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Some Two-Cardinal Results

for O-Minimal Theories

Timothy Bays

Abstract

We examine two-cardinal problems for the class of O-minimal theories. We prove that an O-minimal
theory which admits some (κ, λ) must admit every (κ′, λ′). We also prove that every “reasonable”
variant of Chang’s Conjecture is true for O-minimal structures. Finally, we generalize these results from
the two-cardinal case to the δ-cardinal case for arbitrary ordinals δ.

1 Introduction

In their most general form, two-cardinal problems depend heavily on assumptions about our background set

theory. Admitting cardinals conjectures, for instance, are often true in L but false in relatively straightfor-

ward extensions of L. Similarly, most variants of Chang’s Conjecture have the consistency strength of quite

large cardinals.

If we restrict ourselves to stable theories, two-cardinal problems become both more tractable and more

amenable to model-theoretic, as opposed to set-theoretic, investigation. Lachlan has shown that any stable

theory which admits some (κ, λ) must admit every (κ′, λ′) (see [4]). Similarly, Shelah has shown that most

variants of Chang’s Conjecture are true for superstable theories, and the present author has shown that this

result generalizes to (almost all) |T |+-saturated models of stable theories (see [6] and [2] respectively).

Two features of stable theories make these results possible. First, stable theories have a nice notion of

independence (non-forking) which “explains” differences in cardinality between separate parts of a model.

Second, stable theories admit an assortment of “prime model” constructions which allow us to build models

respecting this independence.

Both of these features are present in O-minimal theories as well (in many ways, O-minimal theories are

just ω-stable theories, but without the stability). Like stable theories, O-minimal theories have a nice notion

of independence (simple algebraic independence). Like ω-stable theories, O-minimal theories admit prime

models over arbitrary sets (see [5]).

In the present paper, we show that O-minimal theories are well-behaved with respect to two-cardinal

problems. We begin by proving an O-minimal analog of Lachlan’s theorem from [4]. We prove that if T is

O-minimal and P (N) ⊂ M ≺ N , then there exists N ′ such that P (N ′) ⊂ M ≺ N ≺ N ′. From this, we

conclude that an O-minimal theory which admits some (κ, λ) must admit every (κ′, λ′).

On the Chang’s Conjecture side, we prove that if M is an O-minimal structure of type (κ, λ) and if κ′

and λ′ are such that ω ≤ λ′ ≤ κ′, λ′ ≤ λ, and κ′ ≤ κ, then there exists N ≺ M such that N is of type
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(κ′, λ′). In section 4, we generalize these results from the two-cardinal case to the δ cardinal case, where δ

is some arbitrary ordinal.

Throughout the paper, T is countable and O-minimal and M is a monster model for T . We assume basic

facts about O-minimal theories. These can be found in [5] and [3]. We always let “<” pick out the order

of M, and we assume that the “small” portions of our two-cardinal models are picked out by the predicate

“P”. Using the fact that T is O-minimal, we fix ĉ1, . . . , ĉ2n ∈ M ∪ {±∞} and d̂1, . . . , d̂m ∈ M such that

P (M) =
⋃n
i=1{x |ĉ1 < x < ĉi+1} ∪

⋃m
i=1{d̂i}.

Notationally, we use M,N, . . . to denote models and A,B, . . . to denote subsets of models. We use

α, β, γ, . . . to denote ordinals; κ, λ, µ, . . . to denote infinite cardinals; m and n to denote natural numbers;

and i, j, k and l to denote either ordinals or natural numbers depending on the context. We use “≺” to

mean �.

2 Admitting Cardinals

The next lemma is, in some sense, the key to the entire paper. It shows that prime model constructions

respect algebraic independence vis-a-vis definable subsets of M.

Lemma 1 Let M be a model and let A ⊃M be algebraically closed and such that P (A) ⊂M . Let M [A] be

prime over A. Then P (M [A]) ⊂M .

Proof. Suppose not, and let b ∈ P (M [A]) \M . As M [A] is atomic over A, there is some formula ψ(x, ā)

over A such that ψ(x, ā) isolates tp(b, A). Since A is algebraically closed, we may assume that ψ is of the

form “a1 < x < a2” where a1, a2 ∈ A ∪ {±∞}. Further, since ψ both isolates tp(b, A) and entails that b is

in P (M), there must be some i such that ψ(x) ` ĉi < x < ĉi+1. Hence, ĉi ≤ a1 < a2 ≤ ĉi+1.

Because of this, and because P (A) ⊂ M , both a1 and a2 must live in M . Thus, since a1 < b < a2 and

M ≺ M, M must satisfy “∃x(a1 < x < a2)”. Hence, for some n1 ∈ M ∩ (a1, a2), ψ does not decide either

“a1 < x < n1” or “n1 < x < a2” . So, ψ fails to isolate tp(b, A) for a contradiction. �

Lemma 2 Let P (N) ⊂ M ≺ N and let a ∈ N \M . Let A ⊃ N be algebraically closed, let p ∈ S(A) be an

heir of tp(a, M), and let b |= p. Then, P (acl (Ab)) ⊂ A.

Proof. Suppose not, and let c ∈ P (acl(Ab)) \ A. Since c ∈ acl(Ab) and c /∈ A, b ∈ acl(Ac). Let ψ(x, m̄, ā, c)

witness this. Then,

|= ∃y[P (y) ∧ ∃=nxψ(x, m̄, ā, y) ∧ ψ(b, ā, n̄, y)].

Since tp(b, A) is an heir of tp(a, M), there is some m̄′ such that,

|= ∃y[P (y) ∧ ∃=nxψ(x, m̄, m̄′, y) ∧ ψ(a, m̄, m̄′, y)].

Since N must satisfy this formula, and since P (N) ⊂M , we conclude that a must be algebraic over M . But,

this contradicts a ∈ N \M . �
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Theorem 3 Suppose M ≺ N and P (N) = P (M). Then there exists N ′ such that N ≺ N ′ and P (N ′) =

P (M).

Proof. Choose a ∈ N \ M , and let p ∈ S(N) be an heir of tp(a, M). Let b |= p. Then by lemma 2,

P (acl(Nb)) ⊂ N . So, P (acl(Nb)) ⊂M . Let N ′ be prime over acl(Nb). By lemma 1, P (N ′) ⊂M as desired.

�

Theorem 4 If T admits some (κ, λ) where κ > λ, then T admits every (κ′, λ′).

Proof. Let M witness the fact that T admits (κ, λ). By the downward Löwenheim-Skolem theorem, there

exists M ′ ≺M such that P (M) ⊂M ′. Let “U” be a fresh predicate and expand M by letting U(M) = M ′.

By compactness, we can obtain a model N such that N |= Th(〈M,U〉) and |N | = |U(N)| = λ′. Note that

since N satisfies Th(〈M,U〉), P (N) ⊂ U(N) and, vis-a-vis our original language, U(N) ≺ N .

Returning to our original language, we let N ′ be the submodel of N which was picked out by “U”. By

induction, we construct a strictly increasing sequence of models, 〈Ni | i ≤ κ′〉, such that for every i ≤ κ′,

P (Ni) = P (N ′). We start by letting N0 = N . Given Ni, we apply theorem 3 to obtain Ni+1. Finally, for

limit i, we let Ni =
⋃
j<iNj . At the end of the day, Nκ′ is a (κ′, λ′)-model as desired. �

Remarks: (1.) Lemma 2 resembles a result from stability theory. In stability theory, we say that a type

p ∈ S(B) is foreign to some definable set P if for every A ⊃ B and every p′ ∈ S(A) a non-forking extension

of p, if b |= p′ and M |= P (c), then b ↓A c. For stable theories, if P (N) ⊂ M ≺ N and a ∈ N \M , then

tp(a, M) is foreign to P (see [2]). Lemma 2 says the same thing, modulo the need to redefine “non-forking

extension” and “b ↓A c” so as to make sense in the O-minimal context.

(2.) Note that the proof of theorem 3 actually gives something slightly stronger than theorem 3 itself.

Let M and N be as in the theorem and let N ′ ⊃ N (here, P (N ′) need not be a subset of M). Then our proof

shows that there must exist N ′′ such that N ′ ≺ N ′′ and P (N ′′) = P (N ′). So, any model which contains a

pair of models like those in theorem 3, can be extended without adding new members of P (M). This will be

important in section 4.

(3.) We have proved theorem 4 for countable languages only (since countability is a background assump-

tion for this paper). The result extends trivially to uncountable languages, however. If an uncountable theory

T admits some (κ, λ) (where κ > λ), then all its countable subtheories admit every (κ′, λ′) (by theorem 4).

Hence, by a result of Vaught’s, T itself admits every (κ′, λ′) (see [7]).

3 Chang’s Conjectures

Our first lemma “relativizes” theorem 3 so as to work within a particular two-cardinal model. Given a two-

cardinal model M , the lemma allows us to expand arbitrary submodels of M , without adding new members

of P (M) to these submodels.
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Lemma 5 Let M be a model of type (κ, λ) where κ > λ. Let N ≺ M be such that |N | < κ. Then there

exists N ′ such that N ≺ N ′ ≺M , |N ′| = |N |, and P (N ′) = P (N).

Proof. Let M and N be as given. We define an equivalence relation on M \N by,

m1 ∼N m2 ⇐⇒ m1 ∈ acl(Nm2)⇐⇒ m2 ∈ acl(Nm1).

Since each equivalence class has cardinality at most |N |, this relation partitions M \N into κ different pieces.

Since there are only λ members of P (M), some equivalence class does not contain members of P (M).

Let A be some such equivalence class. Then N ∪ A is algebraically closed, and P (N ∪ A) ⊂ N . Let

N [A] ≺M be prime over N ∪A. Clearly, |N [A]| = |N |, and by lemma 1, P (N [A]) = P (N). Hence, N [A] is

the desired N ′. �

Theorem 6 Let M be a model of type (κ, λ) where κ > λ. Suppose that λ′ ≤ λ, κ′ ≤ κ, and ω ≤ λ′ ≤ κ′.

Then there exists N ≺M such that N is of type (κ′, λ′).

Proof. Using the downward Löwenheim-Skolem theorem, we construct M ′ ≺M such that |M ′| = |P (M ′)| =

λ′. By induction, we construct a strictly increasing sequence of models, 〈Ni | i ≤ κ′〉, such that for every

i ≤ κ′, Ni ≺M , P (Ni) = P (M ′), and |Ni| = λ′ + |i |.

We begin by letting N0 = M ′. Given Ni where i < κ′, we apply lemma 5 to obtain Ni+1. Finally, for

limit i, we let Ni =
⋃
j<iNj . At the end of the day, |Nκ′ | = κ′ and |P (Nκ′)| = |P (M ′)| = λ′ as desired. �

Remark: Note that this proof of theorem 6 allows us a great deal of freedom in choosing the “bottom”

portion of our (κ′, λ′)-models. In particular, for any M ′ ≺ M , there exist arbitrarily large N such that

M ′ ≺ N ≺M and P (N) = P (M ′).

4 δ-Cardinal Theorems

In this section we generalize theorems 4 and 6 to the δ-cardinal case. For notational convenience, we choose

a fixed sequence of formulas over M, 〈ψi(x, m̄i) | i < δ〉, and we let A ⊂M be minimal such that every ψi is

also over A.

Theorem 7 Suppose that for every i < δ, there exists Mi such that A ⊂Mi and |ψi(Mi)| > |
⋃
j<i ψj(Mi)|.

Let F : δ → CARD be increasing and such that F (0) ≥ |δ|+ ω. Then there exists a model MF such that

A ⊂MF and for every i < δ, |ψi(MF )| = F (i).

Proof. We construct by induction a strictly increasing sequence of models, 〈Ni | i < δ〉, such that:

1. for every i, A ⊂ Ni,

2. for every i, |ψi(Ni)| = |Ni| = F (i), and

3. for every j < i < δ, ψj(Ni) = ψj(Nj).
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At the end of the day, Nδ =
⋃
i<δ Ni will be the desired MF .

For i = 0, we argue as in the proof of theorem 4. Using compactness, we obtain a sequence of pairs,

〈M ′′i ≺M ′i | i < δ〉, such that for every i, j < δ,

• A ∪
⋃
j<i ψj(M

′
i) ⊂M ′′i

• ψi(M ′i) 6⊂M ′′i , and

• |ψj(M ′i)| = |M ′i | = F (0).

We then let N0 be arbitrary such that |N0| = F (0) and
⋃
i<δM

′
i ⊂ N0.

For i > 0, we assume that Nj has been defined for all j < i. By induction, we construct a strictly

increasing sequence, 〈N i
k | k < F (i)〉, such that for every k < F (i) and j < i, ψj(N i

k) = ψj(Nj). We start

by letting N i
0 =

⋃
j<iNj . Note that by our induction hypothesis on the Nj ’s (clause 3, in particular),

ψj(N i
0) = ψj(Nj) as desired. Similarly, for k limit, we simply let N i

k =
⋃
l<kN

i
l .

For k a successor, we we choose a ∈ ψi(M ′i) \M ′′i , we let p ∈ S(N i
k−1) be an heir of tp(a,M ′′), and we

let b |= p. By lemma 2, ψj(acl(bN i
k−1)) ⊂ N i

k−1 for every j < i. We let N i
k be prime over acl(bN i

k−1). Then

by lemma 1, ψj(N i
k) ⊂ N i

k−1 for every j < i. So, by the induction hypothesis on N i
k−1, ψj(N i

k) = ψj(Nj) as

desired.

When the construction of 〈N i
k | k < F (i)〉 is finished, we set Ni =

⋃
k<F (i)N

i
k. Note that conditions

1 and 2 on our induction are satisfied trivially (as A ⊂ N0 ⊂ Ni, and the N i
k-construction added exactly

F (i) pieces of ψi(M) to Ni). Condition 3 is satisfied because of the induction hypothesis on the subsidiary

N i
k-construction. �

Remark: Note that theorem 7 does not require us to start with an initial δ-cardinal model which witnesses

all of the relevant cardinality splits simultaneously. We can start with a collection of models, each witnessing

a different cardinality split, and then parlay these models into a single δ-cardinal model which exhibits some

desired sequence of cardinality splits.

Theorem 8 Let M ⊃ A be such that for every i < δ, |ψi(M)| > |
⋃
j<i ψj(M)|. Let F : δ → CARD be

increasing and such that for every i < δ, δ + ω ≤ F (i) ≤ |ψi(M)|. Then there exists NF ≺ M such that

A ⊂ NF and for every i < δ, |ψi(NF )| = F (i).

Proof. We construct by induction a strictly increasing sequence of models 〈Ni | i < δ〉, such that:

1. for every i, A ⊂ Ni ≺M ,

2. for every i, |ψi(Ni)| = |Ni| = F (i), and

3. for every j < i < δ, ψj(Ni) = ψj(Nj).

At the end of the day, we simply let NF =
⋃
i<δ Ni.
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For i = 0, we apply the downward Löwenheim-Skolem theorem to obtain N0 ≺M such that A ⊂ N0 and

for every i < δ, |ψi(N0)| = |N0| = F (0). For i > 0, we assume that Nj has been defined for every j < i, and

we let N̂i =
⋃
j<iNj . Note that for j < i, ψj(N̂i) = ψj(Nj). Next, we let Bi ⊂ ψi(M) be maximal such that

N̂i ∪Bi is algebraically closed and for every j < i, ψj(N̂ ∪Bi) ⊂ N̂i.

Claim: |Bi| = |ψi(M)|

Pf. Suppose |Bi| < |ψi(M)|. As in the proof of theorem 5, we partition ψi(M) \ Bi via the equivalence

relation: a ∼ b ⇐⇒ a ∈ acl(N̂i ∪ Bi ∪ {b}). Since there are |ψi(M)| equivalence classes and < |ψi(M)|

elements in |
⋃
j<i ψj(M)|, some equivalence class does not intersect |

⋃
j<i ψj(M)|. Adding this class to Bi,

we contradict the maximality of Bi. � (claim)

Let B′i ⊂ Bi be such that N̂i ∪ B′i is algebraically closed and |B′i| = F (i). Let Ni ≺ M be prime over

N̂i ∪ B′i. Clearly, A ⊂ Ni and |ψi(Ni)| = |Ni| = F (i). Further, by lemma 1, ψj(Ni) ⊂ N̂i for every j < i.

Hence, by the construction of N̂i, ψj(Ni) = ψj(Nj) as desired. �
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