feel free to use arithmetic when solving it. Similarly, it’s because the supermodel puzzle

involves the relationship between model theory and set theory that we use these two disciplines in solving that puzzle.
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To make this point somewhat more perspicuous, let me give an example which does not involve any

mathematics (nor, indeed, any questions about semantic determinacy). Suppose that two philosophers—

John and Alvin—are arguing about the existence of God. John presents a version of the problem of evil to

show that God does not exist, and Alvin tries to defuse this problem by proving that none of John’s evils

are really incompatible with the existence of God. In particular, Alvin sketches out a hypothetical situation

in which both God and John’s evils exist at the same time.

In this example, Alvin has not “begged the question” against John. Even though the overall debate is

about the existence of God, it is perfectly legitimate for Alvin to evaluate John’s argument by constructing

a hypothetical situation in which God is assumed to exist. Although this argument can’t show that God

does exist—so it can’t show that Alvin’s theodicy is true—it can show that John’s argument against the

existence of God fails.

So too, then, in the case of Putnam’s model-theoretic argument. Even though the overall debate between

Putnam and the realist concerns the determinacy of mathematical language, it is perfectly legitimate for the

realist to presuppose such determinacy in the course of evaluating the validity of Putnam’s argument. Just

as Alvin’s argument begs no questions against John, so too the realist’s argument begs no questions against

Putnam. To think otherwise, is to misunderstand the logic of ordinary conditionals.

Before closing out this section, a final comment on this “evaluation of conditionals” point is in order.

None of my discussion of this point depends on any controversial assumptions about the status of the larger

dialectic between Putnam and the realist. The point does not depend on the assumption that we have

an adequate account of mathematical reference. Nor does it depend on fancy considerations concerning the

burden of proof in realist/anti-realist debates. Indeed, the point is even compatible with the assumption that

reference to mathematical objects is indeterminate—i.e., with the assumption that Putnam is right on the

deeper philosophical issue. The point simply shows that one particular aspect of Putnam’s model-theoretic

argument—namely, his accusation that realists “beg the question” in their response to his “just more theory”

maneuver—rests on a trivial misapplication of the logic of conditionals.

To conclude, then, Putnam’s “just more theory” argument fails. There is a basic difference between

describing the features which make a model “intended” and simply adding new sentences for a model

to satisfy. Put another way, there is a difference between changing the semantics under which certain

axioms get interpreted and adding new sentences to be interpreted under the same old semantics. Further,

Putnam’s charges of “begging the question” don’t allow him to undercut—or to slur over—this distinction.

At best, these charges rest on a misapplication of the logic of ordinary conditionals. At worst, they introduce

assumptions which get Putnam into even more trouble than he was in before—e.g., the stability objection.
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4.5 Some Connections

In this section, I want to draw some connections between the philosophical problems discussed in 4.4 and

the mathematical problems discussed in 4.3. In particular, I will show that both kinds of problems involve

a certain dialectical assumption that Putnam tends to make, and I will argue that realists have no reason

to grant Putnam this assumption. In light of this, I will argue, once again, that there is very little reason

for realists to worry about Putnam’s model-theoretic argument.

I begin with a passage originally discussed in section 4.4.3. Here, Putnam is considering the claim that

realists use mathematical language to describe the intended interpretation of set theory, and he argues that

this claim “begs the question” against the model-theoretic argument. Putnam complains: “Here the [realist]

is ignoring his own epistemological position. He is philosophizing as if naive realism were true of him. . . as

if he and he alone were in an absolute relation to the world.” Now, leave aside the question of whether

there is anything wrong with such naive philosophizing—a question answered in the negative in the last

section. Instead, ask whether Putnam himself can give the model-theoretic argument without engaging in

naive philosophizing of his own.

To see the worry here, recall the overall structure of Putnam’s argument. Putnam begins by considering

a theory which includes “all theoretical and operational constraints.” In principle, this theory includes

everything we might ever need to say; indeed, at one point, Putnam suggests that it includes all true

sentences ([43] 18). Once this theory is in hand, Putnam argues that it has many different models; further,

the fact that these models satisfy “all theoretical and operational constraints” ensures that each of them

counts as an “intended interpretation” of our theory.

Why, though, does Putnam think that we can discuss these models in the first place? Insofar as the

models provide the (or, perhaps, a) semantics for a particular theory, it’s not obvious that they can be

discussed from within that theory. Hence, Putnam’s own argument seems to assume that we can, at least to

a certain extent, “stand back” from our theory in order to discuss that theory’s semantics. But, given that

the theory in question is supposed to constitute our entire theory of the world—to satisfy all theoretical and

operational constraints and to include all true sentences—it’s not clear how this “standing back” is supposed

to work.

This, then, is where Putnam’s own “naive realism” comes into play. Whatever problems our theory is

supposed to have, these problems vanish when Putnam steps back from this theory to engage in semantics.

Putnam allows himself to refer, naively and absolutely, to both the theory in question and to a collection of

models for this theory. He also allows himself the full apparatus of classical model theory—e.g., everything

needed to make sense of the notion of satisfaction—in order to talk about a theory’s being true or false “on

a certain interpretation.”

Of course, Putnam thinks that there are many different interpretations which make our theory come

out true (that, after all, is supposed to be the point of the model-theoretic argument). But, for each

particular “interpretation,” Putnam spells out the relationship between that interpretation and the “truth”
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of our theory in a thoroughly realistic manner. To paraphrase: Putnam philosophizes as though he and he

alone were in an absolute relation to the world of models—what Putnam calls “models” really are models,

what Putnam calls “satisfaction” really is satisfaction, and of course there is a fixed, somehow singled-out,

correspondence between the language of model theory and the world of models in his case.

As we saw in 4.4.3, however, this is precisely the standpoint which Putnam wants to deny to the real-

ist. When the realist tries to “stand back” from set theory in order to talk about this theory’s intended

interpretation—to specify, for instance, that the interpretation must really involve sets, must really be well-

founded, must really satisfy second-order ZFC, or must really include all ordinals—Putnam accuses him of

“begging the question.” Though Putnam’s own model-theoretic talk can be viewed as talk about set theory,

the realist’s talk must be viewed as talk within set-theory.

This asymmetry leaves Putnam with a dilemma. On the one hand, Putnam can allow people to “stand

back” from their theories in order to discuss these theories’ semantics. In this case, Putnam himself can

stand back from set theory in order to cook up non-standard models for this theory, but the realist can

also stand back to explain why these models do not constitute “intended interpretations.” Just as Putnam

uses absolute model-theoretic notions—like “model,” “interpretation,” “satisfaction,” etc.—to show that set

theory has many models, so the realist can use notions like “well-founded,” “uncountable” and even “set”

to explain why most of these models are unintended.

On the other hand, Putnam can stick to his guns and insist that people can’t “stand back” from their the-

ories in order to discuss these theories’ semantics. In this case, the realist would be barred from arguing that

Putnam’s unusual models are “unintended” because they fail to satisfy certain constraints which the realist

has (naively) laid down. But, Putnam himself will be barred from claiming that any such unusual models

even exist! Hence, he will be barred from posing the question which lies at the heart of the model-theoretic

argument: why don’t these (strange, unusual, and ugly) models constitute “intended interpretations” for

the language of set theory?

This, then, is Putnam’s dilemma. Two comments about it are in order. First, the dilemma clearly

amounts to a less-technical reworking of some of the ideas behind the “stability objection” of section 4.4.4.

There, I tried to how the asymmetry in Putnam’s argument leads to a fairly specific inconsistency in Putnam’s

position. In particular, Putnam’s argument assumes that we can use the notions of finitude and recursion

to pick out “intended interpretations” for set theory; but, if Putnam’s arguments are correct, then these are

exactly the kinds of notions that realists cannot cannot use to pick out intended interpretations.29 Hence,

it is only by assuming a stark asymmetry between his own position and that of his (realist) opponents that

Putnam can make his overall argument look consistent.

Second, this dilemma bears an evident similarity to the dilemma discussed at the end of section 4.3.1.

There, Putnam wanted to limit his opponents to a certain collection of set-theoretical axioms, while he himself

29i.e., since 1.) these notions can’t be captured by first-order model theory, 2.) only notions that can be captured by first-oder

model theory are determinate, and 3.) only determinate notions can be used to specify intended interpretations.
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used somewhat stronger axioms to prove his key theorem. Here, Putnam wants to limit his opponents to

working within a particular theory, while he himself steps outside this theory to talk about its semantics. In

both cases, then, Putnam’s argument depends on allowing himself just a little more material than he allows

the realists against whom he is arguing.

This, then, suggests that there is a unified response which realists can give to Putnam’s two arguments—

i.e., to his arguments for premises 1′ and 2′. In both cases, realists can simply insist that Putnam use

the same—and only the same—resources in formulating his arguments which he allows the realist to use in

responding to them. Applying this principle at the technical level undercuts Putnam’s defense of premise

1′. Applying this principle at the philosophical level undercuts his defense of premise 2′. With both of these

premises so disabled, Putnam’s model-theoretic argument poses little threat to traditional realism.30

4.6 Conclusion

At the end of the day, what should we make of Putnam’s model-theoretic argument? On the one hand, the

argument has two real virtues. It brings out clearly the degree to which Skolem’s Paradox—in either it’s

classical form or in the modified form discussed here—is ultimately a problem in semantics. As such, it fits

in well with the main theme of section 1.2.2. The argument also frames the relevant semantic problem—the

problem of determinate reference for mathematical language—in a way which has captured the attention of

a great many contemporary philosophers. For this, we should all be grateful.

However, as an outright argument for semantic anti-realism, Putnam’s model-theoretic argument leaves

a lot to be desired. As a proof of anti-realism, the argument fails for the, essentially technical, reasons

discussed in 4.3. Even as a suggestive philosophical argument it doesn’t really work. To be sure, if the

only way of fixing the reference of mathematical language is through the sort of massive first-order “implicit

definition” involved in premise 1′, then the argument raises threatening possibilities. But there is no reason

for thinking that this is the only way of fixing reference. Putnam’s own arguments for this claim are, as I

have shown in 4.4–4.5, singularly unpersuasive. Further, I think any arguments for this claim are liable to

run aground on problems like the “stability objection” discussed in 4.4.4.

When all is said and done, therefore, the question of reference to mathematical objects remains. It’s a

hard question, and realists will have a hard time—for the reasons discussed in section 3.1—giving a plausible

answer to it (i.e., giving a substantive account as to just how such reference is supposed to work). But,

30I have placed this argument at the end of this chapter, because I think it provides a useful way of tying together the main

themes of sections 4.3 and 4.4. I do not, however, think that this kind of “dialectical” argument provides the best response

to Putnam’s arguments. The best response, I think, is to argue directly against Putnam’s non-standard models for set theory

(by noting, e.g., that their non-transitivity or their inability to correctly interpret the definition of power sets makes them

unsuitable as “intended interpretations” of set theory). If Putnam claims that this argument begs the question—as he did, for

instance, in section 4.4.3—this claim should be defused by appealing to the evaluation-of-conditionals argument from section

4.4.4. By responding in this way, we defuse Putnam’s model-theoretic argument without appealing to the details of our overall

dialectical situation.
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however this question is ultimately answered, I think I have shown that Skolem’s Paradox—whether in its

classical form or in the form of Putnam’s model-theoretic argument—will play no real role in this answer.

That is enough for this thesis.
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