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Some Two-Cardinal Results
for O-Minimal Theories

Timothy Bays

Abstract

We examine two-cardinal problems for the class of O-minimal theories. We prove that an O-minimal
theory which admits some (x,\) must admit every (x’,\’). We also prove that every “reasonable”
variant of Chang’s Conjecture is true for O-minimal structures. Finally, we generalize these results from
the two-cardinal case to the §-cardinal case for arbitrary ordinals §.

1 Introduction

In their most general form, two-cardinal problems depend heavily on assumptions about our background set
theory. Admitting cardinals conjectures, for instance, are often true in L but false in relatively straightfor-
ward extensions of L. Similarly, most variants of Chang’s Conjecture have the consistency strength of quite
large cardinals.

If we restrict ourselves to stable theories, two-cardinal problems become both more tractable and more
amenable to model-theoretic, as opposed to set-theoretic, investigation. Lachlan has shown that any stable
theory which admits some (k,A) must admit every (x',\") (see [4]). Similarly, Shelah has shown that most
variants of Chang’s Conjecture are true for superstable theories, and the present author has shown that this
result generalizes to (almost all) |T'|*-saturated models of stable theories (see [6] and [2] respectively).

Two features of stable theories make these results possible. First, stable theories have a nice notion of
independence (non-forking) which “explains” differences in cardinality between separate parts of a model.
Second, stable theories admit an assortment of “prime model” constructions which allow us to build models
respecting this independence.

Both of these features are present in O-minimal theories as well (in many ways, O-minimal theories are
just w-stable theories, but without the stability). Like stable theories, O-minimal theories have a nice notion
of independence (simple algebraic independence). Like w-stable theories, O-minimal theories admit prime
models over arbitrary sets (see [5]).

In the present paper, we show that O-minimal theories are well-behaved with respect to two-cardinal
problems. We begin by proving an O-minimal analog of Lachlan’s theorem from [4]. We prove that if T is
O-minimal and P(N) C M < N, then there exists N’ such that P(N') ¢ M < N < N’. From this, we
conclude that an O-minimal theory which admits some (k, ) must admit every (s, \’).

On the Chang’s Conjecture side, we prove that if M is an O-minimal structure of type (k,A) and if &’

and ) are such that w < X < k/;, X < A, and &’ < k, then there exists N < M such that N is of type
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(x',\). In section 4, we generalize these results from the two-cardinal case to the 0 cardinal case, where &
is some arbitrary ordinal.

Throughout the paper, T' is countable and O-minimal and M is a monster model for 7. We assume basic
facts about O-minimal theories. These can be found in [5] and [3]. We always let “<” pick out the order
of M, and we assume that the “small” portions of our two-cardinal models are picked out by the predicate
“P”. Using the fact that T is O-minimal, we fix ¢1,... ¢, € MU {£oo} and dy,... dy € M such that
P(M) = U {z|ér <@ < &} UUZ {di}-

Notationally, we use M, N,... to denote models and A, B,... to denote subsets of models. We use
a, 3,7,... to denote ordinals; k, A\, i1, ... to denote infinite cardinals; m and n to denote natural numbers;
and 4, 7, k and [ to denote either ordinals or natural numbers depending on the context. We use “<” to

<
mean 2.

2 Admitting Cardinals

The next lemma is, in some sense, the key to the entire paper. It shows that prime model constructions

respect algebraic independence vis-a-vis definable subsets of M.

Lemma 1 Let M be a model and let A D M be algebraically closed and such that P(A) C M. Let M[A] be
prime over A. Then P(M[A]) C M.

Proof. Suppose not, and let b € P(M[A]) \ M. As MIA] is atomic over A, there is some formula v (z,a)
over A such that ¥ (x,a) isolates tp(b, A). Since A is algebraically closed, we may assume that 1 is of the
form “a; < x < ag” where a1,a2 € AU {xoo}. Further, since ¥ both isolates tp(b, A) and entails that b is
in P(M), there must be some i such that ¢(x) F ¢ < 2 < é4+1. Hence, & < a3 < az < é;41.

Because of this, and because P(A) C M, both a; and as must live in M. Thus, since a1 < b < as and
M < M, M must satisfy “Jz(a; < x < az)”. Hence, for some ny € M N (a1, as2), ¥ does not decide either

“ap < x <mp” or “n; <z <a” . So, 1 fails to isolate tp(b, A) for a contradiction. O

Lemma 2 Let P(N) C M < N and leta € N\ M. Let A D N be algebraically closed, let p € S(A) be an
heir of tp(a, M), and let b |=p. Then, P(acl(Ab)) C A.

Proof. Suppose not, and let ¢ € P(acl(Ab)) \ A. Since ¢ € acl(Ab) and ¢ ¢ A, b € acl(Ac). Let ¥(x,m,a,c)

witness this. Then,
= 3y[P(y) A 37wz, m, a,y) A (b, a,n,y)]-
Since tp(b, A) is an heir of tp(a, M), there is some m’ such that,
= Jy[Py) ATz (a,m,m!,y) Apla, m,m, y)].

Since N must satisfy this formula, and since P(N) C M, we conclude that a must be algebraic over M. But,

this contradicts a € N \ M. O
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Theorem 3 Suppose M < N and P(N) = P(M). Then there exists N' such that N < N’ and P(N') =
P(M).

Proof. Choose a € N\ M, and let p € S(N) be an heir of tp(a, M). Let b = p. Then by lemma 2,
P(acl(Nb)) C N. So, P(acl(Nb)) C M. Let N’ be prime over acl(Nb). By lemma 1, P(N') C M as desired.
O

Theorem 4 If T admits some (k,\) where k > X, then T admits every (', \').

Proof. Let M witness the fact that T admits (k, A). By the downward Lowenheim-Skolem theorem, there
exists M’ < M such that P(M) C M’'. Let “U” be a fresh predicate and expand M by letting U(M) = M'.
By compactness, we can obtain a model N such that N |= Th((M,U)) and |N| = |U(N)| = X. Note that
since N satisfies Th({(M,U)), P(N) C U(N) and, vis-a-vis our original language, U(N) < N.

Returning to our original language, we let N’ be the submodel of N which was picked out by “U”. By
induction, we construct a strictly increasing sequence of models, (N;|i < '), such that for every i < &/,
P(N;) = P(N'). We start by letting Ny = N. Given N;, we apply theorem 3 to obtain N;;;. Finally, for

limit 4, we let N; = |J._; N;. At the end of the day, N, is a (k, A')-model as desired. O

j<i

Remarks: (1.) Lemma 2 resembles a result from stability theory. In stability theory, we say that a type
p € S(B) is foreign to some definable set P if for every A D B and every p’ € S(A) a non-forking extension
of p, if b = p’ and M |= P(c), then b |4 c¢. For stable theories, if P(N) C M < N and a € N \ M, then
tp(a, M) is foreign to P (see [2]). Lemma 2 says the same thing, modulo the need to redefine “non-forking
extension” and “b | 4 ¢” so as to make sense in the O-minimal context.

(2.) Note that the proof of theorem 3 actually gives something slightly stronger than theorem 3 itself.
Let M and N be as in the theorem and let N O N (here, P(NN') need not be a subset of M). Then our proof
shows that there must exist N” such that N’ < N and P(N") = P(N’). So, any model which contains a
pair of models like those in theorem 3, can be extended without adding new members of P(M). This will be
important in section 4.

(3.) We have proved theorem 4 for countable languages only (since countability is a background assump-
tion for this paper). The result extends trivially to uncountable languages, however. If an uncountable theory
T admits some (x, \) (where k > A), then all its countable subtheories admit every (k’, \') (by theorem 4).

Hence, by a result of Vaught’s, T itself admits every (', \') (see [7]).

3 Chang’s Conjectures

Our first lemma “relativizes” theorem 3 so as to work within a particular two-cardinal model. Given a two-
cardinal model M, the lemma allows us to expand arbitrary submodels of M, without adding new members

of P(M) to these submodels.
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Lemma 5 Let M be a model of type (k,\) where k > A. Let N < M be such that |N| < k. Then there
exists N’ such that N < N’ < M, |N'| = |N|, and P(N') = P(N).

Proof. Let M and N be as given. We define an equivalence relation on M \ N by,
my ~n Mo <= my € acl(Nmgy) <= my € acl(Nm;).

Since each equivalence class has cardinality at most | N|, this relation partitions M \ N into x different pieces.
Since there are only A members of P(M), some equivalence class does not contain members of P(M).

Let A be some such equivalence class. Then N U A is algebraically closed, and P(N U A) C N. Let
N[A] < M be prime over N U A. Clearly, |[N[A]| = |[N|, and by lemma 1, P(N[A]) = P(N). Hence, N[4] is
the desired N’. O

Theorem 6 Let M be a model of type (k,\) where k > X. Suppose that N < X\, ¥’ <k, andw < N < ¥'.
Then there exists N < M such that N is of type (x', \).

Proof. Using the downward Léwenheim-Skolem theorem, we construct M’ < M such that |[M'| = |[P(M')| =
A’. By induction, we construct a strictly increasing sequence of models, (IV;|i < k'), such that for every
i <K', Ni < M, P(N;) = P(M"), and |N;| = X + [i.

We begin by letting Ng = M’. Given N; where i < k', we apply lemma 5 to obtain N;;;. Finally, for

limit 4, we let N; = {J;_; N;. At the end of the day, [Nw| = £" and [P(Ny)[ = [P(M')| = X" as desired. O

Remark: Note that this proof of theorem 6 allows us a great deal of freedom in choosing the “bottom”
portion of our (k’, \')-models. In particular, for any M’ < M, there exist arbitrarily large N such that
M’ < N <M and P(N) = P(M').

4 §-Cardinal Theorems

In this section we generalize theorems 4 and 6 to the §-cardinal case. For notational convenience, we choose
a fixed sequence of formulas over M, (¢;(z,m;)|i < §), and we let A C M be minimal such that every ; is

also over A.

Theorem 7 Suppose that for every i <4, there exists M; such that A C M; and [¢;(M;)] > [ U, ;¥ (M;)].
Let F : § — CARD be increasing and such that F(0) > |6| + w. Then there exists a model Mg such that
A C My and for every i <9, |;(Mp)| = F(3).

Proof. We construct by induction a strictly increasing sequence of models, (N; |i < ¢), such that:
1. for every i, A C Nj,
2. for every i, |¢;(N;)| = |N;| = F(i), and

3. for every j <1 <4, ¢,;(N;) = ¢;(N;).
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At the end of the day, N5 = (J,_5 Vi will be the desired Mp.
For i = 0, we argue as in the proof of theorem 4. Using compactness, we obtain a sequence of pairs,

(M!" < M/ |i < 0), such that for every 7,5 < 9,

o AUU, (M) € MY

j<i
o (M) ¢ M/, and
o [1;(M])| = [M]| = F(0).

We then let Ny be arbitrary such that |[Ng| = F(0) and |J,_s M] C No.

i<d

For i > 0, we assume that N; has been defined for all j < i. By induction, we construct a strictly
increasing sequence, (Ni |k < F(i)), such that for every k < F(i) and j < i, 1;(N}) = ¢;(N;). We start
by letting N} = Uj<i

¥;(N§) = ;(N;) as desired. Similarly, for k limit, we simply let Ni = [J,_, N/

Nj;. Note that by our induction hypothesis on the N;’s (clause 3, in particular),

For k a successor, we we choose a € ¢;(M]) \ M/, we let p € S(N;_,) be an heir of tp(a, M"), and we
let b = p. By lemma 2, ¢;(acl(bN} _,)) C N;_, for every j < i. We let Nj be prime over acl(bN;_,). Then
by lemma 1, 1;(N{) C Nj_, for every j < i. So, by the induction hypothesis on Nj_,, ¥;(N}) = 1;(N;) as
desired.

When the construction of (N} |k < F(i)) is finished, we set N; = Uk<r@ Nji. Note that conditions
1 and 2 on our induction are satisfied trivially (as A C Ny C N;, and the N, ,i—construction added exactly
F(i) pieces of ¢;(M) to N;). Condition 3 is satisfied because of the induction hypothesis on the subsidiary

Nj-construction. O

Remark: Note that theorem 7 does not require us to start with an initial §-cardinal model which witnesses
all of the relevant cardinality splits simultaneously. We can start with a collection of models, each witnessing
a different cardinality split, and then parlay these models into a single §-cardinal model which exhibits some

desired sequence of cardinality splits.

Theorem 8 Let M D A be such that for every i <6, [i(M)| > |U;-;¢;(M)|. Let F: 6 — CARD be
increasing and such that for every i < 9, 0 +w < F (i) <|¢;(M)|. Then there exists Np < M such that
A C Np and for every i < ¢, |¢;(NF)| = F(3).

Proof. We construct by induction a strictly increasing sequence of models (N; |i < d), such that:
1. for every i, AC N; < M,
2. for every 1, |¢;(N;)| = |N;| = F(i), and
3. for every j < i <4, ¢;(N;) = ¢;(N;).

At the end of the day, we simply let Np = |J, 5 Ni.
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For i = 0, we apply the downward Léwenheim-Skolem theorem to obtain Ny < M such that A C Ny and
for every i < 4§, [¢;(No)| = |No| = F(0). For i > 0, we assume that N; has been defined for every j < i, and
we let N; = U;<; ;. Note that for j <, ¥;(N;) = h;(N;). Next, we let B; C 9;(M) be maximal such that
N; UB; is algebraically closed and for every j < i, 1/1j(]\7 UB;) C N;.

Claim: |B;| = |v;(M)]

Pf. Suppose |B;| < |;(M)|. As in the proof of theorem 5, we partition t;(M) \ B; via the equivalence
relation: @ ~ b <= a € acl(N; U B; U {b}). Since there are |¢;(M)| equivalence classes and < [¢;(M))|
elements in |{J;_; ¥;(M)|, some equivalence class does not intersect |J;_; ¥;(M)|. Adding this class to B;,

we contradict the maximality of B;. O (claim)

Let B) C B; be such that N; U B! is algebraically closed and |Bj| = F(i). Let N; < M be prime over
N; U B}. Clearly, A C N; and [;(N;)| = |N;| = F(i). Further, by lemma 1, 9;(N;) C N; for every j < i.
Hence, by the construction of N, 1;(N;) = 1;(N;) as desired. O
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