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Partitioning Subsets of Stable Models ∗

Timothy Bays

Abstract

This paper discusses two combinatorial problems in stability theory. First we prove a partition
result for subsets of stable models: for any A and B, we can partition A into |B |<κ(T ) pieces,
〈Ai | i < |B |<κ(T )〉, such that for each Ai there is a Bi ⊆ B where |Bi| < κ(T ) and Ai |̂

Bi

B.

Second, if A and B are as above and |A | > |B |, then we try to find A′ ⊂ A and B′ ⊂ B such
that |A′| is as large as possible, |B′| is as small as possible, and A′ |̂

B′
B. We prove some positive

results in this direction, and we then discuss the optimality of these results under ZFC + GCH.

1 Introduction

The problems discussed in this paper arise from the study of Chang’s Conjecture in the context of stable

theories. Suppose that M is a stable model which lives in some class of models for which a nice prime

model theory exists: e.g., the class of all models of an ω-stable theory, the class of F a
κ(T )-saturated models

of a superstable theory, or the class of |T |+-saturated models of a stable theory. Suppose also that M is a

two-cardinal model: i.e., for some predicate P in the language of M , ω ≤ |P (M)| < |M |. Given such an M ,

it is natural to ask Chang’s Conjecture style questions: for what cardinals κ ≤ |M | and λ < |P (M)| can we

find N ≺ M such that |N | = κ and |P (N)| = λ ?

In [2], we show that this type of question typically reduces to a straightforward combinatorial problem.

Let A and B be subsets of a stable model such that |A| > |B|; then we want to find A′ and B′ such that,

• A′ ⊆ A and |A′| is as large as possible (ideally, |A′| = |A|).

• B′ ⊆ B and |B′| is as small as possible (ideally, |B′| < κ(T )).

• A′ |̂
B′

B.

Suppose that we have some general techniques for solving this kind of problem. To obtain Chang’s Conjecture

style results, we argue as follows. First we find A ⊂ M \ P (M) and B ⊂ P (M) such that |A| = |M |,

|B| < κ(T ) and A |̂
B

P (M). With a little bit of work, we can replace B with some N such that N ≺ M ,

|P (N)| < |P (M)| and N is in our class of “nice models”. From here, prime model theory allows us to create

a new two-cardinal model N [A] ≺ M as desired (note that in any such model |P (N [A])| = |P (N)| while

|N [A]| = |A| = |M |).
∗This paper derives from chapter three of the author’s dissertation, written under the direction of Professor Tony Martin

at the University of California, Los Angeles. The dissertation was partially supported by a U.S. Department of Education
graduate fellowship.
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This brings us to the main topic of this paper. Let T be a complete, stable theory; let κ, λ, κ′, and λ′

be cardinals; and let M be any saturated model of T such that |M | > max{κ, λ, κ′, λ′}. We will say that

†(κ, λ, κ′, λ′) holds for T if whenever A and B are subsets of M such that |A| = κ and |B| = λ, then there

exists A′ ⊂ A and B′ ⊂ B such that |A′| = κ′, |B′| = λ′, and A′ |̂
B′

B. Our goal is to classify the cardinals

for which †(κ, λ, κ′, λ′) holds, given only some very general information about cardinal arithmetic and T (e.g.

does GCH hold? what is κ(T )? etc.).

This classification will be carried out in Sections 3–4. In Section 3, we prove several “positive” theorems

which give general conditions under which †(κ, λ, κ′, λ′) holds. In Section 4, we discuss the optimality of

these theorems. We show that the theorems are optimal for superstable theories and that, for unsuperstable

theories, the theorems are the best one can prove using only ZFC+GCH. Finally, we note some stronger

results which follow from the existence of large cardinals.

For technical reasons, we find it useful to approach questions about † by first considering questions about

partitions. Let A and B be subsets of some stable model; then we would like to find a partition of A into

< |A| pieces, 〈Ai | i < λ < |A|〉, such that for each Ai there exists Bi ⊂ B where |Bi| < |B| and Ai |̂
Bi

B.

The relationship between this problem and † should be clear. As A is partitioned into < |A| pieces, some of

these pieces have to be large; and as each Bi has cardinality < |B|, we obtain an interesting instance of †.

In Section 2, we address this problem. The main theorem in the section is the following:

Theorem: Let A and B be arbitrary subsets of a stable model. Then we can partition A into |B|<κ(T )

pieces, 〈Ai | i < |B|<κ(T )〉, such that for each Ai there is a Bi ⊆ B where |Bi| < κ(T ) and Ai |̂
Bi

B.

We also show that in a few cases, say when |B| is particularly small or when we are willing to let |Bi| be

large, we can get slightly better partitions. Finally, and with an eye toward the project of Section 4, we

show that these results are optimal under ZFC+GCH.

Throughout the paper, T is stable and countable, and M is a monster model for T . We assume basic

facts about stable theories. These can be found in [1], [4], or [5]. Notationally, we use M,N, . . . to denote

models and A,B, . . . to denote subsets of models. We use α, β, γ, . . . to denote ordinals; κ, λ, µ, . . . to denote

infinite cardinals; m and n to denote natural numbers; and i, j, k and l to denote either ordinals or natural

numbers depending on the context. We use ⊂ to mean ⊆.

2 Partitions

Our main goal in this section is to prove a partition theorem for subsets of stable models. We begin with

the following lemma. Its proof is due to Shelah and is contained within his proof of IX 1.4 in [5].

Lemma 1 Let A and B be subsets of M such that cf(|B|) ≥ κ(T ). Then we can partition A into cf(|B|)

pieces, 〈Ai | i < cf(|B|)〉, such that for each Ai there is a Bi ⊆ B where |Bi| < |B| and Ai |̂
Bi

B.
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Proof. Let ν = cf(|B|) and let 〈Bi| i ≤ ν〉 be an increasing, continuous sequence of subsets of B such that

|Bi| < |B| for i < ν, and Bν = B. We define an increasing sequence of subsets of A, 〈Ai | i < ν〉, by

induction: Ai is a maximal subset of A such that
⋃

j<i Aj ⊆ Ai and Ai |̂
Bi

B.

Now I claim that
⋃

i<ν Ai = A. For suppose a ∈ A \ (
⋃

i<ν

Ai). Then for each i, Ai ∪ {a} |̂/
Bi

B .

⇒ a |̂/
Ai∪Bi

Ai ∪B

⇒ for some j > i, a |̂/
Ai∪Bi

Ai ∪Bj .

⇒ for some j > i, a |̂/
Ai∪Bi

Aj ∪Bj .

So, letting pi = tp(a,Ai ∪Bi), we get a cofinal subsequence of 〈pi | i < ν〉 which is a forking sequence. As ν

is regular and κ(T ) ≤ ν, this is a contradiction.

Now, replace each Ai with Ai \
⋃

j<i Aj . Then P = {Ai : i < ν} is a partition of A, and for each i < ν,

Ai |̂
Bi

B. As |Bi| < |B| for each i, we are done. �

Theorem 2 Let A and B be subsets of M. Then we can partition A into |B|<κ(T ) pieces, 〈Ai | i < |B|<κ(T )〉,

such that for each Ai there is a Bi ⊆ B where |Bi| < κ(T ) and Ai |̂
Bi

B.

Proof. The proof is by induction on |B|. For |B| < κ(T ), there is nothing to prove; so, we assume that

|B| ≥ κ(T ). We take cases on cf(|B|).

Case 1 (cf(|B|) ≥ κ(T )) Using Lemma 1, we partition A into cf(|B|) pieces, 〈Ai | i < cf(|B|)〉, such that

for each Ai there is a Bi ⊆ B where |Bi| < |B| and Ai |̂
Bi

B.

Next, we apply the induction hypothesis and partition each Ai into |Bi|<κ(T ) pieces, 〈Ai,j | j < |Bi|<κ(T )〉,

such that each Ai,j has an associated Bi,j ⊂ Bi where |Bi,j | < κ(T ) and Ai,j |̂
Bi,j

Bi. By the transitivity of

forking, Ai,j |̂
Bi,j

B. Note that the number of such Ai,j is at most |B| · |B|<κ(T ) = |B|<κ(T ). So, if we let

P = {Ai,j : i < cf(|B|) and j < |B|<κ(T )} be our partition, we are done.

Case 2 (cf(|B|) < κ(T )) Because T is countable and cf(|B|) < κ(T ) ≤ |B|, we know that κ(T ) = ω1 and

cf(|B|) = ω. Hence, we let 〈Bi | i < ω〉 be an increasing sequence of subsets of B such that |Bi| < |B| for

i < ω, and
⋃

i<ω Bi = B. By induction, we construct a sequence of partitions, 〈Pi | i < ω〉, satisfying the

following conditions:

1. Each Pi is a partition of A into |Bi|<κ(T ) pieces.

2. For each Ai,j in Pi there exists Bi,j ⊂ Bi such that |Bi,j | < κ(T ) and Ai,j |̂
Bi,j

Bi.

3. If j > i, then Pj refines Pi

We begin by applying the original induction hypothesis to partition A over B0 so as to satisfy conditions 1

and 2.
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Suppose we have Pi = 〈Ai,j | j < |Bi|<κ(T )〉. As |Bi+1| < |B|, we can again apply our original induction

hypothesis and partition each Ai,j into |Bi+1|<κ(T ) pieces, 〈Ai,j,k | k < |Bi+1|<κ(T )〉, such that each Ai,j,k

has an associated Bi,j,k ⊆ Bi+1 where |Bi,j,k| < κ(T ) and Ai,j,k |̂
Bi,j,k

Bi+1. We then set,

Pi+1 = {Ai,j,k : j < |Bi|<κ(T ) and k < |Bi+1|<κ(T )}.

Clearly, Pi+1 satisfies conditions 2 and 3. Since (|Bi|<κ(T )) · (|Bi+1|<κ(T )) = |Bi+1|<κ(T ), condition 1 is

satisfied as well.

Given the sequence 〈Pi | i < ω〉, we define our final P through its associated equivalence relation. Using

the obvious notation, we set:

a ∼ c ⇐⇒ for every i < ω, a ∼i c.

Note that for every Â ∈ P and every i < ω, there is some Âi ∈ Pi and an associated B̂i ⊂ Bi such that

Â ⊂ Âi, |B̂i| < κ(T ) and Âi
|̂

B̂i

Bi. Hence, by forking continuity, Â |̂⋃
i<ω B̂i

B.

As to our cardinality conditions, notice that since |B̂i| < κ(T ) for every i < ω, |
⋃

i<ω B̂i| < κ(T )

(remember that κ(T ) = ω1 in the “case 2” situation). Similarly, the following computation shows that

|P| ≤ |B|<κ(T ):

|P| ≤
∏
i<ω

|Pi| ≤
∏
i<ω

|Bi|<κ(T ) ≤
∏
i<ω

|B|<κ(T ) = (|B|<κ(T ))ω = |B|<κ(T ).

Again, the last step in this computation depends on the fact that κ(T ) = ω1 in the “case 2” situation. �

Remark: Notice that for superstable theories, Theorem 2 lets us partition A into only |B| pieces (since

|B|<κ(T ) = |B| for superstable theories). Even for stable theories, the factor of |B|<κ(T ) only comes into

play when we try to partition A “over” some B such that cf(|B|) < κ(T ). If our induction does not pass

through such a B, then even unsuperstable theories will admit partitions of size |B| < |B|<κ(T ). We have:

Corollary 3 Let A and B be as in Theorem 2. Let µ ≤ |B| be such that cf(µ) ≥ κ(T ) and there are

no singular cardinals κ such that µ < κ ≤ |B|. Then for arbitrary A, we can partition A into |B| pieces,

〈Ai | i < |B|〉, such that for each Ai there is a Bi ⊆ B where |Bi| < µ and Ai |̂
Bi

B.

Proof. We follow the proof of Theorem 2, limiting our induction to cardinals κ such that µ ≤ κ ≤ |B|. Since

cf(µ) ≥ κ(T ) and there are no singular cardinals between µ and |B|, our induction never enters a “case 2”

situation. Hence, we can preserve partitions of size |B| throughout the induction. �

Corollary 4 Let A and B be arbitrary subsets of M such that |B| < ℵω. Then we can partition A into |B|

pieces, 〈Ai | i < |B|〉, such that for each Ai there is a Bi ⊆ B where |Bi| < κ(T ) and Ai |̂
Bi

B.

Proof. Apply Corollary 3. �

Remark: Given some initial instance of non-forking, it is easy to check that this non-forking can be preserved

through the proofs of Lemma 1 and Theorem 2. This gives us a usefull strengthening of Theorem 2.
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Theorem 5 Let B, C and BC be subsets of M such that C |̂
BC

B. Then we can partition A into |B|<κ(T )

pieces, 〈Ai | i < |B|<κ(T )〉, such that for each Ai there is a Bi ⊆ B where |Bi| < κ(T ) and Ai ∪ C |̂
Bi∪BC

B.

Proof. Just like the proofs of Lemma 1 and Theorem 2. �

At this point, we turn to examining the optimality of Theorem 2. To keep our cardinal arithmetic

manageable, we assume GCH throughout this discussion. Under GCH, Theorem 2 shows two things:

• If cf(|B|) ≥ κ(T ), then we can partition any A into |B| pieces, 〈Ai | i < |B|〉, such that for each Ai

there is a Bi ⊆ B where |Bi| < κ(T ) and Ai |̂
Bi

B.

• If cf(|B|) < κ(T ), then we can partition any A into |B|+ pieces, 〈Ai | i < |B|+〉, such that for each Ai

there is a Bi ⊆ B where |Bi| < κ(T ) and Ai |̂
Bi

B.

The first of these points shows that Theorem 2 is optimal when cf(|B|) ≥ κ(T ). To see this, let κ ≥ κ(T )

and let B ⊂ M be such that B is algebraically independent, |B| = κ, and B∩acl(∅) = ∅. Then we cannot find

B′ ⊂ B and B′′ ⊂ B such that |B′′| < κ(T ) ≤ |B′| and B′ |̂
B′′

B (as B′ |̂
B′′

B entails B′′ ⊃ B′). Hence, by

setting A = B or even just A ⊃ B, we witness the impossibility of partitioning A into less than κ reasonably

homogenous pieces.

Next, we consider the case in which cf(|B|) < κ(T ), and we show that one cannot, in general, construct

partitions of size < |B|+. We note that since cf(|B|) < κ(T ), cf(|B|) = ω and κ(T ) = ω1. So, we fix a

cardinal, κ, such that cf(κ) = ω, and we consider the following example.

Example 6 Let L = {P,Q, 〈Fi | i < ω〉} where P and Q are unary predicates and each Fi is a binary

relation. Let a model N = Nκ for L be given as follows:

• P (N) = κ; Q(N) = ωκ; N = P (N) ∪Q(N).

• Fi : Q(N) → P (N) by Fi(η) = η(i).

Here is the intuitive idea. P (N) and Q(N) are disjoint sets. P (N) has no intrinsic structure, while elements

of Q(N) “code up” countable subsets of P (N) via the sequence 〈Fi | i < ω〉. Let T = Th(N). It is easy to

check that T is stable and quantifier eliminable and that κ(T ) = ω1. Similarly, it is clear that |P (N)| = κ

and |Q(N)| = κ+.

Now suppose that 〈Aj | j < λ〉 is a partition of Q(N) into fewer than κ+ pieces. As |Q(N)| = κ+, there

must be some j < λ such that |Aj | = κ+. And as no set of size < κ can have κ+ distinct subsets (by GCH),

|
⋃

i<ω

Fi [Aj ]| = κ. Further, it is easy to see that if B ⊂ P (N) such that
⋃

i<ω

Fi [Aj ] 6⊂ B, then Aj |̂/
B

P (N)

(as witnessed, for instance, by some formula of the form “x = Fi(y)”). So, there is no B ⊂ P (N) such that

|B| < κ(T ) and Aj |̂
B

P (N). �

Remarks: (1.) These examples show that Theorem 2 is optimal with respect to partitioning A into a small

number of Ai pieces such that the associated Bi pieces have cardinality < κ(T ). For fixed µ < |B|, the same

examples show that we cannot get better partitions by letting the Bi pieces have cardinality < µ.
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(2.) Suppose κ(T ) ≤ cf(|B|) < |B|. Then by Lemma 1, we can partition A into only cf(|B|) pieces,

〈Ai | i < cf(|B|)〉, such that the associated Bi pieces have cardinality < |B| (so, there is no fixed µ < |B|

such that |Bi| < µ for all i). By the example from the cf(|B|) ≥ κ(T ) case above, this is also optimal.

(3.) With minor modifications, everything in this section generalizes to uncountable theories (though

the proofs become notational bogs rather rapidly). In Lemma 1 (hence in Theorem 2), we need to replace

κ(T ) with κr(T ) to make our computations come out right. In the proof of Theorem 2 we need a transfinite

sequence of partitions 〈Pi | i < cf(|B|)〉; but, if we simply apply the direct limit construction from Theorem

2 at all limit ordinals, this construction goes through exactly as before. In Example 6, we need to consider

structures with uncountably many functions, 〈Fi | i < λ〉.

3 Combinatorics

In this section we prove several positive results concerning the †(κ, λ, κ′, λ′) relation. We begin by noting

that questions about † are only interesting when κ′ ≤ κ, λ′ < λ, λ < κ, and λ′ < κ′; if any of these conditions

fail, then questions about † become trivial. For notational convenience, we define a function,

Φ(µ, ν) =



ν if T is superstable

ν if T is stable and there is no cardinal ξ

such that µ < ξ ≤ ν and cf(ξ) < κ(T )

νω otherwise.

The point of this notation is as follows. Let µ < ν and let B be a set of cardinality ν. Then Theorem 2 and

Corollary 3 allow us to partition an arbitrary A into Φ(µ, ν) pieces, 〈Ai | i < Φ(µ, ν)〉, such that such that

each Ai has an associated Bi ⊆ B where and Ai |̂
Bi

B and |Bi| = µ. Given this, our main theorem is:

Theorem 7 Let κ, λ, κ′ and λ′ be cardinals such that λ < κ, κ′ ≤ κ, λ′ < λ. Suppose that one of the

following conditions holds:

1. κ′ < κ, and Φ(λ′, λ) < κ.

2. κ′ = κ, and Φ(λ′, λ) < cf(κ).

3. κ′ = κ, Φ(λ′, λ) < κ, and cf(κ) ≤ λ′.

Then †(κ, λ, κ′, λ′) holds.

Proof. Fix A and B such that |A| = κ and |B| = λ; we take cases on the conditions in the theorem.

Suppose first that condition 1 holds. Then we partition A into Φ(λ′, λ) pieces 〈Ai | i < Φ(λ′, λ)〉, such

that for each Ai there is a Bi ⊆ B where |Bi| = λ′ and Ai |̂
Bi

B. Since Φ(λ′, λ) < κ, one of these Ai sets has

size at least κ′. Making this set smaller as necessary, we are done.

Similarly, suppose condition 2 holds. Once again we partition A into Φ(λ′, λ) pieces 〈Ai | i < Φ(λ′, λ)〉

and note that, since Φ(λ′, λ) < cf(κ), one of the Ai sets must have size κ = κ′.
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Finally, suppose condition 3 holds. Let 〈κi | i < cf(κ)〉 be increasing such that κ =
∑

i<cf(κ)κi. We

construct a sequence, 〈(Ai, Bi) | i < cf(κ)〉, such that for each i:

• Ai ⊂ A and |Ai| ≥ κi.

• Bi ⊂ B and |Bi| = λ′.

•
⋃
j≤i

Aj |̂⋃
j≤i

Bj

B.

Assume we have constructed this sequence for j < i. By forking continuity, we know that
⋃

j<i Aj |̂⋃
j<i Bj

B.

Using Lemma 5 (or the obvious analog of Lemma 3), we partition A into Φ(λ′, λ) pieces, 〈Âk | k < Φ(λ′, λ)〉,

such that for each Âk there is a B̂k ⊆ B where |B̂k| = λ′ and Âk ∪
⋃

j<i Aj
|̂

B̂k∪
⋃

j<i Bj

B. Since Φ(λ′, λ) < κ,

one of the Âk sets must have cardinality at least κi. Choosing such an Âk, we let Ai = Âk ∪
⋃

j<i Aj and

Bi = B̂k ∪
⋃

j<i Bj (note that since i < cf(κ) ≤ λ′, |
⋃

j<i Bj | = λ′).

Let A′ =
⋃

i<cf(κ)Ai and let B′ =
⋃

i<cf(κ)Bi. By forking continuity, A′ |̂
B′

B. Further, |A′| =∑
i<cf(κ)κi = κ. Finally, since cf(κ) ≤ λ′, |B′| = |

⋃
i<cf(κ) Bi| = λ′. �

Under several conditions, the use of Φ in this theorem can be eliminated. This renders the theorem itself

somewhat more perspicuous. The following three corollaries give the most significant simplifications of the

theorem.

Corollary 8 Let κ, λ, κ′ and λ′ be as in the theorem. Suppose that λω < κ and that one of the following

holds:

1. κ′ < κ.

2. κ′ = κ and λω < cf(κ).

3. κ′ = κ and cf(κ) ≤ λ′.

Then †(κ, λ, κ′, λ′) holds.

Proof. Since Φ(λ′, λ) is at most λω, λω < κ ⇒ Φ(λ′, λ) < κ. Hence, conditions 1–3 of the corollary reduce

to conditions 1–3 of Theorem 7. �

Corollary 9 Let κ, λ, κ′ and λ′ be as in the theorem. Suppose that T is superstable or that there are no

singular cardinals between λ′ and λ. Finally, suppose that one of the following holds:

1. κ′ < κ.

2. κ′ = κ and λ < cf(κ).

3. κ′ = κ and cf(κ) ≤ λ′.

Then †(κ, λ, κ′, λ′) holds.

7



JSL 66 (Dec. 2001): 1899–1908

Proof. The conditions of the corollary entail that Φ(λ′, λ) = λ) < κ. Hence, conditions 1–3 of the corollary

reduce to conditions 1–3 of Theorem 7. �

Corollary 10 Suppose that GCH holds, and let κ, λ, κ′ and λ′ be as in the theorem. Suppose also that one

of the following holds:

1. cf(λ) ≥ κ(T ) and κ′ < κ 4. cf(λ) < κ(T ), λ+ < κ, and κ′ < κ.

2. cf(λ) ≥ κ(T ) and λ < cf(κ). 5. cf(λ) < κ(T ), λ+ < κ, and λ+ < cf(κ).

3. cf(λ) ≥ κ(T ) and cf(κ) ≤ λ′. 6. cf(λ) < κ(T ), λ+ < κ, and cf(κ) ≤ λ′.

Then †(κ, λ, κ′, λ′) holds.

Proof. If T is superstable, then cases 4–6 in this corollary are impossible and cases 1–3 correspond to the

three cases of Corollary 9. Similarly, if T is unsuperstable and cf(λ) > ω, then cases 4–6 in this corollary

are impossible and cases 1–3 correspond to the three cases of Corollary 8. Finally, if T is unsuperstable and

cf(λ) = ω, then cases 1–3 of this corollary become impossible and cases 4–6 correspond to the three cases

of Corollary 8. �

Remarks: (1.) For superstable theories, Shelah gives an alternate proof of Corollary 9 (see [5] V, 6.16-

6.17). Because Shelah’s proof makes extensive use of large independent sets, it does not generalize to the

non-superstable case.

(2.) The results of this section generalize to uncountable theories. The generalizations are straightforward,

with no essentially new ideas required. However, the cardinal arithmetic involved in such generalizations is

sufficiently complicated that it rapidly obscures all of the main ideas (especially if we do not assume GCH).

4 Some Countermodels

In the last section, we gave some general conditions under which †(κ, λ, κ′, λ′) holds. In this section, we

discuss the degree to which these conditions are optimal. To keep our cardinal arithmetic manageable, we

assume GCH throughout this discussion (but, see the remarks following Example 11). We also define the

following “Ramsey style” modification of †: we say that †′(κ, λ, λ′) holds if †(κ, λ, κ, λ′) holds. Given this,

we show the following three things:

• The results of Section 3 are optimal for superstable theories.

• The results of Section 3 are optimal for the †′ relation.

• The results of Section 3 are the best that can be proved using only ZFC+GCH.

As noted in the last section, questions about †(κ, λ, κ′, λ′) are only interesting if κ′ ≤ κ, λ′ < λ, λ < κ, and

λ′ < κ′. Hence, we will take these conditions for granted throughout this section.
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We begin by showing that Theorem 7 gives optimal results under the assumption that T is superstable

(i.e. that Corollary 9 is optimal). Note that by Corollary 9 the only cases in which †(κ, λ, κ′, λ′) can fail are

cases in which κ is singular, κ′ = κ, and λ′ < cf(κ) ≤ λ. We fix some particular κ, κ′, λ, and λ′ satisfying

these conditions and consider the following example.

Example 11 Let L = {P,Q,G} where P and Q are unary predicates and G is a binary relation. Let a

model for L be given as follows:

• P (M) = λ; Q(M) = λ× κ; M = P (M) ∪Q(M).

• G is a function from Q(M) to P (M) such that G((α, β)) = α.

Intuitively, P (M) is an infinite set with no intrinsic structure. Using G, we associate an infinite collection

of (otherwise undifferentiated) elements of Q(M) to each member of P (M). Let T = Th(M); it is easy to

check that T is superstable (indeed ω-stable) and quantifier eliminable.

Let 〈κi | i < cf(κ)〉 be increasing and cofinal in κ. Let N be a submodel of M such that P (N) = P (M)

and

(α, β) ∈ Q(N) ⇐⇒ either α < cf(κ) & β < κα or β < ω.

So, |Q(N)| = κ and |P (N)| = λ. However, suppose A ⊂ Q(N) such that |A| = κ. Then a trivial combina-

torial argument shows that G[A] must have cardinality at least cf(κ). Further, it is easy to see that given

any B ⊂ P (N) such that G[A] 6⊂ B, A |̂/
B

P (N) (as witnessed, for instance, by the formula “x=G(y)”). So,

Q(N) and P (N) witness the failure of †(κ, λ, κ′, λ′) as desired. �

Remark: Note that nothing in this argument depends on GCH. Hence, for superstable theories, Corollary

9 is optimal whether or not GCH holds.

Next, we turn to examine unsuperstable theories, and we consider the cases left open by Corollary 10. It

is straightforward to show that Corollary 10 leaves only four cases in which †(κ, λ, κ′, λ′) can fail:

1. κ′ = κ; and λ′ < cf(κ) ≤ λ.

2. cf(λ) = ω; λ+ = κ; and λ′ω < κ′.

3. cf(λ) = ω; λ+ = κ; and λ′ω = κ′.

4. cf(λ) = ω; λ+ < κ; κ′ = κ; and cf(κ) = λ+.

The first of these cases is covered by the model from Example 11, and the second by the model from Example

6. The fourth is covered by a straightforward combination of these two models. Since these are the only

cases in which κ′ = κ is possibe, we know that Theorem 7 and Corollary 10 are optimal with respect to the

†′ relation.

At this point, we turn to the third case in which †(κ, λ, κ′, λ′) can fail. This case cannot be treated via

simple countermodels, as it turns out to be independent of set theory. Because the proof of independence

9
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involves several convoluted forcing constructions—and doesn’t provide very much model-theoretic insight—

we simply sketch the key ideas here. We begin with an example showing that ZFC+GCH cannot prove

†(λ+, λ, ω1, ω) for any λ such that cf(λ) = ω.

Example 12 We work in L and fix an appropriate λ. Let N = Nλ be defined as in Example 6. In particular,

we know that (|P (N)| = λ)L and that (|Q(N)| = λ+)L.

Force over L using the partial order Coll(ω, ω1). Since this forcing is ω2-c.c., it preserves all cardinals

and cofinalities ≥ ω2; in particular, it doesn’t affect either λ or λ+. Also, GCH continues to hold in

the generic extension. Consider N from the perspective of L[G] and suppose there exist A,B ∈ L[G]

such that A ⊂ Q(N), B ⊂ P (N), (|A| = ℵ1)L[G], (|B| = ℵ0)L[G], and A |̂
B

P (N). Since Coll(ω, ω1)

is ω2-c.c, there is some B′ ∈ L such that B ⊂ B′ ⊂ P (N) and (|B′| = ω1)L. Working in L, we let

A′ = {q ∈ Q(N) | for every i < ω, Fi(q) ∈ B′ }. By an argument like that of Example 6, we know that

(|A′| = ω1)L. Moving to L[G], therefore, we know that (|A′| = ω)L[G]. Since A ⊂ A′, this is a contradiction.

Thus, we have our result: in L[G], Q(N) and P (N) witness the failure of †(λ+, λ, ω1, ω). �

Remark: This example generalizes to cases in which λ′ is greater than ω, although the forcing constructions

are quite a bit more complicated. Typically, for instance, they use Jensen’s Covering Theorem in place of

chain conditions and (so) depend on the assumption that 0# does not exist in the ground model.

Example 12 and its cousins show that we cannot do better than Corollary 10 if we limit ourselves to

ZFC+GCH. If we assume large cardinals, however, we can do a little better. The following is the key result:

Proposition 13 If Chang’s Conjecture holds between (κ, λ) and (κ′, λ′), then †(κ, λ, κ′, λ′) holds as well.

Proof. Let A and B be arbitrary subsets of M such that |A| = κ and |B| = λ. Let 〈F i
j | i < ω and j < ω〉 be

a collection of functions such that F i
j : iA → B and for every ā ∈ iA, tp(ā, B) does not fork over

⋃
j<ω F i

j [ā].

Since Chang’s conjecture holds between (κ, λ) and (κ′, λ′), we can find A′ ⊂ A and B′ ⊂ B such that

|A′ | = κ′, |B′ | = λ′, and
⋃

i,j<ω

F i
j [A′] ⊂ B′. Hence, A′ |̂

B′
B as desired. �

In [3], Shelah, Magidor and Levinski show how, starting with assumptions slightly stronger than a 1-huge

cardinal, we can prove the consistency of many “case three” instances of Chang’s Conjecture (including,

for instance, all instances of the form (λ+, λ) −→ (ω1, ω) where cf(λ) = ω). This gives us a method for

getting slightly stronger results than those obtained in Section 3. It also completes our proof that, modulo

the consistency of large cardinals, “case three” instances of † are independent of ZFC+GCH.
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