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Abstract

In this dissertation we study two-cardinal phenomena—both of the admitting cardinals variety and of the

Chang’s Conjecture variety—under the assumption that all our models have stable theories. All our results

involve two, relatively widely accepted generalizations of the traditional definitions in this area. First, we

allow the relevant subsets of our models to be picked out by (perhaps infinitary) partial types; second we

consider δ-cardinal problems as well as two-cardinal problems.

We begin by examining phenomena related to admitting cardinals, and we provide two separate methods

of obtaining cardinal transfer results. Suppose first that we are working with a countable language, and

that all the relevant subsets of our models are picked out by single predicates. In this context, it is well

known that certain types of two-cardinal phenomena are essentially equivalent to a strong type of forking

independence (Hrushovski’s foreignness). We generalize this result to obtain the following:

Theorem: Let N ≺ M , let Γ(x) be a partial type over N such that Γ(M) = Γ(N). Let a ∈ M \ N , let

p = tp(a,N), and suppose that one of the following conditions holds:

1. M and N are λ-compact and |Γ| < λ.

2. M and N are Faλ-saturated for some λ ≥ κ(T ) and Γ is over some A such that |A| < λ.

Then p is foreign to Γ.

Exploiting this theorem allows us to prove an initial collection of δ-cardinal transfer results. Roughly, we

use the initial existence of a collection of multi-cardinal models to obtain a sequence of types foreign to the

∞-definable sets whose sizes we wish to manipulate. We then obtain new multi-cardinal models by building

appropriately sized Morley sequences for these types and closing under some prime model constructions.

Next, we show that a second type of two-cardinal phenomenon implies the existence of large sets which

are indiscernible over specified parts of our models—i.e. those parts whose sizes we wish to manipulate.

By stretching and/or shrinking these sets of indiscernibles, and then applying some prime model theory, we

obtain a second collection of δ-cardinal transfer results.

Finally, we consider some variants of Chang’s Conjecture in the context of stable theories. Many of the

basic prime model constructions in this part of the dissertation are variants of the constructions used in

the admitting cardinals sections, relativized to work inside particular models. A central technical problem

involves splitting a model into various “large” sets which have relatively little to do with certain specified

ii



smaller sets. To solve this problem, we examine various methods for splitting up stable models; we obtain

the following result:

Theorem: Let A and B be arbitrary subsets of M. Then we can partition A into |B |<κr(T ) pieces 〈Ai | i <

|B |<κr(T )〉, such that for each Ai there is a Bi ⊆ B where |Bi| < κr(T ) and Ai ↓Bi B.

Using this result, we prove a series of δ-cardinal variants of Chang’s Conjecture.

In the course of our analysis, we consider the degree to which the result mentioned above provides optimal

methods for building “large” sets which are independent from certain specified smaller sets. We show that in

many cases—in particular, in cases in which the sets in question are contained within models of superstable

or totally transcendental theories—the result is optimal. In the general case in which the sets in question

are contained within models of arbitrary stable theories, the result is very close to optimal. In these cases,

we investigate the result’s optimality, both under the assumption that GCH holds and under the assumption

that the universe is “suitably generic” over some inner model in which GCH holds (though GCH and even

SCH may fail in the generic extension).
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Chapter 1

Classical Multi-Cardinal Phenomena

In this chapter, we develop a portion of the classical theory of multi-cardinal phenomena. Everything in

the chapter is either known or is an easy generalization of known results. The chapter introduces several

notational devices which are useful in later chapters; otherwise, notation throughout the dissertation is

standard (see section 1.2 for more on notation). Throughout the dissertation, we use basic facts about

model theory, including the theory of forking, freely. Facts unrelated to forking can be found in [CK] or [H];

facts related to forking can be found in [Ba], [Sh] or [Mk].

1.1 Introduction

The Upward Löwenheim-Skolem theorem says that every infinite model for a language L has an elementarily

equivalent model in every cardinality greater than |L|. The Downward Löwenheim-Skolem theorem says

that every infinite model M has an elementary submodel N in every cardinality such that |L| ≤ |N | ≤ |M |.

These theorems involve the cardinalities of a single definable subset of a given model (i.e. that defined by

“x=x”): they say that first order logic cannot pin down such cardinalities.

It is natural to conjecture that these theorems generalize from one definable subset of a model to two or

more such subsets. To formulate such conjectures, we employ a notation introduced by Vaught in [V]. Let

M be a model, and let P0, . . . , Pn be a series of predicates such that P0(M) ⊇ P1(M) ⊇ . . . ⊇ Pn(M). We

say that M is of type (κ ;λ0, . . . , λn) if |M | = κ and for each i < n, |Pi(M)| = λi. We say that a theory T

admits (κ ;λ0, . . . , λn) if there is a model M such that M is of type (κ ;λ0, . . . , λn) and M |= T .

Using this notation, the two cardinal version of the Upward Löwenheim-Skolem theorem says that if

κ > λ ≥ |L|, then any theory which admits (κ ;λ), admits every (κ ′;λ′). The two cardinal version of the

Downward Löwenheim-Skolem theorem says that if κ > λ, κ ′ ≥ λ′, κ ≥ κ ′ and λ ≥ λ′ ≥ |L|, then any M of

type (κ ;λ) has an elementary submodel of type (κ ′;λ′). Natural generalizations to three or more cardinals

can be formed in the obvious way.

Unfortunately, all of these natural generalizations are false. Robinson has produced a countable theory
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which admits (κ ;λ) exactly when κ ≤ 2λ. This is clearly enough to refute all of the generalizations in

question. Further, many special cases of the downwards two-cardinal conjecture appear to be independent

of ZFC. For the moment, let us consider only countable languages. Then we say that Chang’s Conjecture

holds between (κ ;λ) and (κ ′;λ′) just in case any model of type (κ ;λ) has an elementary submodel of type

(κ ′;λ′). Modulo the consistency of some lagre cardinal hypotheses, the following facts prove the independence

of certain instances of Chang’s conjecture:

• (Vaught) If V=L, then Chang’s Conjecture fails between (ω2;ω1) and (ω1;ω) and between (ω3;ω2)

and (ω2;ω1).

• (Silver) Con(ZFC + ‘there exists a Ramsey Cardinal’) =⇒ Con(ZFC + ‘Chang’s Conjecture holds

between (ω2;ω1) and (ω1;ω)’).

• (Koepke) If Chang’s Conjecture holds between (ω3;ω2) and (ω2;ω1), then there is an inner model with

a measurable cardinal.

It is important to note that the models used in getting such independence results tend to be models of

ZFC, or at least of certain fragments of ZFC (so instead of using the full strength of Chang’s Conjecture—

e.g., “for every model of type (κ;λ)”—we focus on particular transitive sets which reflect some portion of

Th(V ;∈), where V is the universe of sets). Even Robinson’s result involves coding the axiom of extensionality

into the theory in question.

All of this suggests that those of us model theorists who are interested in multi-cardinal phenomena, but

are perhaps less interested in the model theory of ZFC, should restrict the classes of models at which we

look. If we “toss out” particularly hard models, like those of set theory, we might find some interesting multi-

cardinal phenomena in the models left over. And these phenomena might be amenable to model theoretic,

as opposed to set theoretic, investigation.

In this dissertation, we investigate multi-cardinal phenomena in models whose theories are stable. There

are two reasons for focusing on this class of models. First, it is known that stable theories have quite a few

multi-cardinal models. Let us say that a formula φ(x; ā) is a two-cardinal formula for T if there is a

model M |= T such that ā ∈M and ω ≤ |φ(M ; ā)| < |M |. Then we know the following:

• (Shelah) If T is ω-stable but not uncountably catagorical, then T has a two-cardinal formula.

• (Hrushovski) If T is countable, superstable and has the finite cover property, then T has a two-cardinal

formula.

• (Hrushovski) If T is stable and has the finite cover property, then T eq has a two-cardinal formula.

These results show that stable theories provide a rich setting for investigating multi-cardinal phenomena

(though having shown this, we shall proceed to develop techniques for investigating such phenomena which

have nothing to do with the details of the above results).
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Second, focusing on stable theories allows us to make use of the theory of forking, and this theory provides

powerful tools for investigating the phenomena indicated by the above results. As we will see, the notions of

independence investigated in the theory of forking are closely related to the kinds of independence involved in

multi-cardinal phenomena—that is, the kinds of independence which allow us to manipulate the size of some

parts of a model while leaving other parts of the model fixed (see section 2.1 for more detailed discussion of

the interaction between these two kinds of independence). This makes the class of stable theories a natural

domain in which to examine multi-cardinal phenomena.

1.2 Notation & Conventions

Throughout the dissertation, we work with a fixed theory T in a fixed language L. T is complete, and we

assume that all models are models of T (so, all models have signature L). We also assume the existence of

a “monster model” M for T: M is a saturated model in some cardinality larger than any of the cardinals

in which we are interested (or, even just a λ-big model for some sufficiently large λ, see [H]). Since M is

saturated, it is both universal and strongly homogenous. So, we can regard all smaller models as elementary

submodels of M, and we can regard maps between smaller models as restrictions of automorphisms of M.

For the most part, our arguments do not require any of the additional structure afforded by expanding

our theory and working in M
q. But at several key points this style of argument becomes crucial—see

especially our use of Fna in chapters two and three. Since this expansion does not adversely affect any of

the properties we are interested in—stability, rank, cardinality of models, the isolation relations associated

with prime model theory, etc.—we find it convienient to assume that all of our arguments take place in Mq.

As this assumption is pervasive, we abuse notation and write “M” for Mq, “T” for T eq, and “L” for Leq. For

further information on Mq, see [Sh, III §6] or [Mk, Part B].

Throughout the dissertation, M,N, . . . denote models and A,B, . . . denote subsets of models. If M is

a model, then we use “M” also to denote the domain of M . Finite tuples are denoted by ā, b̄, c̄, . . . , and

we use ā ∈ A to mean that every element of ā is a member of A. We use α, β, γ, . . . to denote ordinals;

κ, λ, µ, . . . to denote infinite cardinals; m and n to denote natural numbers; and i, j, k and l to denote either

ordinals or natural numbers depending on the context.

Our notation concening stability theory follows that of [Mk]. In particular, we use a ↓A b to mean that

tp(a,A ∪ b) does not fork over A, and we use A BC B to mean that A dominates B over C. Sn(A) will

denote the collection of types over A in variables x1, . . . , xn, and AutA(M) will denote the automorphisms

of M which fix A pointwise. Similarly, S∗n(A) will denote the collection of strong types over A in variables

x1, . . . , xn, and Aut∗A(M) will denote the set of automorphisms of M which fix strong types over A (see [Sh,

III §2] or [Mk, Part 2] for information on strong types). Finally, we follow Shelah in using λ(T ) to denote

the first cardinal in which T is stable (so always λ(T ) ≤ 2|T |).

Often, we are concerned with our ability to define various sets inside of M. We will say that a set is
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definable if it is of the form ψ(M) for some ψ having parameters in M, and we will say that a set is ∞-

definable if it is an intersection of < |M| definable sets. A set is definable (∞-definable) over A if all the

parameters needed to define it come from A. A subset A of M is definable in M if there is a definable A′

such that A = M ∩A′ and all the parameters needed to define A′ come from M (similarly for ∞-definable).

Typically, the “in M ” part of this notation will be clear from context and will be omitted.

In several parts of the dissertation, we will need to work with various sequences of quasi-indiscernibles:

Definition 1.2.1 Let 〈Ii | i < δ〉 be a sequence of linearly ordered sets. We say that 〈Ii | i < δ〉 is a

sequence of (n,m)-indiscernibles iff for every strictly increasing f : m→ δ and every φ(x̄1, . . . , x̄m) a formula

taking n-tuples in each x̄i spot, and every ā1, . . . , ām and b̄1, . . . , b̄m sequences of n-tuples, if āi and b̄i

come (elementwise) from If(i) and are increasing in the order on If(i), then M |= φ(ā1, . . . , ām) iff M |=

φ(b̄1, . . . , b̄m).

If the φ’s in this definition are allowed to have parameters from A, then we say that 〈Ii | i < δ〉 is a sequence

of (n,m)-indiscernibles over A. If 〈Ii | i < δ〉 is a sequence of (n,m)-indiscernibles (over A) for every n and

m, then we say 〈Ii | i < δ〉 is a sequence of (ω, ω)-indiscernibles (over A).

Let 〈Ii | i < δ〉 be a sequence of (n,m)-indiscernibles. For each i < δ, let 〈aij | j < ω〉 be an increasing

sequence of elements from Ii. Let ∆ be the (infinitary) type of {aij | j < ω, i < δ} in free variables

{xij | j < ω, i < δ}. The (n,m)-type of 〈Ii | i < δ〉 is the set of all φ ∈ ∆ such that there are at most m

superscripts on the xij represented in φ and such that for fixed i, there are at most n subscripts on the xij

represented in φ. Note that this definition is independent of our initial choice of the aij , but it does depend

on viewing 〈Ii | i < δ〉 as a set of (n,m)-indiscernibles. When there is no ambiguity, we will often drop the

“(n,m)” and talk simply of the type of 〈Ii | i < δ〉

Vaught’s notion of a model’s being of type (κ ;λ0, . . . , λn) has two drawbacks. First, it only makes sense

for finite sequences of cardinals (since the cardinals of a type are arranged in decreasing order); second,

it assumes that the relevant subsets of a model M are picked out by predicates (rather than being, say,

∞-definable over M). To deal with these drawbacks, we modify Vaught’s definition somewhat. Throughout

the dissertation, we let 〈A i | i < δ0〉 be a fixed collection of subsets of M. Then:

Definition 1.2.2 A model M is of type (κ ;λ0, . . . , λi, . . .)i<δ0 , if |M | = κ and for every i < δ0, |M ∩A i| =

λi. M is an F -model if F : δ0 → CARD and the type of M is (κ;F (0), . . . , F (i), . . .)i<δ0 for some κ.

So, we do not require that there be any relations between the sets M ∩ A i; and the only restriction on the

cardinals in a type (κ ;λ0, . . . , λi, . . .)i<δ0 is the implicit one: for all i, κ ≥ λi. Nor do we require that the

A i be definable (or even ∞-definable). However, if the A′is are supposed to be definable, or ∞-definable,

then we will usually insist that they be definable using only parameters from M .
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1.3 An Extension of Vaught’s Theorem

In [V 65], Vaught proved that any theory in a countable language which admits some (iω(κ);κ) admits

every (χ ;λ). In this section, we generalize Vaught’s theorem in three ways: we examine the situation for

uncountable languages, we examine what happens when the subsets of our models are ∞-definable (rather

than simply being picked out by predicates in L), and we examine some extensions Vaught’s theorem from

the two-cardinal case to the δ-cardinal case.

We begin by fixing some notation (to be used only in this section). Let κ be the cardinality of L, let

〈Γi(x) | i < δ〉 be a fixed sequence of (perhaps partial) types over ∅, and let M be a fixed model. We say

〈Ii | i < δ〉 is a set of (n,m,Γ)-indiscernibles if

• Each Ii is a linearly ordered subset of Γi(M) where Γi(M) ≡df {m ∈ M : for every φ(x) ∈ Γ,M |=

φ(m)}.

• For every j, 〈Ii | j ≤ i < δ〉 is a set of (n,m)-indiscernibles over
⋃
k<j

Γk(M).

When necessary, we replace L by some Skolem expansion of L; at such points, we assume that M remains a

model for the expanded language.

A key tool in the proof of Vaught’s theorem is a result on partitions which was proved by Erdös and

Rado. To state this result, we need to introduce some more notation. We will write,

λ −→ (µ)nν (1.1)

to mean that if X is a linearly ordered set of cardinality λ and [X]n is partitioned into ν pieces, then there

exists Y ⊂ X such that |Y | = µ and all the (increasing) n-tuples from Y are in the same piece of the given

partition. This notation has the property that whenever a fact of the form 1.1 holds, it will still hold when

λ is made larger and/or when µ, ν and n are made smaller.

Given this notation, the original version of the Erdös-Rado theorem can be written as

(in−1(λ))+ −→ (λ+)nλ (1.2)

For our purposes in this section, it is useful to modify this version of the theorem a little. By replacing λ

in the original theorem with iα(λ) and then manipulating the cardinals on both sides of the arrow (making

those on the left larger, and those on the right smaller) we obtain.

iα+n(λ) −→ (iα(λ))n2λ (1.3)

Note the immediate relevance to model theory. If A is a set of size λ ≥ |L|, then there are at most 2λ

n-types over A. This induces a natural partition on [X]n for any X ⊃ A. So, if |X| ≥ iα+n(λ), we can find

a Y ⊂ X such that |Y | = iα(λ) and Y is n-indiscernible over A. The next lemma extends this idea to find

(n,m,Γ)-indiscernibles.
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Lemma 1.3.1 Let |Γ0(M)| > iα+nm(κ) and |Γi(M)| > iα+nm(supj<i(|Γj(M)|)) for 0 < i < δ. Then

we can find a sequence of (n,m,Γ)-indiscernibles 〈Ii | i < δ〉 such that |I0| ≥ iα(κ) and for i > 0, |Ii| ≥

iα(supj<i(|Γj(M)|)).

Remark: If desired, we can make each Ii live in some specified subset of Γi(M), providing that this subset

has cardinality greater than iα+nm(supj<i(|Γj(M)|)) ).

Proof of Lemma. The proof is by induction on m keeping n fixed but letting α be variable. Let m = 1 and let

α be such that |Γ0(M)| > iα+n(κ) and |Γi(M)| > iα+n(supj<i(|Γj(M)|)). Then we apply the Erdös-Rado

theorem as above to find in each Γi(M) a set of n-indiscernibles over
⋃
j<i

(Γj(M)) of size iα(supj<i(|Γj(M)|))

(for i = 0, we get cardinality iα(κ) ).

So let m > 1 and let α be such that the hypothesis of the lemma hold. By the induction hypothesis for

α+n in place of α, we can find (n,m−1,Γ)-indiscernibles 〈Ii | i < δ〉 such that |I0| ≥ iα+n(κ) and for i > 0,

|Ii| ≥ iα+n(supj<i(|Γj(M)|)). For each i, let Ji be an (ordered) n-tuple from Ii; and let J =
⋃
i<δ

Ji. Applying

the Erdös-Rado theorem again, we can find within each Ii an Ii ′ such that |Ii ′| ≥ iα(supj<i(|Γj(M)|)) and

Ii
′ is n-indiscernible over J ∪

⋃
j<i

(Γj(M)) (for i = 0, we get |I ′0| ≥ iα(κ) and I ′0 n-indiscernible over J).

Now I claim that 〈Ii ′ | i < δ〉 is the desired sequence of (n,m,Γ)-indiscernibles. For let ā1, . . . , ām and

b̄1, . . . , b̄m be sequences of n-tuples such that for some strictly increasing f : m→ δ, āi and b̄i come from I ′f(i)

and are increasing in the order on I ′f(i). Let φ(x̄1, . . . , x̄m) be a formula with parameters from
⋃

j<f(1)

Γj(M)

which takes n-tuples in each x̄i spot. Then we have,

M |= φ(ā1, ā2, . . . , ām) ⇐⇒ M |= φ(ā1, J̄f(2) . . . , J̄f(m)) (1.4)

⇐⇒ M |= φ(b̄1, J̄f(2) . . . , J̄f(m)) (1.5)

⇐⇒ M |= φ(b̄1, b̄2 . . . , b̄m) (1.6)

Here, (1.4) and (1.6) follow from the fact that 〈Ii | f(1) < i < δ〉 is a set of (n,m − 1)-indiscernible over⋃
j≤f(1) Γj(M); (1.5) follows from the fact that I ′f(1) is n-indiscernible over J ∪

⋃
j<f(1)(Γj(M)). �

Ideally, we would like to extend this this lemma to generate a large set of (ω, ω,Γ)-indiscernibles in M. If L

were skolemized, this would be enough to get the multi-cardinal results we are after: by stretching (and/or

shrinking) these sets of indiscernibles and then closing under Skolem functions we could build models of

arbitrary type.

Unfortunately, this does not always work: no matter how large the “splits” between the cardinalities of

the Γi’s get, we may be unable to ensure the existence of (ω, ω,Γ)-indiscernibles in M. We can, however, use

the techniques of our lemma to finitely approximate such a set of indiscernibles. If we are careful, this will

be sufficient for proving our multi-cardinal results.

Lemma 1.3.2 Let µ = (i(κ + |δ|))+ and let |Γi(M)| > iµ(supj<i(|Γj(M)|)) for all i. Then there exists a

set of (ω, ω)-indiscernibles 〈Ii | i < δ〉 such that each Ii is a subset of Γi(M) and
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(†) Whenever f is a function in L, ā and ā′ are “matching” tuples from
⋃

j<i<δ

Ii, and b̄ is a tuple from⋃
k≤j

Ik : M |= Γj(f(b̄, ā)) =⇒ M |= f(b̄, ā) = f(b̄, ā′).

Proof. We begin by constructing a sequence of approximations to the desired set of indiscernibles (or, more

precisely, a sequence of sequences of aproximations to this set). We build 〈 〈 〈Ii | i < δ〉j | j < µ〉k | 1 ≤ k < ω 〉,

satisfying the following conditions:

1. for every i, j, k, |Ii,j,k | ≥ ij(supl<i(|Γl(M)|)).

2. for every j, k, 〈Ii | i < δ〉j,k is a set of (k, k,Γ)-indiscernibles.

3. for fixed k, all of the 〈Ii | i < δ〉j,k share a common type.

4. for k < k′, the type of 〈Ii | i < δ〉1,k′ extends that of 〈Ii | i < δ〉1,k.

Construction: (by induction on k) Let k = 1 and let j < µ. By the last lemma, we can find a set of (1, 1,Γ)-

indiscernibles 〈Ii | i < δ〉j such that for every i, |Ii| ≥ ij(supl<i(|Γl(M)|)) (note that j < µ ⇒ j + 1 < µ).

As there are at most i(κ+ |δ|) different types for (1, 1)-indiscernibles, we can find a sequence of j’s which

is cofinal in µ such that the associated 〈Ii | i < δ〉j all share the same type. Relabeling this sequence along

µ (instead of some cofinal subset of µ) we get the desired 〈 〈Ii | i < δ〉j | j < µ〉1.

So let k > 1. Again, let j < µ. By the induction hypothesis, we know that each Ii,j+kk+1,k−1 has

cardinality ≥ ij+kk+1(supl<i(|Γl(M)|)). So, by our last lemma (and the remarks following that lemma),

we can find a set of (k, k,Γ)-indiscernibles 〈Ii | i < δ〉j such that for every i, |Ii| ≥ ij(supl<i(|Γl(M)|)) and

Ii ⊂ Ii,j+kk+1,k−1.

Again, there are at most i(κ + |δ|) different types for (k, k)-indiscernibles, so from here our argument

proceeds as above. Note that conditions 1–3 are preserved explicitly here; and by choosing Ii ⊂ Ii,j+kk+1,k−1,

we ensure that condition 4 is preserved as well.

For every k < ω, view 〈Ii | i < δ〉1,k as a set of (k, k)-indiscernibles and let ∆k be its (k, k)-type. Let

∆ =
⋃
k<ω

∆k. Clearly, ∆ is a consistent set of formulas. Let 〈Ii | i < δ〉 realize ∆ (where each Ii is of the

form 〈cij | 1 ≤ j < ω〉).

Claim: 〈Ii | i < δ〉 is the desired set of (ω, ω)-indiscernibles.

Proof of Claim. For each k, the fact that ∆ ⊃ ∆k ensures that 〈Ii | i < δ〉 is a set of (k, k)-indiscernibles;

since this holds for every k < ω, 〈Ii | i < δ〉 is a set of (ω, ω)-indiscernibles. Further, since every element in

Ii has the same type as the elements of Ii,1,1, Ii is a subset of Γi(M).

So we only need to ensure that 〈Ii | i < δ〉 satisfies (†). Let f be a function in L, let ā and ā′ be

“matching” n-tuples from
⋃

j<i<δ

Ii, and let b̄ be an m-tuple from
⋃
k≤j

Ik. Suppose, towards a contradiction,

that M |= Γj(f(b̄, ā)) ∪ {f(b̄, ā) 6= f(b̄, ā′)}. Let c̄, c̄′, d̄ be tuples from 〈Ii | i < δ〉2,2n+m which “match”

ā, ā′, b̄ (vis-a-vis all the relevant orders). Since ∆ ⊃ ∆2n+m, M |= Γj(f(d̄, c̄)) ∪ {f(d̄, c̄) 6= f(d̄, c̄′)}. Because

〈Ii | i < δ〉2,2n+m is a set of (2n+m, 2n+m,Γ)-indiscernibles, and because there are at least i2(|Γj(M)|)
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distinct sequences in 〈Ii | i < δ〉2,2n+m which “match” c̄, we generate i2(|Γj(M)|) distinct elements of Γj(M).

Since this is a contradiction, (†) must be satisfied. � (claim, lemma)

Theorem 1.3.3 Let µ = (i(κ+ |δ|))+ and let |Γi(M)| > iµ(supj<i(|Γj(M)|)) for all i. Then for any non-

decreasing f : δ → CARD such that κ + |δ| ≤ f(0), there exists a model N such that for every i < δ,

|Γi(N)| = f(i).

Proof. W.L.O.G. we may assume that L is completely skolemized (so existential formulas are witnessed by

Skolem functions, not just by Skolem terms). If L is not completely skolemized, we simply replace L by a

complete Skolem expansion which preserves M as a model; this expansion does not change the cardinality of

L. Let 〈Ii | i < δ〉 be a set of (ω, ω)-indiscernibles as from the last lemma. By compactness, we can replace

〈Ii | i < δ〉 with a sequence 〈Ji | i < δ〉 such that 〈Ji | i < δ〉 has the same type as 〈Ii | i < δ〉 and for every

i, |Ji| = f(i).

Let N be the model generated by closing
⋃
i<δ

Ji under Skolem functions. Then I claim that N is the

desired model. For let i < δ. As Ji ⊂ N ∩ Γ(M), we have |Γ(N)| ≥ f(i). Further, every element in Γ(N) is

of the form F (ā, b̄) where ā ∈
⋃

i<j<δ

Jjand b̄ ∈
⋃
j≤i

Jj . By our choice of 〈Ji | i < δ〉, this form is independent

of the choice of ā, at least up to a matching in all the relevant orders. But, there are only |δ| different

types for ā vis-a-vis these orders. So, there are at most κ · |δ| · (supj≤i f(j)) distinct elements in Γ(N). As

κ · |δ| · (supj≤i f(j)) ≤ f(i), we are done. �

So, when we are dealing with∞-definable sets, it does not matter how many sets are in question. As long

as we can find a model where the cardinality differences between these sets is large enough, we can find a

model of any type we desire. To summarize this section, then, and to make all the accumulated background

assumptions explicit, we give the following:

Corollary 1.3.4 Suppose that each A i in 〈A i | i < δ0〉 is ∞-definable over ∅. Let µ = (|L|+ |δ0|)+. Suppose

that there exists an F -model for some F such that for every i < δ0, F (i) > iµ(supj<i(F (j))). Then for any

nondecreasing F ′ : δ0 → CARD such that |L|+ |δ0| ≤ F ′(0), there will also be an F ′ model.
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Chapter 2

Admitting Cardinals in Stable

Theories

In [Sh69], Shelah proved that any stable theory which admits some (κ;λ) where κ > λ admits every (κ′;λ′)

for κ′ ≥ λ′ ≥ |L| (in Shelah’s result, λ and λ′ measure subsets which are picked out by some unary predicate

P ). Later, Forrest proved an n-cardinal version of this result under the (significantly stronger) assumption

of ω-stability, see [F].

In [La], Lachlan proved that for countable theories we can get the following strengthening of Shelah’s

result: if P (M) ⊂ N � M , then there exists M ′ such that M � M ′ and P (M ′) ⊂ N . Harnik showed that

Lachlan’s theorem can be generalized to the case in which M and N are λ-compact for some λ ≥ µ(T ) and

P is replaced by some type Γ(x) of cardinality < λ; here, L is allowed to be uncountable, but M is not

allowed to be an arbitrary model (even when Γ is finite), see [Ha].

Each of these results exploits two features of stable theories: the presence of a nice notion of independence

(non-forking) and the existence of a nice theory of prime models (which varies from proof to proof). The

strategy in this chapter is to isolate the distinct roles these two features play in explaining multi-cardinal

phenomena. In section 2.1, we show that one class of multi-cardinal phenomena is essentially equivalent to

a certain (quite strong) variety of forking independence. This result leads to several generalizations of the

results mentioned above. Most notably, it facilitates extensions from the two-cardinal case to the δ-cardinal

case for arbitrary δ. Also, it permits some weakening of the hypotheses traditionally used in two-cardinal

theorems (see the remarks following theorem 2.3.3).

In 2.4, we distinguish a second class of multi-cardinal phenomena. This class of phenomena has relatively

little to do with forking independence and is best analyzed by looking at the details of certain “prime model”

constructions. Recognizing this allows us to prove a second δ-cardinal theorem for infinite sets of formulas.

Throughout this chapter, T is assumed to be stable.
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2.1 Two-Cardinal Models and Foreign Types

In this section, we examine the relationship between forking independence and the independence involved

in multi-cardinal phenomena. In particular, we show that the existence of a certain kind of multi-cardinal

phenomena is equivalent to the existence of a certain kind of forking independence. The following definition,

due to Hrushovski, is central:

Definition 2.1.1 Let Γ(x̄) be a partial type over A and let p ∈ S(B). We say that p is foreign to Γ(x) if

for every A′ ⊃ A ∪ B and every p′ ∈ S(A′) a non-forking extension of p, if M |= p′(a) and M |= Γ(c̄), then

a ↓A′ c̄.

Remarks: When working with foreign types, the following facts are quite useful. We state them without

proof, as their proofs are simple exercises in manipulating the non-forking relation.

1. Let p be foreign to Γ. If p′ is a non-forking extension of p, p′ is foreign to Γ. If p does not fork over A

and p � A is stationary, then p � A is foreign to Γ.

2. Let p be stationary and foreign to Γ. Then for any α, p(α) is foreign to Γ.

3. Let p be foreign to Γi(x) for i < n. Let Γ(x1, . . . , xn) = Γi1(x1)∪ . . .∪Γin(xn). Then p is foreign to Γ.

Our next goal is to prove that the existence of multi-cardinal phenomena can entail the existence of (certain

instances of) foreignness. We prove this through a series of lemmas.

Lemma 2.1.2 Let M be a model, let Γ(x) be a partial type over M , and let a ∈M be such that a |= Γ.

Suppose that one of the following conditions holds:

1. M is λ-compact and |Γ| < λ.

2. M is λ-saturated and Γ is over some A ⊂M such that |A| < λ.

Then a ↓Γ(M) M .

Proof. Let θ(x,m) ∈ tp(a,M). As Γ(x) ∪ {θ(x,m)} is consistent, it must be realized in M (either because

|Γ(x) ∪ {θ(x,m)}| < λ, or because |A ∪ {m}| < λ). Further, it must be realized by some m ∈ Γ(M). So,

for any N ⊃ Γ(M), θ(x,m) is realized in N. This entails that θ(x,m) does not fork over Γ(M). As θ was

arbitrary, we are done. �

Lemma 2.1.3 Let M be a λ-compact model. Let Γ(x) be a partial type over M such that |Γ| < λ and let

p ∈ S(M). Then the following conditions are equivalent

1. There exists a |= p such that for every b |= Γ, a ↓M b.

2. For every a |= p and every b |= Γ, a ↓M b.

3. p is foreign to Γ
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Proof. We prove 1⇒ 2, 3⇒ 1, and ¬3⇒ ¬2.

1⇒ 2: Let a be as in 1, and let a′ |= p. Let F ∈ AutMM take a to a′. Since F fixes Γ(M) (as a set), a′

inherits the relevant property.

3⇒ 1: Trivial.

¬3 ⇒ ¬2: Suppose p is not foreign to Γ. Then we can find A ⊃ M , p′ a non-forking extension of p in

S(A), a |= p′ and b |= Γ such that tp(a,A ∪ b) forks over A. Since tp(a,A ∪ {b}) is not an heir of p, there is

some θ(x, y, x,m) ∈ L(M) and a ∈ A such that, |= θ(a, b, a,m) but for no m,m′ ∈M , |= θ(a,m,m′,m).

Let dp be a defining scheme for p. For each ∆(x), a finite sequence of formulas from Γ(x), we define

∆†(a, a,m,m1, . . . ,mn) ≡ ∃x[θ(a, x, a,m) ∧ ψ1(x,m1) ∧ . . . ∧ ψn(x,mn)] (2.1)

where ∆ = 〈ψ1, . . . , ψn〉. For any such ∆, we clearly have

|= (dpx)∆†(x, a,m,m1, . . . ,mn). (2.2)

View (2.2) as a schema which produces |Γ| formulas over M ∪ a. As M is λ-compact, we can find m′ ∈ M

such that for all ∆ as above,

|= (dpx)∆†(x,m′,m,m1, . . . ,mn). (2.3)

So, by the definition of ∆† and some basic facts on defining schemes, we have for any ψ1, . . . ψn in Γ,

|= ∃x[θ(a, x,m′,m) ∧ ψ1(x,m1) ∧ . . . ∧ ψn(x,mn)]. (2.4)

By compactness, then, we can find some b′ |= Γ such that |= θ(a, b′,m′,m). And by our original choice of θ,

this entails that tp(a,M ∪ b′) forks over M . But this contradicts 2. �

Lemma 2.1.4 Let M be Faλ-saturated for λ ≥ κ(T ). Let A ⊂M such that |A| < λ and let Γ(x) be a partial

type over A. If p ∈ S(M), then the following conditions are equivalent.

1. There exists a |= p such that for every b |= Γ, a ↓M b.

2. For every a |= p and every b |= Γ, a ↓M b.

3. p is foreign to Γ

Proof. Similar to the previous lemma. The key thing to notice is that M being Faκ(T )-saturated means that

M is good. Hence, in the proof of ¬3 ⇒ ¬2, we can choose our defining scheme to be over some A′ ⊂ M

such that |A′| < κ(T ). So, the set of formulas generated in the analog of (2.2) will be over A ∪A′ ∪ {a}. As

|A ∪A′| < λ, and Faλ-saturation implies λ-saturation, we can proceed as in the previous lemma. �

Remark: Recall that for λ > ℵ0, Faλ-saturation is the same as λ-saturation. And if T is ω-stable, then

Faℵ0
-saturation is the same as ℵ0-saturation. So in general, the amount of saturation needed in this lemma

is just barely enough to bound the size of Dom(Γ). However, if Dom(Γ) is finite and T is not ω-stable, then

we may need a little bit more.
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Lemma 2.1.5 Let N ≺M and let Γ(x) be a partial type over N such that Γ(M) = Γ(N). Let a ∈M \N ,

let p = tp(a,N), and suppose that one of the following conditions holds:

1. M and N are λ-compact and |Γ| < λ.

2. M and N are Faλ-saturated for some λ ≥ κ(T ) and Γ is over some A such that |A| < λ.

Then p is foreign to Γ.

Proof. Suppose first that condition 1 holds. Let b |= Γ. If b ∈ M , then trivially a ↓N b. If b /∈ M , then by

2.1.2, b ↓Γ(M) M . As Γ(M) ⊂ N and a ∈ M , b ↓N a. As b is arbitrary here, 2.1.3 implies that p is foreign

to Γ.

Suppose next that condition 2 holds. Then a similar argument will go through if we substitute the

reference to 2.1.3 by one to 2.1.4 (also we note that M Faλ-saturated implies M λ-saturated when we cite

2.1.2). �

Remarks: If M is λ-compact (Faλ-saturated) and the cardinality of M is significantly greater than that of

Γ(M) then we can find N � M such that N is also λ-compact (Faλ-saturated) and Γ(M) ⊂ N. By the last

lemma, this is enough to insure the existence of types foreign to Γ. So, we have one half of the relationship

between multi-cardinal phenomena and forking-independence: at least under certain conditions, the existence

of multi-cardinal phenomena, vis-a vis a partial type Γ, entails the existence of complete, stationary types

foreign to Γ.

To exploit this relationship between multi-cardinal phenomena and forking independence, we need a

better idea of what the difference between the cardinalities of M and Γ(M) has to be in order to generate

the N mentioned in 2.1.5. The following list gives a number of conditions which guarantee the existence of

such an N (and so, also, the existence of types foreign to Γ). Items 1–3 work for arbitrary stable theories;

items 4–5 require that T be totally transcendental.

1. M is λ-compact, |Γ| < λ and |M | > (|Γ(M)|+ |T |)<λ.

2. M is λ-compact, |Γ| < λ and |M | > λ(T ) + |Γ(M)|<κ(T ).

3. M is Faλ-saturated for some λ ≥ κ(T ), Γ is over some A such that |A| < λ, and |M | > λ(T ) +

|Γ(M)|<κ(T ).

4. M is λ-compact, |Γ| < λ and |M | > |Γ(M)|+ |T |.

5. M is Faλ-saturated, Γ is over A where |A| < λ, and |M | > |Γ(M)|+ |T |.

The proofs that these conditions work are trivial, and we omit them here.

Next, we want to see that the relationship between multi-cardinal phenomena and forking independence

runs both ways. Recall that two stationary types, p and q, are parallel iff there is a third type r which is a

non-forking extension of both p and q. By the remarks following definition 2.1.1, we can see that foreignness
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is preserved under parallelism–i.e. if p and q are parallel and p is foreign to Γ then q is also foreign to Γ.

Recall also that if p is stationary and foreign to Γ, then p(α) is foreign to Γ for any α. Using these facts, we

get the following theorem.

Theorem 2.1.6 Let p be stationary, let Γ be a partial type over some set A, let λ > |A|+ |T |, and let α > 0

be arbitrary. Then the following are equivalent:

1. p is foreign to Γ

2. There exist Fa|A|+-saturated models N � M such that A ∪ Γ(M) ⊂ N and for some m ∈ M \ N ,

tp(m,N) is parallel to p.

3. Like 2, except that M and N are Faλ-saturated and |M | > iα(|N |).

4. Like 2, except that M and N are |Γ|+-compact.

Proof. 3 ⇒ 2 and 3 ⇒ 4 are trivial; 2 ⇒ 1 and 4 ⇒ 1 follow from 2.1.5 plus the comments preceeding this

theorem. So, we only need 1⇒ 3.

Let N be Faλ-saturated such that A∪Dom(p) ⊂ N and let q be the non-forking extension of p to N . Let

I be a Morley Sequence for q of length iα+1(|N |), and let N [I] be Faλ-prime over N ∪ I. Since tp(I,N) is

foreign to Γ, N [I] ∩ Γ(M) ⊂ N . Setting M = N [I] and letting m be an arbitrary element of I, we are done.

�

Corollary 2.1.7 Let Γ be a partial type over A. Then the following are equivalent:

1. There exists a complete, stationary type p which is foreign to Γ.

2. For arbitrarily large λ and α there exist Faλ-saturated models M such that A ⊂ M and |M | >

iα(|Γ(M)|).

Proof. 1 ⇒ 2 is a trivial application of the theorem. 2 ⇒ 1 follows from the remarks immediately after

lemma 2.1.5. �

So, with respect to a particular type p and partial type Γ, the above theorem completely characterizes

the relationship between two-cardinal phenomena and forking independence. The corollary characterizes the

relationship in more general terms (i.e. without mentioning a specific p). Note that all of the conditions

listed two pages back are entailed by 2 in the corollary, and each of them entails 1.

2.2 Prime Models

The results of the last section give us a general strategy for moving from one multi-cardinal model to

another. We use the first model to insure the existence of a collection of types foreign to the ∞-definable

sets in question; then we use some prime model theory to build models with the desired cardinalities.
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This strategy depends on the existence of a nice theory of prime models (for instance, we would like our

theory to allow the construction of prime models in as many cardinalities as possible). The present section

surveys some results in and around the theory of prime models. Some of these results will remain unused

until we get to chapter 3, but it seems convenient to include them here, rather than including a second section

on prime models later in the dissertation. With the exception of 2.2.8, all of the results in this section are

essentially present in the existing literature.

Throughout the dissertation, our notation concerning prime model construction will follow that in [Sh];

also, we will assume a basic familiarity with the results there (see chapter IV in particular). The nicest

results concerning prime models involve two particular notions of isolation: Faλ and Ftλ. In dealing with

these notions, the following notation is helpful:

Definition 2.2.1 A notion of isolation is standard if it is of the form Fxλ where x = t, and λ ≥ µ(T ); or

where x = t, λ = ℵ0 and T has Skolem functions; or where x = a and λ ≥ κ(T ). In any case, we assume

that λ is regular.

Note here that Ftλ-saturation is the same as λ-compactness and that Faλ-saturation is almost the same as

λ-saturation (see the remarks following 2.1.4).

Standard isolation notions have several properties which make them useful for our purposes. The following

three are of particular importance:

1. For any A, there is an F-prime, F-constructible model over A.

2. For any A, the F-prime model over A is unique up to isomorphism over A.

3. If M is F-saturated and M [A] is F-prime over M ∪A, then A BM M [A].

The proofs that properties 1-3 hold are standard and can be found in chapters IV and V of [Sh] or in

chapters IX and X of [Ba]. Property 3 is actually a consequence of a stronger property: for standard F, if

M is F-saturated and A ↓M B, then tp(M [A],M ∪A) ` tp(M [A],M ∪A∪B). This stronger property, along

with 2 above, allows us to prove the following:

Proposition 2.2.2 Let F be standard, let M0 be F-saturated, and let 〈Ei | i < δ〉 be independent over M0.

For x = 1, 2 and i ≤ δ, let Mx
i satisfy the following conditions: Mx

0 = M0, Mx
i+1 is F-prime over Mx

i ∪ Ei,

and for limit i, Mx
i is F-prime over

⋃
j<i

Mx
j . Let E denote

⋃
i<δ

Ei. Then,

1. Mx
δ is F-prime over M0 ∪ E.

2. There exists F ∈ Aut(M0∪E)M such that for every i ≤ δ, F (M1
i ) = M2

i

Proof. 1. (Baldwin) For i < δ, let ~Ai be a construction of Mi over
⋃
j<i

Mi ∪
⋃
j<i

Ej . The property mentioned

above ensures that ~Ai is actually a construction over
⋃
j<i

Mi∪E. So, pasting all these constructions together—

in the obvious order—we get a construction of Mx
δ over M0 ∪ E. This gives 1.
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2. We build a sequence 〈Fi | i ≤ δ〉 with the following properties:

a. For every i, Fi ∈ Aut(M0∪E)M

b. For k ≤ i, Fi(M1
k ) = M2

k

c. For i < j, Fi � (M1
i ∪ E) = Fj � (M1

i ∪ E)

When we are done, Fδ will be the desired map.

We start by letting F0 be the identity on M. Given Fi, we notice that Fi(M1
i+1) is isomorphic to M2

i+1

over M2
i ∪ Ei. Further,

⋃
j>i

Ej ↓M0 M
2
i ∪ Ei (by 1 in this proposition and property 3 above). So, Fi(M1

i+1)

is isomorphic to M2
i+1 over M2

i ∪ E. Letting G ∈ AutM witness this, we set Fi+1 = G ◦ Fi.

For i limit, we first define a map G as follows. For m ∈ (
⋃
j<i

M1
j ∪ E), we let G(m) = m′ iff Fj(m) = m′

for arbitrarily large j < i. G is clearly an elementary map from M to M. Let G′ be an automorphism of M

extending G.

From here we proceed as in the first case: as G′(M1
i ) is isomorphic to M2

i over
⋃
j<i

M2
j , and as

⋃
j≥i

Ej ↓M0⋃
j<i

M2
j , we get that G′(M1

i ) is isomorphic to M2
i over

⋃
j<i

M2
j ∪ E. Let G′′ be an automorphism of M

witnessing this fact and set Fi = G′′ ◦G′. �

Many useful properties of Faλ can be “relativised” to work within a particular model M (where M is not

necessarily Faλ-saturated). The following definition fixes some notation for working in such a context.

Definition 2.2.3 Let A, B and C be subsets of D. We say that A is Faλ-saturated in D (A ≺aλ D) if

whenever q is a partial type almost over some A′ ⊆ A where |A′| < λ, if q is realized in D, then q is realized

in A. We say A is Faλ-maximal in D if no d ∈ D \ A is Faλ-isolated over A. We say that A dominates B

over C in D (A BDC B) if for any d̄ ∈ D,

d̄ ↓C A =⇒ d̄ ↓C B

If D = M, then these notions reduce to the ordinary ones. A is Faλ-maximal in M iff A is Faλ-saturated in M

iff A is Faλ-saturated; A BMC B iff A BC B.

For our purposes, these notions are useful primarily when D is a λ-compact model for some λ ≥ κr(T ).

Many facts concerning the Faκ(T )-saturated case carry over to this case. The following are of particular

importance.

Fact 2.2.4 Let λ ≥ κ(T ). Suppose M is λ-compact, and suppose A is Faλ-maximal in M . Then A is also a

λ-compact model.

Proof. Let Γ(x) be a partial type over A such that |Γ| < λ. We set Γ = Γ0 and try to find an increasing

sequence of partial types 〈Γi(x) | i < κ(T )〉 such that:

1. Each Γi is consistent and over A.
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2. For every i, there is a unique ϕ ∈ Γi+1 \ Γi.

3. For every i, the ϕ mentioned in 2 forks over dom(Γi).

Suppose we succeed here. Let b |=
⋃

i<κ(T )

Γi(x) and let pi = tp(b, dom(Γi)). Then 〈pi | i < κ(T )〉 will be a

forking chain of length κ(T ).

Since this is a contradiction, there must be some i < κ(T ) such that the requisite ϕi cannot be found.

This means that for any b |= Γi(x), b ↓dom(Γi) A. So, tp(b, A) ∈ Faλ(dom(Γi)). Since M is λ-compact, we can

find b ∈M such that b |= Γi(x); so tp(b, A) is Faλ-isolated. And as A is Faλ maximal in M , b ∈ A as desired.

�

Fact 2.2.5 Let λ ≥ κr(T ), let A be Faλ-maximal in D, let b and A′ be subsets of D such that b /∈ A. If

tp(b, A ∪A′) is Faλ-isolated, then b 6↓A A′.

Proof. Suppose b ↓A A′. Then tp(b, A) is Faλ-isolated. This contradicts the maximality of A in D. �

Fact 2.2.6 Let λ ≥ κr(T ), let A be Faλ-maximal in D, and suppose A′ ↓A D. If b /∈ A and tp(b, A ∪ A′) is

Faλ-isolated, then b /∈ D.

Proof. Suppose b ∈ D. As tp(b, A ∪ A′) is Faλ-isolated and b ↓A A′, tp(b, A) is Faλ-isolated. Again, this

contradicts the maximality of A in D. �

Fact 2.2.7 Let λ ≥ κr(T ), let N be Faλ-saturated in D, let A1 ⊂ M, A2 ⊂ D such that A1 ↓N A2. If

tp(b,N ∪A1) is Faλ-isolated, then

stp(b,N ∪A1) ` tp(b,N ∪A1 ∪A2).

Proof. W.L.O.G. we may assume A2 is finite and |A1| < λ. Let B1 ⊆ N such that |B1| < λ and stp(b, B1 ∪

A1) ` stp(b,N ∪A1); let B2 ⊆ N such that |B2| < λ and A1 ∪A2 ↓B2 N ; let B = B1 ∪B2.

Suppose, towards a contradiction, that stp(b,N∪A1) 0 tp(b,N∪A1∪A2). Then stp(b, B∪A1) 0 tp(b,N∪

A1∪A2). Let b1, b2 |= stp(b, B∪A1) and let θ(x, n̄, ā1, ā2) be such thatM |= [θ(b1, n̄, ā1, ā2)∧¬θ(b2, n̄, ā1, ā2)].

Set B′ = B ∪ n̄.

As N is Faλ-saturated in D, there is A ⊂ N such that stp(A,B′) = stp(A2, B
′) (recall here that A2

is finite). As A ↓B′ A1 and A2 ↓B′ A1, this entails that stp(A,B′ ∪A1) = stp(A2, B
′ ∪A1). Let G ∈

Aut∗B′∪A1
M such that G(A2) = (A). Then, stp(b, B ∪ A1) = stp(G(b1), B ∪ A1) = stp(G(b2), B ∪ A1).

Furthermore, M |= [θ(G(b1), n̄, ā1, G(ā2))∧¬θ(G(b2), n̄, ā1, G(ā2)) ]. This contradicts the fact that stp(b, B1∪

A1) ` stp(b,N ∪A1). �

Remarks: (1) This proof of 2.2.7 is almost a verbatim copy of the proof of V 3.2 in [Sh]. The only new

point here is the realization that we do not need N Faλ-saturated in M. When A2 ⊂ D we can get by with

N Faλ-saturated in D.

(2) Note that the proof of 2.2.7 only requires that A2 ⊂ D. A1 can live outside of D. If we modify the

definition of relative Faλ-saturation to let N be Faλ-saturated in D even when N 6⊂ D (i.e. for every q almost
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over some A ⊆ N where |A| < λ, if q is realized in D, q is realized in N), then we can have N outside D as

well.

(3) 2.2.7 is a generalization of the property mentioned before 2.2.2 and it has similar consequences. In

particular, if N and D are as in 2.2.7 and N [A] ⊂ D is Faλ-constructible over N ∪A, then A BDN N [A]. Also,

the first part of 2.2.2 goes through in this context: if M0 is Faλ-saturated in M0 ∪
⋃
i<δ

Ei and each Mx
i is

Faλ-constructible over
⋃
j<i

(Mx
j ∪ Ej), then Mx

δ is Faλ-constructible over M0 ∪
⋃
i<δ

Ei.

Along with these standard notions of isolation, there are two non-standard notions which we will occa-

sionally use. The first is Shelah’s Fl|T | when |T | is regular. Recall that,

(p,B) ∈ Flλ iff for every ψ there is pψ ⊆ p � B, |pψ| < λ, such that

pψ ` p � ψ and |B| ≤ λ+ |T |; cf(λ) > |T | ⇒ |B| < λ.

Fl|T | does not admit prime models (much less unique prime models) over arbitrary sets. It does, however,

satisfy the following useful properties.

1. Over any A, there exists a |T |-compact, Fl|T |-constructible, Fl|T |-atomic M .

2. If N is Ft|T |+ -saturated and A ⊂ N , then we may have M ≺ N (M as in 1).

3. If M is |T |-compact and N is Fl|T |-atomic over M ∪A, then A BM N .

Here, property 1 is standard (see [Sh] IV), and property 2 follows trivially from the definition of an Fl|T |-

construction. For |T | = ℵ0, property 3 is well-known (see [Ba], X). For |T | > ℵ0, we give the following:

Proposition 2.2.8 Let λ > ℵ0 be regular, let M be λ-compact, and let N be Flλ-atomic over M ∪A. Then,

A BM N .

Proof. Suppose not. Let b ∈M such that b ↓M A and b 6↓M N . As tp(b,N) is not a coheir of tp(b,M), there

is a formula θ(x, n,m) such that M |= θ(b, n,m) but for no m ∈M does M |= θ(m,n,m).

Let p = tp(n,M ∪ A). For every ψ ∈ L choose a specific pψ ⊆ p such that |pψ| < λ and pψ ` p � ψ.

Define a function F from complete sublanguages of L to complete sublanguages of L as follows: φ ∈ F (L′)

iff all of the symbols in φ also occur in some formula of pψ where ψ ∈ L′.

Build an increasing sequence of languages 〈Li | i < ω〉 as follows: L0 ⊂ L is minimal such that θ ∈ L0,

and for i > 0, Li is minimal such that F (Li−1) ∪ Li−1 ⊂ Li. Let L′ =
⋃
i<ω

Li and note that |L′| < λ.

Reduct M to the language L′. M remains a λ-compact model for this language, and we still have b ↓M A.

Also we have that
⋃

ψ∈L′
pψ ` p � L′. Since |

⋃
ψ∈L′

pψ| < λ, tp(n,M ∪ A) is Ftλ isolated over M ∪ A. And as

Ftλ is standard here, we get A BM A ∪ {n}. Thus b ↓M A ∪ {n}. This makes tp(b,M ∪A ∪ {n}) a coheir of

tp(b,M); so for some m ∈M , M |= θ(m,n,m). And this is a contradiction. �

Our final “prime model” notion was introduced by Shelah and Buechler in [BuSh]. The notion only

works in the superstable case, and the assumption that we are working in Mq is important when employing
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this notion. In particular, “algebraic closure” always refers to algebraic closure in Meq. We begin with some

preliminaries.

We say N ⊂na M if for all a ∈ N and θ(x, a) such that θ(N, a) 6= θ(M,a), there is a b ∈ θ(N, a) \ acl(a).

The following facts concerning ⊂na are easily verified:

1. Let A ⊂M . There exists N such that A ⊂ N ⊂na M and |N | = |A|+ |T |.

2. M0 ⊂na M1 ⊂na M2 =⇒ M0 ⊂na M2.

3. Let 〈Ni | i < δ〉 be an increasing chain such that Ni ⊂na M for every i. Then
⋃
i<δ

Ni ⊂na M

For our purposes, the main result concerning ⊂na is the following:

Theorem 2.2.9 Let T be superstable, let N ⊂na M , and let N ⊂ A ⊂ M . Then there exists N ′ ⊂na M

such that A ⊂ N ′, |N ′| = |A|+ |T | and A BN N ′.

The proof of this theorem can be found in [BuSh]. It involves techniques which go well beyond the scope of

this dissertation, so we do not include it here. Note that there is nothing in the theorem which suggests that

N ′ is prime over A for any notion of isolation resembling one of Shelah’s F’s. Nevertheless, we will often

abuse notation and say that N ′ is Fn-prime over A; also, we will use N [A] to denote N ′ even though N ′ is

not unique over N ∪A.

To employ any of these “prime model” notions effectively, we need some idea of the cardinalities in which

prime models can live. Let F be a notion of isolation, and let κ be a cardinal. We let F(κ) be the least κ′

such that for every A with |A| ≤ κ, every F-constructible model over A has cardinality ≤ κ′. For Fn this

definition does not make sense, so we simply stipulate that Fn(κ) = κ+ |T |.

Note that for any of the notions of isolation we have considered, F(F(κ)) = F(κ). In general, prime

models for these notions will live in cardinals for which F(κ) = κ. We will call such cardinals F-good. The

following list gives some conditions which ensure that a cardinal is F-good for one of our notions of isolation:

1. (F=Ftλ) F(κ) = κ if either κ = (κ+ |T |)<λ or κ ≥ λ+ λ(T ) and κ = κ<κ(T ).

2. (F=Faλ) F(κ) = κ if κ ≥ λ+ λ(T ) and κ = κ<κ(T ).

3. (F=Fl|T |) F(κ) = κ if either κ = κ<|T | or κ = λ(T ) + κ<κ(T ).

4. (F=Fn) F(κ) = κ if κ ≥ |T |.

The proofs that these conditions work are trivial, and we omit them here.

2.3 Multi-Cardinal Theorems I

In this section, we assume that each Ai in 〈Ai | i < δ0〉 is ∞-definable over Bi by some Γi(x). To avoid

repetition, we use HYP to denote the following hypothesis:

18



HYP For each i < δ0, there exists a pair M i � N i such that
⋃
j≤i

Bj ⊂ M i,
⋃
j<i

Γj(N i) ⊂ M i, Γi(N i) 6=

Γi(M i) and either of the following holds:

1. M i and N i are λ-compact and for j < i, |Γj | < λ.

2. M i and N i are Faλ-saturated for λ ≥ κ(T ), and for j < i, |Bj | < λ.

To unify notation when proving this section’s main theorem, we adopt the following framework. We work

with classes of models, K, which are preserved under automorphisms of M. Associated with each K is a

nondecreasing function FK : CARD → CARD such that for every κ, FK(FK(κ)) = FK(κ); cardinals such

that FK(κ) = κ will be called K-good. Also, K and FK must satisfy the following conditions:

1. For any A, there is a K-model M ⊃ A such that |M | ≤ FK(|A|).

2. If M is a K-model and M ⊂ A, then there is a K-model M [A] ⊃M∪A such that |M [A]| ≤ FK(|M∪A|)

and A BM M [A]

3. If 〈Mi | i < α〉 is an increasing sequence of K-models, then there is a K-model N ⊃
⋃
i<α

Mi such that

|N | = FK(|
⋃
i<α

Mi|) and for j < α,
⋃
i<α

Mi BMj
N .

We begin by noting several classes of models which satisfy these conditions.

Lemma 2.3.1 The conditions outlined above are satisfied when:

1. K is the class of F-saturated models for some standard F and FK(κ) = F(κ).

2. K is the class of |T |-compact models and FK(κ) = Fl|T |(κ).

3. K is the class of models M ≺na M, and FK(κ) = κ+ |T |.

Proof. 1 and 2 are essentially trivial. In 1, we just take prime models in all cases. In 2, we take |T |-compact

models which are Fl|T |-constructible over the relevant sets. For 3, condition 1 is also trivial; condition 2

follows from 2.2.9; and condition 3 is trivial if we simply let N =
⋃
i<α

Mi. �

Theorem 2.3.2 Suppose HYP holds. For any non-decreasing G : δ0 → CARD such that |G(0)| ≥

|
⋃
i<δ0

Bi| + |δ0| + κ(T ) and each G(i) is K-good, there exists an K-model M which is also a G-model.

If κ(T ) = κ+ and |
⋃
i<δ0

Bi|+ |δ0| ≤ κ, then we only need |G(0)| ≥ κ.

Proof. By HYP, we can find for each i < δ0 some ai ∈ Γi(N i) \ Γi(M i) (N i and M i as in HYP). By 2.1.5,

tp(ai,M i) is foreign to Γj for every j < i. Let pi be a complete stationary type parallel to tp(ai,M i) and

over some Ci such that |Ci| < κ(T ). So, pi is also foreign to Γj for j < i.

We construct by induction an increasing sequence of K-models 〈Mi | i ≤ δ0〉 such that for each i,

|Mi+1| = |Mi+1 ∩ Ai| = G(i), and for every j < i and b ∈ Aj , b ↓Mj+1 Mi. We begin by letting M0 be an

arbitrary K-model of cardinality ≤ G(0) which contains
⋃
i<δ0

(Bi ∪ Ci).
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Suppose we have Mi. Let qi be a non-forking extension of pi to Mi, and let Ii be a Morley Sequence for

q of length G(i). Let Mi+1 = Mi[Ii] (as in condition B. on class K). Clearly the cardinality constraints on

Mi+1 and Ai are satisfied. For the independence constraints, suppose j < i+1 and let b ∈ Aj . If j = i, then

it is trivial that b ↓Mj+1 Mi; so we can assume that j < i. As qi is foreign to Γj , tp(Ii,Mi) is also foreign to

Γj . As Ii BMi
Mi[Ii], b ↓Mi

Mi[Ii]. So by the induction hypothesis, b ↓Mj+1 Mi[Ii].

Suppose i is limit. By condition 3 on K models, we can find a K-model N ⊃
⋃
j<i

Mj such that |N | =

FK(|
⋃
j<i

Mj |) and for k < i,
⋃
j<i

Mj BMk+1 N . Because G is non-decreasing and G(i) is K-good, we have

that |N | ≤ G(i). Let k < i and let b ∈ Ak. By the induction hypothesis and the finite character of forking,

b ↓Mk+1

⋃
j<i

Mj . So, b ↓Mk+1 N . Letting Mi = N we finish the construction.

Now let M = Mδ0 and let i < δ0. As b ↓Mi+1 M for every b in Ai, M ∩ Ai ⊆ Mi+1. So |M ∩ Ai| =

|Mi+1 ∩ Ai| = G(i). As desired, then, M is a G-model. �

Corollary 2.3.3 Suppose HYP holds. Let i0 < δ0 and let M be a K-model such that for every i ≥ i0 there

exists ai ∈ Γi(N i) \ Γi(M i) and pi ∈ S(M) such that pi is parallel to tp(ai,M i). Let G : δ0 → CARD such

that:

1. for i < i0, G(i) = |M ∩ Ai|

2. for i ≥ j ≥ i0, G(i) is K-good and G(i) ≥ G(j) ≥ |M |.

Then there exists a K-model M ′ such that M ≺M ′, M ′ is a G-model and for i < i0, M ′ ∩ Ai = M ∩ Ai.

Proof. Just like the proof of 2.3.2. Letting M be a base for the construction, we build 〈Mi | i0 < i ≤ δ0〉 as

in the theorem (making use of the obvious pi’s). Clearly the resulting model is a G-model. And just as the

original construction did not add new elements of Ai at any stage past i+ 1, this construction does not add

new elements of Ai for i < i0. �

Corollary 2.3.4 Suppose HYP holds. For any non-decreasing G : δ0 → CARD such that |L|+ |
⋃
i<δ0

Bi|+

|δ0| ≤ G(0), there is a G-model.

Proof. Set µ = (|L|+ |
⋃
i<δ0

Bi|+ |δ0|)+. Let K be the class of Fa
κr(T)-saturated models. Choose F : δ0 →

CARD such that for every i < δ0, F (i) > iµ(supj<i(F (j))) and F (i) is K-good. By the theorem, there

exists an F -model M .

Expand our language by adding constants for elements of
⋃
i<δ0

Bi. Note that M is still a model for the

expanded language L′, that |L′| ≤ |L|+ |
⋃

i<δ0

Bi|, and that each Ai is∞-definable over ∅ in L′. The desired

G-model follows from 1.3.4. �

Remarks: (1) For δ0 = 2, these corollaries give some standard theorems. If A0 is definable and A1 = M,

then 2.3.4 gives Shelah’s theorem from [Sh69] (if δ0 = n and T is ω-stable, then the same corollary gives

Forrest’s generalization ). If we assume also that T is countable, that K is the class of all models, and let

20



M = N1, then 2.3.3 gives Lachlan’s theorem. To get Harnik’s extension of Lachlan’s result, let K be the

class of Ft
λ-saturated models for λ ≥ µ(T ), let A0 be ∞-definable by some Γ(x) where |Γ| < λ, and let

M = N1. 2.3.3 gives the result. For a host of similar results using somewhat different machinery, see [Sh]

V.6

(2) The results here do more than extend these theorems from the 2-cardinal case to the δ-cardinal case.

First, they allow this extension to go through even when there is no “initial model” to begin with. That is,

HYP does not require a single highly saturated model which takes care of all our foreignness at once.

Second, the approach taken here allows us to separate the details of our prime model constructions from

the multi-cardinal problems which motivate them. We can use one kind of saturation/compactness to get

our foreign types, and then employ a theory of prime models which relates to an entirely different kind of

saturation/compactness. This is especially important when we start with a model pair which has a level

of saturation/compactness which is enough for generating foreignness, but insufficient for serving as a base

for further prime model constructions—e.g. when we start with a pairs of mere models for an uncountable,

stable, non-superstable theory and each Ai is defined by a predicate.

(3) For the purpose of obtaining multi-cardinal transfer results, HYP is a relatively weak hypothesis.

In particular, the differences in the sizes of Ni and
⋃
j<i

(Ni ∩ A (ג needed to ensure the existence Mi in

HYP are often quite small. If T is superstable, for instance, then any cardinal splits above λ(T ) allow

us to build the model pairs required in HYP (for any degree of saturation). If T is totally transcenden-

tal, then any splits above |T | allow us to build these pairs. Similarly, if each A i is definable by a single

formula, then arbitrary cardinal splits do the job. In no case, do we need cardinal splits which make

|Ni| > (λ(T ) + |
⋃
j<i

(Ni ∩ A .+(κ(T)>|(ג

2.4 Multi-Cardinal Theorems II

In this section, we examine a class of multi-cardinal phenomena which has, at least on the surface, relatively

little to do with forking independence. We analyze this class by looking at the details of certain prime model

constructions which use standard F’s. Roughly, we will try to mimic the techniques of section 1.3: prime

model theory will replace that section’s use of Skolem functions, and we will use stability theory instead of

the Erdös-Rado theorem to generate sets of indiscernibles. As in section 2.3 we assume that each Ai in

〈Ai | i < δ0〉 is ∞-definable over some set A.

We begin with some preliminaries on indiscernible sets in stable theories. Recall that a Morley Sequence

over A is a set I such that I is independent over A and every element of I satisfies the same strong type over

A. Recall also that any Morley Sequence over A is indiscernible over A. The following summarizes some

basic facts on manipulating Morley Sequences:

Proposition 2.4.1 (Facts on Morley Sequences) MS = Morley Sequence

1. Suppose I ↓AI A. Then I is a MS over A if and only if I is a MS over AI .
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2. Let I be a MS over A. Then there exists AI ⊂ A such that |AI | < κ(T ) and I ↓AI A.

3. Let I be a MS over A and let B be arbitrary. There exists I0 ⊂ I such that |I0| ≤ |B| + κ(T ) and

I \ I0 ↓A B. If |B| < cf(κ(T )), we can have |I0| < κ(T ).

Proof. 1. Easy and standard.

2. Let i ∈ I be arbitrary and let AI be such that |AI | < κ(T ) and i ↓AI A. Since I is indiscernible

over A, i′ ↓AI A for every i′ ∈ I. Suppose, towards a contradiction, that I 6↓AI A. Let ı̄ = (i1, . . . , in) be a

sequence of minimal length such that ı̄ 6↓AI A. By minimality of ln(̄ı), {i1, . . . , in−1} ↓AI A. And since I is

independent over A, in ↓AI A ∪ {i1, . . . , in−1}. So, in ↓AI∪{i1,...,in−1} A ∪ {i1, . . . , in−1}. Thus, ı̄ ↓AI A for a

contradiction.

3. Clearly, we can find an I0 of the desired size such that B ↓A∪I0 I. As I is independent over A,

I \ I0 ↓A I0. Thus, I \ I0 ↓A B as desired. �

Proposition 2.4.1 gives us some tools for manipulating Morley Sequences once we find them. We now

show that if a set C is large enough, then we can find equally large Morley Sequences inside of C.

Lemma 2.4.2 (Baldwin) Let A ⊂ C such that |A| < λ = |C|. If κ(T ) < cf(λ), then there exist D,E ⊂ C

such that |D| < λ, |E| = λ and E is independent over A ∪D.

Proof. Choose by induction a sequence of subsets of C, 〈Ci| i < κ(T )〉 such that for each i, Ci is maximally

independent (in C) over A ∪
⋃
j<i

Cj . Suppose that for each i, |Ci| < λ. Since κ(T ) < cf(λ), we can find

c ∈ C \ (
⋃

i<κ(T )

Ci). Letting pi = tp(c, A ∪
⋃
j<i

Cj), we get a forking sequence 〈pi| i < κ(T )〉. As this is a

contradiction, we can find a least i such that |Ci| = λ; let D =
⋃
j<i

Cj and E = Ci to finish. �

Lemma 2.4.3 Let A ⊂ C such that |A| < λ = |C|. Let λ be regular, and suppose that T is stable in

arbitrarily large λ′ < λ. Then there exist I,AI ⊂ C such that:

1. |I| = λ and |AI | < κ(T )

2. I ↓AI A

3. I is a Morley Sequence over AI (hence, over A ∪AI as well)

Proof. By the previous lemma, there exist D,E ⊂ C such that |D| < λ, |E| = λ and E is independent over

A∪D. As |A∪D| < λ and as T is stable in arbitrarily large λ′ < λ, |Ss(A∪D)| < λ. So we can find I ⊂ E

such that |I| = λ and all the i’s in I realize the same strong type over A ∪D. Thus, I is a Morley Sequence

over A ∪D.

By 2.4.1 (2), there exists AI ⊂ A ∪D such that |AI | < κ(T ) and I ↓AI A ∪D. By 2.4.1 (1), I is still a

Morley Sequence over A ∪AI . �

As in section 2.3, we avoid repetition by using F-HYP (where F = Fxλ is some standard notion of

isolation) to denote the following hypothesis:
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F-HYP There exists an F-saturated model M ⊃ A such that for every i < δ0, |M ∩A i| > λ(T ) + [F(|A|+

|δ0| + κ(T ) + |
⋃
j<i

M ∩ A j |)]<κ(T ). If κ(T ) = κ+ and |A| + |δ0| ≤ κ, then we only require that

|M ∩ A 0| > λ(T ) + [F(κ)]<κ(T ).

Theorem 2.4.4 Let F = Fxλ be standard, and suppose F-HYP holds. Then for any nondecreasing G : δ0 →

CARD such that G(0) ≥ F(|A|+ |δ0|+κ(T )) and each G(i) is F-good, there exists an F-saturated G-model,

M ′.

Remark: If κ(T ) = κ+ and |A|+ |δ0| ≤ κ, then we only need G(0) ≥ F(κ).

Proof. Using lemma 2.4.3, we choose a sequence 〈(Ii, Bi) | i < δ0〉 such that:

1. Ii ⊂M ∩ A i is a Morley Sequence over Bi where Bi ⊂M and |Bi| < κ(T ).

2. |I0| = [λ(T ) + (F(|A|+ |δ0|+ κ(T )))<κ(T )]+, |Ii| = [|
⋃
j<i

(M ∩ A i)|<κ(T )]+.

3. Ii ↓Bi A ∪
⋃
j<i

(M ∩ A i).

Next, we construct a sequence 〈Mi | i ≤ δ0〉 by induction: Mi ≺ M is F-prime over A ∪
⋃
j<δ0

Bi ∪
⋃
j<i

[(M ∩

Aj) ∪Mj ]. Note that for every i, |Mi| < |Ii|. By 2.4.1 (3), we can find I ′ı ⊂ Ii such that |I ′ı| = |Mi| and

Ii \ I ′ı ↓Bi Mi. Choose Ji ⊂ (Ii \ I ′ı) such that |Ji| = λ.

Finally, we constuct a sequence 〈Ni | i ≤ δ0〉 by induction: Ni ≺Mi is F-prime over A∪
⋃
j<δ0

Bi∪
⋃
j<i

[Nj ∪

Jj ]. Note that for i < δ0, Ji ↓N0 Ni (as Ji ↓Bi Mi, Ni ⊂Mi and Bi ⊂ N0). Let N = Nδ0 .

Claim 1: For any i < δ0, N ∩ Ai ⊂ Ni+1.

Proof of Claim 1: Note first that 〈Ji | i < δ0〉 is independent over N0. Thus, by 2.2.2 (1), we may view

N as Ni+1[
⋃
j>i

Jj ]. By construction,
⋃
j>i

Jj ↓No Mi+1. So since M ∩ Ai ⊂ Mi+1 and N0 ⊂ Ni+1 ⊂ Mi+1,⋃
j>i

Jj ↓Ni+1 ∪(M ∩ Ai). Therefore, as
⋃
j>i

Jj BNi+1 N , we get N ∩ Ai ⊂ Ni+1 as desired. � (claim 1)

For each i < δ0, let ai ∈ Ji and let pi = tp(ai, N0). Let 〈Ei | i < δ0〉 be an independent sequence over N0

such that each Ei is a Morley Sequence for pi of length G(i). Let M ′ be F-prime over N0 ∪
⋃
i<δ0

Ei.

Claim 2: M ′ is a G-model.

Proof of Claim 2: Suppose not. Let i0 < δ0 be least such that |M ′ ∩ Ai0 | > G(i0) (remember: Ei ⊂M ′∩Ai
ensures that |M ′ ∩ Ai| ≥ G(i) for every i). Let E≤ =

⋃
i≤i0

Ei and E> =
⋃
i>i0

Ei. By 2.2.2 (1), we can view

M ′ as N0[E≤][E>]. Note that |N0[E≤]| ≤ F(|N0∪
⋃
i≤i0

Ei|) = G(i0). So, there exists b ∈ (M ′∩Ai0)\N0[E≤].

Since M ′ is F-atomic over N0[E≤] ∪E>, we can find B ⊂ N0[E≤] and E ⊂ E> such that tp(b,N0[E≤] ∪

E>) ∈ F(B ∪ E) (so, |B ∪ E| < λ). Let C ⊂ N0[E≤] be completely closed in some construction of N0[E≤]

over N0 ∪E≤. W.L.O.G. |C ∩Ei| = λ for each i ≤ i0 and N0 ⊂ C. Let N0[C] ≺ N0[E≤] be F-prime over C.

Let 〈E′i | i0 < i < δ0〉 be a sequence such that for each i, E′i ⊂ Ei, |E′i| = λ, and E ⊂
⋃
i>i0

E′i. Let

E′ =
⋃
i>i0

E′i. Note that tp(b,N0[C] ∪E′) ∈ F(B ∪E). Let N0[C][E′] ≺M ′ be F-prime over N0[C] ∪E′ and

contain b.
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Note that there is an F ∈ AutN0M such that for i ≤ i0, F (C ∩Ei) = Ji and for i > i0, F (E′i) = Ji. So by

2.2.2 (2), we can find an F ′ ∈ AutN0M such that F ′(N ′) = N and, more importantly, F ′(N0[C]) = Ni0+1.

As F ′ fixes A pointwise, and as Ai0 is ∞-definable over A, F ′ fixes Ai0 as a set. So F ′(b) ∈ Ai0 \Ni0+1.

But this contradicts N ∩ Ai0 ⊂ Ni0+1. � (claim 2, theorem)

Corollary 2.4.5 Let F = Fxλ be standard, and let M witness the fact that F-HYP holds. Let G : δ0 →

CARD such that

1. for i < i0, G(i) = |M ∩ Ai|

2. for i ≥ j ≥ i0, G(i) is F-good and G(i) ≥ G(j) ≥ |M |.

Then there exists a F-saturated M ′ such that M ≺M ′, M ′ is a G-model and for i < i0, M ′∩Ai = M∩Ai.

Remark: We do not need the full strength of F-HYP for this result. As long as M respects the cardinality

constraints in F-HYP for i ≥ i0, the proof will work.

Proof. Almost the same as the proof of 2.4.4. The modifications are as follows. Instead of having N =

N0[
⋃
i<δ0

Ji], let N = Mi[
⋃

i0≤i<δ0
Ji]. When we “stretch” the Ji to get Ei, we only stretch for i ≥ i0. Then,

letting M ′ = Mi[
⋃

i0≤i<δ0
Ei], the proof goes through as before. �

Corollary 2.4.6 Let F = Fxλ be standard, and let M witness the fact that F-HYP holds. Suppose that for

every i < δ0, |M ∩Ai| is regular and T is stable in arbitrarily large ν < |M ∩Ai|. Let G : δ0 → CARD be

nondecreasing such that:

1. G(0) ≥ F(|A|+ |δ0|+ κ(T )).

2. for i < δ0, G(i) ≤ |M ∩ Ai| and G(i) is F-good.

Then there exists an F-saturated G-model, M ′ such that M ′ ≺M .

Proof. Again we follow closely the proof of 2.4.4. The modifications are as follows. First, when choosing

our initial Morley Sequences 〈Ii | i < δ0〉, we insist that |Ii| = |M ∩ Ai| (this is possible by 2.4.3 and our

conditions on M). When choosing our second collection of Morley Sequences 〈Ji | i < δ0〉, we insist that

|Ji| = G(i).

Given 〈Ji | i < δ0〉, we construct 〈Ni | i ≤ δ0〉 as in the theorem. Note that for each i < δ0, |Ni+1| =

|Ni+1 ∩Ai| = G(i). Note also that the argument for Claim 1 in our original proof still goes through in this

context. So, N ∩ Ai ⊂ Ni+1 for every i < δ0. Letting M ′ = N ≺M we obtain a G-model as desired. �

Remark: The requirement that |M ∩ Ai| is regular and T is stable in arbitrarily large ν < |M ∩ Ai| is

irrelevant for i = 0. If this requrement is eliminated, we simply include G(0) elements of M ∩A0 in N0 and

let J0 have cardinality ∅.
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Corollary 2.4.7 Let F = Ft|T |+ and suppose that F-HYP holds. Then for any nondecreasing G : δ0 →

CARD such that G(0) ≥ Fl|T |(|A|+ |δ0|+ κ(T )) and each G(i) is Fl|T |-good, there exists an |T |-compact

G-model, M ′.

Remark: If κ(T ) = κ+ and |A|+ |δ0| ≤ κ, then we only need G(0) ≥ Fl
|T|(κ).

Proof. Let G′ : δ0 → CARD be increasing such that for each i < δ0, G(i) < G′(i) and G′(i) is F t|T |+ -good.

By theorem 2.4.4, we can find M ′ an F t|T |+ -saturated G′-model. By the proof of that theorem, we can assume

that there is a sequence 〈(Mi, Ei) | i ≤ δ0〉 such that:

1. for i > 0, Mi is prime over
⋃
j<i

(Mj ∪ Ej); M ′ = Mδ0 .

2. for every i, Ei ⊂ Ai is a Morley Sequence over M0; |Ei| = G′(i);

and Ei ↓M0 Mi.

3. for every i, M ′ ∩ A i ⊂Mi+1.

For i < δ0, let E′i ⊂ Ei such that |E′i| = G(i) and let Bi ⊂ M0 such that |Bi| < κ(T ) and E′i ↓Bi M0.

Construct a sequence 〈Ni | i ≤ δ0〉 by induction: Ni ≺ Mi is Fl
|T|-constructible and |T |-compact over

A ∪
⋃
j<δ0

Bj ∪
⋃
j<i

(Ni ∪ E′i). Let N = Nδ0 .

Claim: For all i < j ≤ δ0, Mi ↓Ni Nj.

Proof of Claim. For fixed i, let j be minimal such that this fails. Suppose first that j is limit. Then by

the finite character of forking, Mi ↓Ni
⋃
k<j

Nk. But, since Nj is Fl
|T|-constructible over

⋃
k<j

Nj , we have⋃
k<j

Nj BNi Nj . So, Mi ↓Ni Nj for a contradiction.

So let j = k + 1. As Ek ↓M0 Mk and Ek ↓Bk M0, we get Ek ↓Nk Mk (remember Nk ⊃ Bk). As

Ek BNk Nk+1, we have Nk+1 ↓Nk Mk. So as Mi ⊂ Mk, we get Mi ↓Nk Nk+1. By the induction hypothesis,

Mi ↓Ni Nk. Therefore, Mi ↓Ni Nk+1 for a contradiction. � (claim)

Note that as E′i ⊂ N , we have |N ∩Ai| ≥ G(i) for all i. Further for any i, |Ni+1| = G(i). By the claim,

Mi+1 ↓Ni+1 N . So since N ∩Ai ⊂Mi+1, N ∩Ai ⊂ Ni+1. Therefore, |N ∩Ai| = G(i). Letting M ′ = N

we are done. �

Corollary 2.4.8 Let F = Fxλ be standard, and suppose F-HYP holds. Then for any nondecreasing G :

δ0 → CARD such that |L|+ |
⋃
i<δ0

Bi|+ |δ0| ≤ G(0), there is a G-model.

Proof. The same idea as the proof of 2.3.4. Use 2.4.4 in place of 2.3.2. �

Remarks: (1) When T is ω-stable and F = Ft
ω, special cases of the above corollaries lead to standard

results. For δ0 = n, 2.4.8 gives Forrest’s generalization of Shelah’s two cardinal theorem. For δ0 = 2, 2.4.6

gives a theorem originally proved by Lascar, see [Ls].

(2) Theorem 2.4.4 is weaker than theorem 2.3.2 in three ways. First, F-HYP requires that we start

with a single model which witnesses all of the relevant cardinality splits simultaneously. HYP allows us to
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use different models to witness different cardinality splits. Indeed, HYP does not require actual cardinality

splits: a pair of models P (M) ⊂ N �M can witness HYP even though |P (M)| = |N | = |M |.

Second, F-HYP requires that the model we start out with have a relatively high degree of saturation: it

must be saturated for some standard F. This is true even when the sets 〈Ai | i < δ0〉 are definable in some

simple manner—i.e. by single formulas. In such cases, HYP would allow us to start with models having a

low degree of saturation (in the single formula case, we would just need models).

Finally, 2.4.4 allows us to start with some F-saturated multi-cardinal model and construct another model

with the same (or lesser) degree of saturation. We cannot use 2.4.4 to increase the saturation of our models:

we cannot, for instance, start with an Fa
λ-saturated model and use 2.4.4 to construct an Fa

λ+ -saturated

model. In contrast, 2.3.2 allows us to start with models having some low degree of saturation and then

construct models with arbitrarily high degrees of saturation.

(3) Theorem 2.4.4 has, however, one major advantage over theorem 2.3.2. The main hypothesis of 2.4.4,

F-HYP, involves no restrictions on the way the sets in 〈Ai | i < δ0〉 are defined (other than that they are

∞-definable over the M mentioned in F-HYP). Therefore, if each Ai requires a large amount of information

to define, a model M can witness F-HYP without witnessing HYP.

To illustrate, suppose that T is countable and that we are only interested in comparing the cardinalities

of two ∞-definable sets, A0 and A1. In this case, any ω1-saturated model M such that M ⊃ A and

|M ∩ A1| > |M ∩ A0|ω will witness Ft
ω1

-HYP. In contrast, if |A| > ω and A is minimal such that A0 is

definable over A, then we would need a model which is at least |A|+-saturated to witness HYP.

Thus, whenever |T | is small in comparison to the sizes of the Γi’s used to define the Ai’s, we can use

2.4.4 to get results which 2.3.2 cannot get.
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Chapter 3

Chang’s Conjecture in Stable Theories

The first result on Chang’s conjecture in the context of stable theories was obtained by Lascar in [Ls]. Lascar

showed that if T is ω-stable and M is a model of type (κ;λ) where κ > λ and κ is regular, then for any κ′

and λ′ such that κ′ ≤ κ, λ′ ≤ λ and ω ≤ λ′ ≤ κ′, there exists a model N of type (κ′;λ′) such that N ≺M .

In [Sh], Shelah extended this result to the superstable case and eliminated the requirement that κ be regular

(replacing this requirement with some somewhat messier conditions on the relationships between the various

cardinals in question).

We have already examined one result in the general neighborhood of Chang’s conjecture: in chapter 2,

corollary 2.4.6 provides a strong generalization of Lascar’s theorem. If we examine the proof of this corollary

carefully, we will see that it depends on our ability to build arbitrarily large Morley Sequences within each

set of the form M ∩ Ai, i < δ0. As a result, the corollary places some fairly strong conditions on the

cardinalities of these sets: for every i < δ0, |M ∩ Ai| must be regular and T must be stable in arbitrarily

large µ < |M ∩ Ai|. The second of these conditions fails, even for T superstable, if we are working with

sets of cardinality ≤ λ(T ). It also fails if T is not superstable and we are working with a set of size λ where

ν < λ ≤ ν<κ(T ) for some ν.

To get around these problems, we develop some techniques for eliminating the use of Morley Sequences

from proofs like that of 2.4.6. In section 3.1 we focus on the task of building “large” sets which are independent

from some specified smaller sets. That is, suppose |A| > |B|; then we would like to find sets A′, B′ such

that,

• A′ ⊆ A and |A′| is as large as possible (ideally, |A′| = |A|).

• |B′| is as small as possible (ideally, |B′| < κ(T )).

• A′ ↓B′ B.

In 3.1 and 3.2, we classify fairly precisely the extent to which this project can be carried out. In 3.1, we

give some general conditions under which sets of the form A′ and B′ can be found (see 3.1.4). In 3.2, we

illustrate why these conditions are likely to be the best available: for cases where the conditions fail, we
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provide stratagies for building models of ZFC in which counterexamples can be found (but, see the remarks

following our GCH examples for a gap in this classification).

In section 3.3, we apply the results of 3.1 and prove several 2-cardinal versions of Chang’s Conjecture.

We also show how these theorems can be used to get results on admitting cardinals. In 3.4, we extend the

results of 3.3 from the 2-cardinal case to δ-cardinal case and prove two separate δ-cardinal theorems. Finally,

we examine a further result on admitting cardinals which follows from the two theorems just mentioned (see

3.4.4).

Throughout this chapter, T is assumed to be stable.

3.1 Independence and Cardinality I

For convenience in stating several of the results in this section we adopt the following piece of notation. We

say that †(µ, ν, λ) holds whenever,

• κ(T ) ≤ cf(µ) ≤ µ ≤ ν.

• λ is regular, and λ ≤ κr(T ).

• there is no µ′ such that µ ≤ µ′ ≤ ν and λ ≤ cf(µ′) < κ(T ).

Note here that if λ = κr(T ), then †(µ, ν, λ) holds trivially (providing, of course, that κ(T ) ≤ cf(µ) ≤ µ ≤ ν).

Note also that if †(µ, ν, λ) holds, µ ≤ µ′ ≤ ν′ ≤ ν and cf(µ′) ≥ κ(T ), then †(µ′, ν′, λ) holds as well. See the

remarks following theorem 3.1.4 for discussion of the motivation for this definition.

Lemma 3.1.1 Let A, B, C and BC be subsets of M such that cf(|B |) ≥ κ(T ) and C ↓BC B. Then we

can partition A into cf(|B |) pieces (some of which may be empty), 〈Ai | i < cf(|B |)〉, such that for each Ai

there is a Bi ⊆ B where |Bi| < |B | and Ai ∪ C ↓Bi∪BC B.

Remark: The proof of this lemma is essentially due to Shelah; it is contained within his proof of IX 1.4 in

[Sh].

Proof of Lemma. Let ν = cf(|B |) and let 〈Bi | i ≤ ν)〉 be an increasing, continuous sequence of subsets of B

such that |Bi| < |B | for i < ν, and Bν = B. We define an increasing sequence of subsets of A, 〈Ai | i < ν)〉,

by induction: Ai is a maximal subset of A such that
⋃
j<i

Aj ⊆ Ai and Ai ∪ C ↓Bi∪BC B.

Now I claim that
⋃
i<ν

Ai = A. For suppose a ∈ A \ (
⋃
i<ν

Ai). Then for each i, tp(Ai ∪ C ∪ {a}, B ∪

BC) forks over Bi ∪BC

=⇒ tp(a,Ai ∪ C ∪B ∪BC) forks over Ai ∪ C ∪Bi ∪BC .

=⇒ ∃j > i such that tp(a,Ai ∪ C ∪Bj ∪BC) forks over Ai ∪ C ∪Bi ∪BC .

=⇒ ∃j > i such that tp(a,Aj ∪ C ∪Bj ∪BC) forks over Ai ∪ C ∪Bi ∪BC .
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So, letting pi = tp(a,Ai ∪ C ∪ Bi ∪ BC), we have that a cofinal subsequence of 〈Pi | i < ν〉 is a forking

sequence. And as κ(T ) ≤ ν, this gives a contradiction.

Replace each Ai with Ai\
⋃
j<i

Aj . Then 〈Ai | i < ν〉 is a partition of A; and for each i < ν, Ai∪C ↓Bi∪BC B.

As |Bi| < |B |, we are done. �

Lemma 3.1.2 (The Partition Lemma) Let B, C and BC be subsets of M such that C ↓BC B. Suppose

that †(µ, |B |, λ) holds. Then for arbitrary A, we can partition A into |B |<λ pieces, 〈Ai | i < |B |<λ〉, such

that for each Ai there is a Bi ⊆ B where |Bi| < µ and Ai ∪ C ↓Bi∪BC B.

Proof. We take cases on the regularity of µ.

Case 1. (µ regular) We fix C, BC , µ and λ and proceed by induction on |B | ≥ µ. If |B | = µ, then we can

apply lemma 3.1.1 to get a partition of A into cf(|B |) pieces (where A is arbitrary). Adding empty pieces

to the partition as needed, we get a partition of size |B |<λ as desired.

So let µ < |B | and assume that the lemma holds for every B′ such that µ ≤ |B′| < |B |. If †(µ, ν, λ) fails

for some µ ≤ ν ≤ |B | then we have a contradiction (as in that case, †(µ, |B |, λ) fails as well). So, †(µ, ν, λ)

must hold for every µ ≤ ν ≤ |B |. We take subcases on cf(|B |).

Subcase a. (cf(|B |) ≥ κ(T )): By lemma 3.1.1 we can partition A into cf(|B |) pieces 〈Ai | i < cf(|B |)〉,

such that for each Ai there is a Bi ⊆ B where |Bi| < |B | and Ai ∪C ↓Bi∪BC B. W.L.O.G., we may assume

|Bi| ≥ µ for each i < cf(|B |).

For every i < cf(|B |), we can apply the induction hypothesis and partition Ai as 〈Ai,j | j < |Bi|<λ〉

such that each Ai,j has an associated Bi,j ⊂ Bi where |Bi,j | < µ and Ai,j ∪ C ↓Bi,j∪BC Bi. By forking

transitivity, Ai,j ∪ C ↓Bi,j∪BC B. Note that the number of such Ai,j is at most |B | · |B |<λ = |B |<λ. So,

letting P = {Ai,j | i < cf(|B |) and j < |B |<λ} be our partition, we are done.

Subcase b. (cf(|B|) < κ(T )): We begin by choosing an increasing, continuous sequence 〈Bi | i ≤ cf(|B|)〉

of subsets of B such that |B0| = µ, |Bi| < |B | for i < cf(|B|), and Bcf |B | = B. By induction, we construct

a sequence of partitions, 〈Pi | i ≤ cf(|B |)〉, satisfying the following conditions:

1. Each Pi is a partition of A into |Bi|<λ pieces.

2. For each Ai,j in Pi there exists Bi,j ⊂ Bi such that |Bi,j | < µ and

Ai,j ∪ C ↓Bi,j∪BC Bi.

3. If j > i, then Pj refines Pi

When the construction is finished, Pcf |B | will be the desired partition.

Construction: For i = 0, we apply the original induction hypothesis and partition A over B0 so as to

satisfy conditions 1 and 2.
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For i = j + 1, we let Pj = 〈Aj,k | k < |Bj |<λ〉. As |Bi| < |B |, we can again apply our original

induction hypothesis and partition each Aj,k into |Bi|<λ pieces over Bi such that each Aj,k,l has an associated

Bj,k,l ⊆ Bi where |Bj,k,l| < µ and Aj,k,l ∪ C ↓Bj,k,l∪BC Bi. We then set,

Pi = {Aj,k,l : k < |Bj |<λ and l < |Bi|<λ}.

Clearly, Pi satisfies conditions 2 and 3. Since (|Bj |<λ) · (|Bi|<λ) = |Bi|<λ, condition 1 is satisfied as well.

For i limit, we define Pi through its associated equivalence relation. Using the obvious notation, we set:

a ∼i c⇐⇒ for every j < i, a ∼j c.

Clearly, Pi satisfies condition 3. Condition 1 follows from the computation:

|Pi| ≤
∏
j<i

|Pj | ≤
∏
j<i

|Bj |<λ ≤
∏
j<i

|Bi|<λ = (|Bi|<λ)|i| = |Bi|<λ.

For the final step of this computation, we need to know that i < λ. But as cf(|B |) < κ(T ) and †(µ, |B |, λ)

holds, we must have cf(|B |) < λ. So, since i ≤ cf(|B|), i < λ.

For condition 2, note that for each Ai,k ∈ Pi and each j < i we can find some Aj,k ∈ Pj and an associated

Bj,k ⊂ Bj such that Ai,k ⊂ Aj,k, |Bj,k| < µ and Aj,k∪C ↓Bj,k∪BC Bj . By continuity, Ai,k∪C ↓ ⋃
j<i

Bj,k∪BC Bi.

Finally, since i ≤ cf(|B|) < κ(T ) ≤ µ, we get |
⋃
j<i

Bj,k| < µ.

Case 2. (µ singular) If |B | = µ, then we can simply apply lemma 3.1.1. So suppose |B | > µ and let A

be arbitrary. By Case 1, we can partition A into |B |<λ pieces, 〈Ai | i < |B |<λ〉, such that each Ai has an

associated Bi ⊂ B where |Bi| < µ+ and Ai ∪ C ↓Bi∪BC B. W.L.O.G., we may assume that each Bi has

cardinality µ.

By lemma 3.1.1, we can partition each Ai as 〈Ai,j | j < cf(µ)〉 such that each Ai,j has an associated

Bi,j ⊂ Bi where |Bi,j | < µ and Ai,j ∪ C ↓Bi,j∪BC Bi. By forking transitivity, then, Ai,j ∪ C ↓Bi,j∪BC B.

Further, the total number of such Ai,j is at most cf(µ) · |B |<λ = |B |<λ. �

Remark: The proof of this lemma is complicated by the need to prepare for some constructions employed

in proving case three of 3.1.4. The main ideas in the lemma’s proof come through more clearly when this

proof is done for the special case mentioned in the next theorem.

Theorem 3.1.3 Let A and B be arbitrary subsets of M. Then we can partition A into |B |<κr(T ) pieces

〈Ai | i < |B |<κr(T )〉, such that for each Ai there is a Bi ⊆ B where |Bi| < κr(T ) and Ai ↓Bi B.

Proof. We apply lemma 3.1.2 letting C = BC = ∅ and letting µ = λ = κr(T ). Note that because λ = κr(T ),

†(µ, |B |, λ) is trivially satisfied. �

Theorem 3.1.4 Let A and B be subsets of M such that |A| > |B|. Let κ ≤ |A|, let µ < |B| and suppose

that one of the following conditions holds:
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1. κ < |A|, and there exists λ such that †(µ+, |B|, λ) holds and |B |<λ < |A|.

2. κ = |A|, and there exists λ such that †(µ+, |B|, λ) holds and |B |<λ < cf(|A|).

3. κ = |A|, and there exists λ such that †(µ+, |B|, λ) holds and |B |<λ < |A| and cf(|A|) < µ+.

Then there exists A′ ⊂ A, B′ ⊂ B such that |A′| = κ, |B′| = µ and A′ ↓B′ B.

Proof. Suppose first that condition 1 holds. By the partition lemma, 3.1.2, we can partition A into |B |<λ

pieces, 〈Ai | i < |B |<λ〉, such that for each Ai there is a Bi ⊆ B where |Bi| < µ+ and Ai ↓Bi B. W.L.O.G.,

each Bi has cardinality µ; and as |B |<λ < |A|, one of the Ai sets has size at least κ. Making this set smaller

as necessary, we are done.

Suppose next that condition 2 holds. Again, we employ 3.1.2 to partition A into |B |<λ pieces, 〈Ai | i <

|B |<λ〉, such that for each Ai there is a Bi ⊆ B where |Bi| < µ+ and Ai ↓Bi B. Again we may assume that

each Bi has cardinality µ. As |B |<λ < cf(|A|), one of the Ai sets must have size |A|.

Finally, suppose that condition 3 holds. Let 〈κk | k < cf(κ)〉 be increasing such that κ =
∑

k<cf(κ)

κk.

We construct by induction a sequence 〈(Ak, Bk) | k < cf(κ)〉 such that for each k: Ak ⊂ A and |Ak| ≥ κk;

Bk ⊂ B and Bk = µ;
⋃
j≤k

Ak ↓ ⋃
j≤k

Bk B. Assume we have constructed this sequence for j < k. By forking

continuity, we know that
⋃
j<k

Ak ↓ ⋃
j<k

Bj B. By 3.1.2, we can partition A into |B |<λ pieces, 〈A′i | i < |B |<λ〉,

such that for each A′i there is a B′i ⊆ B where |B′i| < µ+ and A′i ∪
⋃
j<k

Aj ↓Bi∪ ⋃
j<k

Bj B. W.L.O.G., each B′i

has cardinality µ; and as |B |<λ < |A|, one of the A′i sets has cardinality at least κk. Letting this A′i be Ak

and letting the associated B′i be Bk, we finish the construction.

Let A′ =
⋃

k<cf(κ)

Ak and B′ =
⋃

k<cf(κ)

Bk. By forking continuity, A′ ↓B′ B. Further, |A′| =
∑

k<cf(κ)

κk = κ.

Finally, µ ≤ |B′| ≤ cf(κ) · µ = µ. �

Remark: Some comments are in order concerning the role † plays in this theorem. Suppose that A and B

are as in the theorem and that |A| is regular (so we can ignore cofinality issues). If T is superstable, then we

can find the desired A′ and B′ without invoking lemma 3.1.2 and without mentioning †. We simply apply

lemma 3.1.1 repeatedly to construct a sequence 〈(Ai, Bi) | i < ω〉 such that:

• (A0, B0) = (A,B); i < j < ω =⇒ Aj ⊂ Ai, Bj ⊂ Bi.

• for each i < ω, |Ai| = |A|; if |Bi| ≥ ω, then |Bi+1| < |Bi|.

• Ai+1 ↓Bi+1 Bi.

As the cardinals are well-founded, we eventually reach an n such that |Bn| < ω. By forking monotonicity,

An ↓Bn B. Shrinking An and expanding Bn as necessary, we obtain the desired A′ and B′.

If T is not superstable, then this argument will fail whenever we attempt to run the construction through

some singular cardinal with cofinality < κ(T ) (as lemma 3.1.1 cannot be applied in this situation). So,

we have to turn to the sort of argument found in lemma 3.1.2, case 1, subcase b. This latter argument
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introduces a factor of |Bi|cf(|Bi|) into the computation; hence, as the cofinality in question becomes larger,

the construction becomes more difficult. †(µ+, |B|, λ) picks out the largest problematic cofinality for a

cardinal between the one we begin with, |B|, and the one we wish to end up with, µ. It serves, therefore, to

measure the difficulty of the required construction.

Under certain conditions, the hypotheses involving † in the above theorem are trivially satisfied; in such

cases, the theorem itself can be stated in a somewhat smoother fashion. The following three corollaries

provide the most significant “smooth” versions of the theorem.

Corollary 3.1.5 Let A, B, κ and µ be as in the theorem, and suppose that T is superstable. Suppose that

one of the following holds:

1. κ < |A|

2. κ = |A| and |B | < cf(|A|)

3. κ = |A| and cf(|A|) < µ+.

Then there exists A′ ⊂ A, B′ ⊂ B such that |A′| = κ, |B′| = µ and A′ ↓B′ B.

Proof. Since κr(T ) = ω, †(µ+, |B|, κr(T )) holds automatically. So, letting λ = ω, conditions 1-3 in the

corollary are equivalent to conditions 1-3 in theorem 3.1.4 (note that for λ = ω, |B |<λ = |B |). Thus, we

can simply apply the theorem. �

Remark: Shelah has an alternate proof of this result which makes extensive use of large independent sets

[Sh] V, 6.16-6.17. Shelah’s proof does not generalize to the non-superstable case.

Corollary 3.1.6 Let A, B, κ and µ be as in the theorem, let µ+ ≥ κr(T ), and suppose there are no singular

cardinals between µ and |B|. Suppose that one of the following holds:

1. κ < |A|

2. κ = |A| and |B | < cf(|A|)

3. κ = |A| and cf(|A|) < µ+.

Then there exists A′ ⊂ A, B′ ⊂ B such that |A′| = κ, |B′| = µ and A′ ↓B′ B.

Proof. Since there are no singular cardinals between µ and |B|, †(µ+, |B|, ω) holds automatically. Again, we

note that |B |<ω = |B | and apply the theorem. �

Corollary 3.1.7 Let A, B, κ and µ be as in the theorem, let µ+ ≥ κr(T ), and suppose that |A| > |B|<κr(T ).

Suppose that one of the following holds:

1. κ < |A|
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2. κ = |A| and |B |<κr(T ) < cf(|A|)

3. κ = |A| and cf(|A|) < µ+.

Then there exists A′ ⊂ A, B′ ⊂ B such that |A′| = κ, |B′| = µ and A′ ↓B′ B.

Proof. Apply the theorem, noting that †(µ+, |B|, κr(T )) holds automatically. �

3.2 Independence and Cardinality II

In this section, we give reasons for thinking that theorem 3.1.4 is the best we can expect to prove within

the confines of ZFC. To avoid unnecessary notation when stating our results, we restrict ourselves to the

countable language case. For some comments concerning the uncountable case, see the remarks at the end

of this section.

For convenience, we adopt the following notation: we say that ‡(κ, κ′, λ, λ′) holds if for every set A of

cardinality κ and every set B of cardinality λ, we can find A′ ⊂ A and B′ ⊂ B with cardinalities κ′ and

λ′ respectively such that A′ ↓B′ B. Note that questions concerning ‡(κ, κ′, λ, λ′) are only interesting when

κ′ ≤ κ, λ′ < λ, and λ < κ; hence, we will always take these conditions for granted.

We begin by showing that 3.1.4 gives optimal results under the assumption that T is superstable. Note

that by corollary 3.1.5 the only cases in which ‡(κ, κ′, λ, λ′) can fail (under our superstability assumption)

are cases in which κ is singular, κ′ = κ, and λ′ < cf(κ) ≤ λ. Fix some particular κ, κ′, λ, and λ′ satisfying

these conditions.

Let L = {P,Q, g} where P and Q are unary predicates and G is a binary relation. Let a model for L be

given as follows:

• P (M) = λ; Q(M) = λ× κ; M = P (M) ∪Q(M).

• G is a function from Q(M) to P (M) such that G((α, β)) = α.

Here is the intuitive idea. P (M) and Q(M) are infinite, disjoint sets; P (M) has no intrinsic structure, and

Q(M) uses G to associate an infinite set of (otherwise undifferentiated) elements to each element of P (M).

Let T = Th(M); it is easy to check that T is superstable (indeed ω-stable) and quantifier eliminable.

Let 〈κi | i < cf(κ)〉 be increasing and cofinal in κ. Let N be a submodel of M such that P (N) = P (M)

and

(α, β) ∈ Q(N)⇐⇒ either α < cf(κ) & β < κα or β < ω.

So, |Q(N)| = κ and |P (N)| = λ. However, suppose A′ ⊂ Q(N) such that |A′| = κ. Then a trivial

combinatorial argument shows that G(A′) must have cardinality at least cf(κ). Further, it is easy to see

that given any B′ ⊂ P (N) such that G(A′) 6⊂ B′, tp(A′, P (N)) forks over B′ (as witnessed, for instance, by

the formula “x=G(y)”). So, Q(N) and P (N) witness the failure of ‡(κ, κ′, λ, λ′) as desired.
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If we eliminate the assumption that T is superstable, then there are several additional cases in which

‡(κ, κ′, λ, λ′) can fail (i.e. several additional cases which are not ruled out by 3.1.4). Initially, it is convenient,

to consider these cases under the assumption that GCH holds. Under this assumption, there are only three

types of cases in which ‡(κ, κ′, λ, λ′) can fail:

1. κ′ = κ; and λ′ < cf(κ) ≤ λ.

2. cf(λ) = ω; κ = λ+.

3. κ′ = κ; cf(λ) = ω; and cf(κ) = λ+.

The first of these cases can be “explained” using the same model we used for the superstable case. So we

turn to the second, and fix some particular κ, κ′, λ, and λ′ satisfying those conditions.

Suppose that κ′ ≥ λ. Let L = {P,Q, 〈Fi | i < ω〉} where P and Q are unary predicates and G and the

Fi’s are binary relations. Let a model N for L be given as follows:

• P (N) = λ; Q(N) = ωλ; N = P (N) ∪Q(N).

• Fi : Q(N)→ P (N) by Fi(η) = η(i).

Here is the intuitive idea. P (N) and Q(N) are disjoint sets. P (M) has no intrinsic structure; elements of

Q(M) “code up” sets of size ≤ ω in P (M) via the sequence 〈Fi | i < ω〉. Let T = Th(M). It is easy to check

that T is stable and quantifier eliminable and that κ(T ) = ω1. Similarly, it is clear that |Q(N)| = λ+ and

|P (N)| = λ.

Let A′ be an arbitrary subset of Q(N) such that |A′| = κ′. Then, since no set of size < λ can have

κ′ distinct subsets, |
⋃
i<ω

Fi(A′)| = λ. Further, it is easy to see that given any B′ ⊂ P (N) such that⋃
i<ω

Fi(A′) 6⊂ B′, tp(A′, P (N)) forks over B′ (as witnessed by some formula of the form “x = Fi(y)”). So,

Q(N) and P (N) witness the failure of ‡(κ, κ′, λ, λ′) as desired.

Remark: Shelah also discusses (or at least mentions) this model in connection with two-cardinal phenomena.

See [Sh], V.6 and IX.1.

We turn now to case three, and fix some particular κ, κ′, λ, and λ′ satisfying the relevant conditions. We we

build a countermodel by combining the two models we have already examined. Let L = {P,Q,R,G, 〈Fi | i <

ω〉} where P , Q and R are unary predicates and G and the Fi’s are binary relations. Let a model M for L

be given as follows:

• P (M) = λ; Q(M) = ωλ; R(M) = ωλ× κ; M = P (M) ∪Q(M) ∪R(M).

• G : R(M)→ Q(M) by G(η, β) = η; Fi : Q(M)→ P (M) by Fi(η) = η(i).

Here is the intuitive idea. P (M), Q(M) and R(M) are disjoint sets. P (M) has no intrinsic structure;

elements of Q(M) “code up” sets of size ≤ ω in P (M) via the sequence 〈Fi | i < ω〉; R(M) associates size
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κ set of (otherwise undifferentiated) elements to each element in Q(M). Let T = Th(M). As usual, T is

stable and quantifier eliminable; κ(T ) = ω1.

Let 〈κi | i < λ+〉 be increasing and cofinal in κ. Let 〈ηi | i < λ+〉 be an enumeration of Q(M). Let N be

a submodel of M such that P (N) = P (M), Q(N) = Q(M) and

(ηi, β) ∈ R(N)⇐⇒ β < κi

So, |R(N)| = κ, |Q(N)| = λ+ and |P (N)| = λ. However, suppose A′ is an arbitrary subset of R(N) such

that |A′| = κ. Combining the arguments from the last two cases, we can see that |
⋃
i<ω

(Fi ◦ G)(A′)| = λ.

Further given any B′ ⊂ P (N) such that
⋃
i<ω

(Fi ◦ G)(A′) 6⊂ B′, we have that tp(A′, P (N)) forks over B′

(as witnessed by some formula of the form “x = (Fi ◦ G)(y)”). So, R(N) and P (N) witness the failure of

‡(κ, κ′, λ, λ′) as desired.

Remarks: (1) So, under the assumption that T is superstable, the results given by 3.1.4 are optimal. Under

the assumption that T is stable and GCH holds, 3.1.4 is very close to optimal. The only missing case occurs

when κ = λω = λ+ and κ′ = λ′ω = λ′+. Presently, I don’t know what happens in this case.

(2) Under GCH, we do get a classification of a certain “Ramsey style” property. We say that ‡′(κ, λ, λ′)

holds just in case ‡(κ, κ, λ, λ′) holds. This property is completely classified by 3.1.4 and the above examples.

Suppose that GCH does not hold. Then our classification of the even the ‡′ relation is no longer complete.

Suppose, for instance, that the following pieces of cardinal arithmetic hold:

• for every ν < µ, νω < µ.

• µ < λ < µω.

• κ = µω.

• cf(λ) = ω

Since cf(λ) = ω and λω = κ, we cannot apply 3.1.4 to get any facts of the form ‡′(κ, λ, ν) for ν < λ. However,

the model we constructed (under GCH) to witness the failure of ‡′(κ, λ, ν) will not work if µ ≤ ν < λ (though

it will witness the failure of ‡′(κ, λ, ν) for ν < µ). In that model, we can let B be an arbitrary subset of

P (N) such that µ ≤ |B| < λ; then the set A = Q(N) ∩
⋃
i<ω

F−1
i (B) will have cardinality κ and A ↓B P (N).

To get around this problem, we give the following:

Theorem 3.2.1 Let T be the theory considered above. Then there is a model of ZFC in which

1. 2ω = ℵω+1

2. There exists a model N |= T such that P (N) and Q(N) witness the failure of ‡′(ℵω+1,ℵω, ν) for every

ν < ℵω.
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Proof. In L, let N be the model which witnesses the failure of ‡′(ℵω+1,ℵω, ν) for every ν < ℵω. Let

P = Fn(ℵω+1 × ω,2, ω) be the usual partial order for adding ℵω+1 Cohen reals. Let G be L-generic over

P; and let M = L[G]. Since P has the countable chain condition, L and M have the same cardinals and

cofinalities; but in M , 2ω = ℵω+1.

Suppose A ∈ M and B ∈ M are subsets of Q(N) and P (N) respectively such that |A| = ℵω+1, |B| = ν

for some ν < ℵω, and A ↓B P (N). In particular, then, B ⊃
⋃
i<ω

Fi(A). Since P had the c.c.c. in L, we can

find B′ ∈ L such that B ⊂ B′ ⊂ P (N) and |B′| = |B| = ν.

Working in L, we let A′ = {a ∈ Q(N) :
⋃
i<ω

Fi(a) ⊂ B′}. We know that |A′| = ℵω+1 (since in M , A ⊂ A′).

But as
⋃
i<ω

Fi(A′) ⊂ B′, we get A′ ↓B′ P (N). And this is a contradiction. �

Remarks: (1) The proof of this fact is meant to be illustrative of a general style of argument. To show that

we cannot expect to improve our results on ‡′(κ, λ, λ′), we first show that these results are optimal under

certain “nice” conditions on cardinal arithmetic. We then use a forcing argument to show that they can

be optimal without such “nice” arithmetic. The key trick is to use partial orders with the κ′-c.c. for some

κ′ < λ. Then covering arguments of the type illustrated above can be employed.

(2) The example given here may seem to rely heavily on two facts concerning the cardinal arithmetic of

our final model. First, because the singular cardinals hypothesis holds in our initial model, |Q(N)| = |P (N)|+

in our final model; second everything of interest in our final model takes place below 2|T | (as |T | = ω and

2ω gets blown up in the passage from L to M).

However, both of these restrictions can be avoided if we use some more complicated forcing constructions

and assume the existence of large cardinals. So, for instance, Gitik and Magidor have an example of a type

of forcing construction which allows them to prove the following: if V satisfies GCH, κ is a strong cardinal,

and λ > κ is an arbitrary cardinal, then there is a generic extension V [G] such that

• no bounded subsets are added to κ

• κ changes its cofinality to ω

• κω ≥ λ

Further, the partial order necessary for obtaining this generic extension has the κ++–c.c., see [GM].

Using this forcing, we can get an example in which Q(N) > |P (N)|+. First we force with the Gitik-

Magidor partial order to get a universe V [G] in which κω > κ+ while 2ω = ω1. We then follow this up with

a c.c.c. forcing to get a universe V [G][H] in which (2ω)V [G][H] > (κω)V [G]. Starting with the obvious model

in V [G] and applying a argument similar to that of 3.2.1 gives the result.

To get a model in which everything takes place above 2ω, we apply the Gitik-Magidor forcing to get a

universe V [G] in which κω > ℵκ+ω. In V we build a model for the theory used in 3.2.1 which has type

(ℵκ+ω+1;ℵκ+ω). Then a covering argument similar to that used in 3.2.1 gives the result.

(3) Similar arguments work when we turn to the case of uncountable languages. If we modify the models

discussed above by adding a sequence of extra functions 〈Fi | ω ≤ i < µ〉—so we will use these functions to
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code up sets of size µ—then we obtain stable, quantifier eliminable theories with κ(T ) = µ+. With trivial

modifications, all of the above arguments go through for these new theories.

3.3 2-Cardinal Theorems

In this section, we assume that δ0 = 2. To simplify notation, we work with a fixed model M having the

property that |M ∩ A1| > |M ∩ A0|, and we use κ and λ to denote |M ∩ A1| and |M ∩ A0| respectively.

To avoid proving our main theorem several times, we adopt the following general framework. We work

with classes, K, of submodels of M . Associated to each K is a nondecreasing function FK : {κ ∈ CARD :

κ ≤ |M |} → {κ ∈ CARD : κ ≤ |M |} such that for every µ, FK(FK(µ)) = FK(µ); cardinals such that

FK(µ) = µ will be called K-good. Also associated with K is a cardinal λ(K) such that λ(K) ≤ FK(0) and

K is closed under unions of increasing sequences having cofinality ≥ λ(K). Finally, K and FK must satisfy

the following conditions:

1. If A ⊂M , there exists a K-model N such that A ⊂ N and |N | ≤ FK(|A|).

2. If N is a K-model and N ∪ A ⊂ M , then there is a K-model N [A] ⊃ N ∪ A such that |N [A]| ≤

FK(|N ∪A|) and A BN N [A].

Lemma 3.3.1 The conditions outlined above are satisfied when:

1. M is an F-saturated model for some standard F; K is the class of F-saturated submodels of M ;

FK(µ) = min{F(µ), |M |}; and λ(K) = λ(F)

2. M is an Ft
|T|+-saturated model; K is the class of |T |-compact submodels of M ; FK(µ) = min{Fl|T |(µ), |M |};

and λ(K) = |T |

3. T is superstable; M is an arbitrary model; K is the class of models N ⊂na M ; FK(µ) = µ+ |T |; and

λ(K) = ω.

Proof. For 1, we take prime models to satisfy the two conditions. For 2, condition 1 is trivial; condition 2

follows by letting N [A] be Fl|T |-constructible and |T |-compact over N ∪A (see section 2.2). For 3, condition

1 follows from the fact that N ′ ⊂na N ⊂na M =⇒ N ′ ⊂na M ; condition 2 follows from 2.2.9. Note that in

all three cases, the condition on unions of chains follows trivially from the definition of K. �

Lemma 3.3.2 Let A ↓BA B, and let B′ be arbitrary. Then there exists A′ ⊂ A such that |A′ | ≤ max(|B′ |, κ(T ))

and A ↓BA∪A′ B ∪B′. If |B′ | < cf(κ(T )), then we can have |A′ | < κ(T ).

Proof. Clearly we can find an A′ with the desired cardinality such that B′ ↓B∪A′ A. As A ↓BA∪A′ B ∪ A′,

we get A ↓BA∪A′ B ∪B′ by transitivity. �

Lemma 3.3.3 Let A,B,BA ⊂ M and suppose that A ↓BA B. Then there exists a K-model N such that

BA ⊂ N , |N | = FK(|BA|) and A ↓N B.
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Proof. We construct by induction a sequence 〈(Bi,Mi) | i < λ(K)〉 such that:

1. for each i, |Bi| ≤ |Mi| = FK(|BA|).

2. for each i, Bi ⊂Mi ⊂ Bi+1; 〈Mi | i < λ(K)〉 is increasing

3. for each i, Mi is a K-model, and A ↓Bi B

We begin, by letting B0 = BA and letting M0 be a K-model containing B0 such that |M0| = FK(BA).

Suppose, then,that we have (Bj ,Mj) for every j < i. Let M ′ =
⋃
j<i

Mi. As |M ′| = FK(BA), we can use the

last lemma to find an A′ ⊂ A such that |A′| = FK(B) and A ↓BA∪A′ M ′ ∪B ∪A′. Let Bi = M ′ ∪A′ and let

Mi be a K-model containing Bi such that |Mi| = |Bi| = FK(|BA|).

Clearly, conditions 2 and 3 are preserved by this construction. Further, we never need to increase |Mi|

at successor stages (as FK(|BA|) is FK-good); and as all of our limits are taken at ordinals β such that

β < λ(K) ≤ FK(0) ≤ FK(|BA|), |Mi| is not increased at limits either. Hence, condition 1 is satisfied.

Let N =
⋃

i<λ(K)

Mi =
⋃

I<λ(K)

Bi. Clearly BA ⊂ N and |N | = FK(|BA|). As K is closed under unions of

length λ(K), N is a K-model. And by forking continuity, A ↓N B. �

Theorem 3.3.4 Let κ′ and λ′ be K-good such that κ′ ≤ κ, λ′ < λ, and λ′ < κ′. Suppose that one of the

following conditions holds:

1. κ′ < κ, and there exists ν such that †(λ′+, λ, ν) holds and |B |<ν < κ.

2. κ′ = κ, and there exists ν such that †(λ′+, λ, ν) holds and |B |<ν < cf(κ).

3. κ′ = κ, and there exists ν such that †(λ′+, λ, ν) holds and both |B |<ν < κ and cf(κ) < λ′+.

Then there exists a K-model M ′ such that |M ′ ∩ A1| = κ′ and |M ′ ∩ A0| = λ′.

Proof. By 3.1.4, we can find A ⊂M ∩A1 and B ⊂M ∩A0 such that |A| = κ′, |B| = λ′ and A ↓B M ∩A0.

By lemma 3.3.3, we can find a K-model such that |A| = FK(|B|) = λ′ and A ↓N M ∩ A0. By condition 2

on K-models, there exists a K-model N [A] such that |N [A]| = FK(|N ∪A|) and A BN N [A].

As FK(|N ∪A|) = FK(κ′) = κ′, we have |N | = κ′; so as A ⊂ N ∩A1 and |A| = κ′, we have |N ∩A1| = κ′.

Further, since A ↓N M ∩ A0 and A BN N [A], we have N [A] ↓N M ∩ A0. In particular, N [A] ∩ A0 ⊂ N.

So, |N [A] ∩ A0| = |N ∩ A0| = λ′. Letting M ′ = N [A], we are done. �

Remarks: (1) If T is superstable, this result allows us to work inside a completely arbitrary model M

and get whatever cardinalities we like (modulo some cofinality issues). We just take K to be the set of

models N ⊂na M . Similarly, if T is countable and M is ω1-saturated, then we can use F l|T | to get whatever

cardinalities we like (again, modulo some cofinality issues).

If we make the assumption that A1 = M and that A0 is definable by a predicate in L, then the superstable

version of this theorem gives V 6.17 of [Sh]. Shelah’s cardinality conditions are simply those generated by

3.1.5. Note that Shelah’s argument requires that A0 be definable (or, at least, ∞-definable).
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(2) If M has some reasonably high degree of saturation/compactness, then we can preserve this satura-

tion/compactness in theM ′ given by the theorem; we just takeK to be the class of F tµ-saturated models where

µ is the degree of saturation/compactness we wish to preserve. We “pay” for this saturation/compactness

by giving up some freedom vis-a-vis the cardinalities of M ′ ∩ A0 and M ′ ∩ A1: under this construction,

these cardinalities must be F xµ -good.

(3) Note that this result does not require that A0 and A1 be definable (or even ∞-definable). The

argument works for completely arbitrary subsets of M .

In section 2.2, we saw that many arguments involving Fa
µ-constructions can be “relativized” to work

inside models which are not necessarily Fa
µ-saturated. These arguments do not quite fit into the framework

established above (as the interplay between relatively Fa
µ-maximal models and relatively Fa

µ-saturated models

is not captured in the K-notation). Nevertheless, a result quite similar to 3.3.4 can be proved using these

relativization techniques.

Theorem 3.3.5 Let µ ≥ κr(T ) be regular and suppose that M is µ-compact. Let κ′ and λ′ be F aµ -good (or

just κ′ = |M | and λ′ F aµ -good) such that κ′ ≤ κ, λ′ < λ, and λ′ < κ′. Suppose that one of the following

conditions holds,

1. κ′ < κ, and there exists ν such that †(λ′+, λ, ν) holds and λ<ν < κ.

2. κ′ = κ, and there exists ν such that †(λ′+, λ, ν) holds and λ<ν < cf(κ).

3. κ′ = κ, and there exists ν such that †(λ′+, λ, ν) holds and both λ<ν < κ and cf(κ) < λ′+.

Then there exists a µ-compact model M ′ such that |M ′ ∩ A1| = κ′, |M ′ ∩ A0| = λ′, and M ′ ≺M .

Proof. By 3.1.4 we can find A ⊂M ∩A1 and B ⊂M ∩A0 such that |A| = κ′, |B| = λ′ and A ↓B M ∩A0.

Note that the class of relatively Fa
µ-saturated submodels of M satisfies condition 1 from the definition of K

and is closed under increasing unions of length µ; this is enough to mimic the proof of 3.3.3 to find and N

such that B ⊂ N ≺aµ M , |N | = λ′ and A′ ↓N M ∩ A0.

Let X ⊂M be Fa
µ-constructible over N∪A′ and relatively Fa

µ-maximal in M . By 2.2.4, X is a µ-compact

model; and by 2.2.7, X ↓N M ∩ A0. In particular, |X ∩ A0| = |N ∩ A0| = |B′| = λ′. Since |A′| is either

Fa
µ-good or the same as |M |, |X| = |A′| = κ′. So, |X ∩ A1| = |A′| = κ′. Letting M ′ = X we are done. �

This theorem provides us with an additional result on admitting cardinals which could not be obtained

using the techniques of either 2.3 or 2.4. It says that if the cardinality of a (κ ;λ)-model is large enough, then

the actual difference in cardinality between κ and λ is largely irrelevant for admitting cardinals arguments.

Corollary 3.3.6 Suppose that A0 and A1 are ∞-definable over some set A. Suppose also that M is κr(T )-

compact, κ > i(|A|+|L|)+ and κ > λ<κr(T ). Then for any κ′ > λ′ ≥ |A| there exists M ′ ⊃ A such that

|M ′ ∩ A1| = κ′ and |M ′ ∩ A0| = λ′
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Proof. Expand L by adding constants for elements in A. Note that this does not change the fact that T is

stable, nor does it change the value of κ(T ).

If λ is small—say, if λ < 2|T |—then we are done by 1.3.4. So suppose that λ is large. Let µ =

(max{i|L|+ , λ<κr(T )})+. Note that, †((2|T |)+, λ, κr(T )) holds automatically and that κ ≥ µ = cf(µ) >

λ<κr(T ). Note also that both µ and 2|T | are Fa
κr(T)-good. So, by 3.3.5 we can find an M ′ ≺ M such that

|M ′ ∩ A1| = µ and |M ′ ∩ A0| = 2
|T|. Now apply 1.3.4. �

Remarks: (1) This corollary is primarily useful when κr(T ) ≤ |T |. When κr(T ) > |T |, then κr(T )-compact

is the same as Fa
κr(T)-saturated; in that case, we can ignore the conditions on the size of κ and simply apply

2.4.8.

(2) 3.3.6 is particularly nice when T is superstable. Here, the requirement that M be κr(T )-compact

becomes trivial; similarly, the requirement that κ > λ<κr(T ) reduces to just κ > λ. Thus, as long as the set

M ∩ A1 is large enough, any splits between the sizes of M ∩ A1 and M ∩ A0 will be enough to get the

corollary’s conclusion. This is true no matter how large the types needed to define A0 and A1 happen to

be.

3.4 δ-Cardinal Problems

In this section, we extend the results from 3.3 to the case in which δ0 is infinite. As in 3.3, we work with a

fixed model M , and we assume that M is an F -model for some increasing F : δ0 → CARD.

We also carry over the K, FK , and λ(K) framework from section 3.3; but here we place the following

additional conditions on K and FK :

3. If N is a K-model and A ⊂ N , then there exists a K-model N ′ such that A ⊂ N ′ ⊂ N and |N ′| ≤

FK(|A|).

4. If 〈Ni | i < α〉 is an increasing sequence of K-models and A ⊃
⋃
i<α

Ni, then there is a K-model N ⊃ A

such that |N | = FK(|A|) and for i < α, A BNi N .

These additional conditions are satisfied by each of the classes of models mentioned in lemma 3.3.1. The

only condition which is at all difficult to check is condition 4 for the class of models N ⊂na M . For this

condition, we let N =
⋃
i<α

Ni, and we apply 2.2.9 to find N such that A ⊂ N ⊂na M and A BN N . Then I

claim that N satisfies the demands of condition 4. For suppose that i < α and that b ↓Ni A. Then b ↓N A.

As A BN N , we get b ↓N N . So by transitivity, b ↓Ni N (remember, N ⊂ A).

We begin this section with a coordination lemma which helps to ensure that all of the constructions in

the section are well founded. It should be thought of as an infinitary version of 3.3.2.

Lemma 3.4.1 Let 〈(Ai, Bi, Ci) | i < α〉 be a sequence of sets such that for each i < α, Ai ↓Ci Bi. Then,

1. There exists D such that D ⊆ (
⋃
i<α

Ci ∪
⋃
i<α

Ai), |D| ≤ |
⋃
i<α

Ci| + |α| + κ(T ), and for each i < α,

Ai ↓D Bi.
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2. If all of the Ai, Bi, and Ci are contained in M , then there exists a K-model N such that
⋃
i<α

Ci ⊆ N ,

|N | ≤ FK [|
⋃
i<α

Ci + |α|+ κ(T )], and for each i < α, Ai ↓N Bi.

3. In 2, if all the Ai and Ci are contained in some K-model M ′, then we may have N ≺M ′.

Proof. (1) We construct by induction a sequence 〈Dn | n < ω〉. D0 =
⋃
i<α

Ci. Given Dn, we employ lemma

3.3.2 and choose for each i < α an Ai,n ⊆ Ai such that |Ai,n| ≤ |Dn|+ κ(T ) and Ai ↓Dn∪Ai,n Bi. We then

let Dn+1 = Dn ∪
⋃
i<α

Ai,n. Note that for each n, |Dn| ≤ |
⋃
i<α

Ci|+ |α|+ κ(T ).

Finally, we set D =
⋃
n<ω

Dn. Clearly, |D| ≤ |
⋃
i<α

Ci|+ |α|+ κ(T ); and by forking continuity, Ai ↓D Bi.

(2) Follows trivially from (3)

(3) Essentially the same proof as (1). Working in M ′, we build a sequence of models 〈Nk | k < λ(K)〉.

N0 is just a K-model containing
⋃
i<α

Ci such that |N0| = FK(|
⋃
i<α

Ci|) and N0 ≺ M ′. Given Nk, we choose

for each i < α an Ai,k ⊆ Ai such that |Ai,k| ≤ |Nk|+κ(T ) and Ai ↓Nk∪Ai,k Bi. By condition 3 on K-models,

we can find a K-model Nk+1 such that Nk ∪
⋃
i<α

Ai,k ⊂ Nk+1 ≺ M ′ and |Nk+1| ≤ FK(|Nk ∪
⋃
i<α

Ai,k|). For

limit i, we let Ni =
⋃
k<i

Nk.

Let N =
⋃

k<λ(K)

Nk. Clearly, |N | ≤ FK(|
⋃
i<κ

Ci|+ |α|+ κ(T )). And as N is the union of an λ(K)-length

chain of K-models, N is also a K-model. Finally, forking continuity insures that for each i < α, Ai ↓N Bi.

�

Theorem 3.4.2 Let G : δ0 → CARD be non-decreasing and such that for every i < δ0, G(i) ≤ F (i) and

G(i) = min{FK(G(i) + |δ0|+ κr(T )), F (i)}. Suppose that for every i < δ0, F (i) > (sup
j<i

F (j))<κr(T ) and one

of the following conditions holds,

1. G(i) < F (i)

2. cf(F (i)) > (sup
j<i

F (j))<κr(T ).

3. cf(F (i)) ≤ G(0).

Then there exists a K-model M ′ which is also a G-model. If κ(T ) = κ+ and δ0 ≤ κ, then we only need

G(i) = min{FK(G(i) + κ), F (i)}.

Proof. For convenience, we use Ai to denote M∩Ai. By corollary 3.1.7 we can find a sequence 〈(Ei, Bi) | i <

δ0〉 such that:

• Ei ⊂ Ai and |Ei| = G(i).

• Bi ⊂
⋃
j<i

Aj and |Bi| < κr(T ).

• Ei ↓Bi
⋃
j<i

Aj .

We let E denote
⋃
i<δ0

Ei. By lemma 3.4.1, we can find a K-model M0 such that |M0| = FK(|
⋃
i<δ0

Bi|) ≤ G(0)

and for every i < δ0, Ei ↓M0

⋃
j<i

Aj .
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Next, we build an increasing chain of K-models 〈Mi | i ≤ δ0〉 by induction. We try to preserve the

following:

1. for i < δ0, Ei ⊂Mi+1 and |Mi+1| = G(i).

2. for j ≥ i, Ej ↓Mi

⋃
k<j

Ak.

3. for j < i, Aj ↓Mj+1 Mi ∪ E.

We already have M0. So suppose we have Mj for j < i. By condition 4 on the class of K-models, we can

find a K-model M i such that
⋃
j<i

Mj ∪ E ⊂ M i and for every j < i,
⋃
k<i

Mk ∪ E BMj M i. By lemma 3.4.1,

we can find a K-model Mi ≺ M i such that
⋃
j<i

(Mj ∪ Ej) ⊂ Mi, |Mi| = FK(|
⋃
j<i

(Mj ∪ Ej)|) and for every

j ≥ i, Ej ↓Mi

⋃
k<j

Ak.

Note that if i = j + 1, then Ej ⊂ Mi and |Mi| = FK(|Ej |) = FK(G(j)) = G(j). So, condition 1 is

satisfied. Further condition 2 was obtained from the application of 3.4.1. So we only need to check condition

3.

Let j < i. If i = j+1, then the result follows from condition 2. If i > j+1, then the induction hypothesis

and forking continuity ensure that Aj ↓Mj+1

⋃
j<i

Mj ∪ E. As
⋃
j<i

Mj ∪ E BMj+1 M i, Aj ↓Mj+1 M i. And as

Mi ⊂M i, condition 3 is satisfied.

Claim: Mδ0 is a G model.

Proof of Claim. For every i < δ0, Ei ⊂ Mi+1 ⊂ Mδ0 ; so, |Mδ0 ∩ Ai| ≥ |Ei| = G(i). Further, as

Ai ↓Mi+1 Mδ0 , we have Mδ0 ∩ Ai ⊂ Mi+1. So since |Mi+1| = G(i), |Mδ0 ∩ Ai| = G(i). � (Claim,

Theorem)

Remark: In our hypothesis on G(i), the factor |δ0|+ κr(T ) (or simply κ, if κ(T ) = κ+ and δ0 ≤ κ) serves

only to ensure that all of our Bi sets can fit into M ′.

Notation: The proof of the next theorem makes extensive use of properties related to constructability

and requires some slightly non-standard notation. Let C be constructible over A via the construction

〈(ci, Bi) | i < α〉 and let C ′ ⊂ C. We will say that C ′ ⊂ C is completely closed if whenever ci ∈ C ′, Bi ⊂ C ′.

The complete closure of C ′ (ccl(C ′)) is the least completely closed C ′′ such that C ′ ⊆ C ′′ ⊆ C. Note that if

C ′ ⊂ C is completely closed in the construction of C over A, then C ′ is constructible both over A and over

C ′ ∩A. Note also that for any C ′ ⊂ C ∪A, |ccl(C ′)| ≤ |C ′|+ λ(F).

Theorem 3.4.3 Let µ ≥ κr(T ) be regular and suppose that M is µ-compact. Let G : δ0 → CARD be

non-decreasing and such that for every i < δ0, G(i) ≤ F (i) and G(i) = min{F aµ (G(i) + |δ0|+ κr(T )), F (i)}.

Suppose that for every i < δ0, F (i) > (sup
j<i

F (j))<κr(T ) and one of the following conditions holds,

1. G(i) < F (i)
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2. cf(F (i)) > (sup
j<i

F (j))<κr(T ).

3. cf(F (i)) ≤ G(0).

Then there exists a µ-compact model M ′ ≺ M which is also a G-model. If κ(T ) = κ+ and δ0 ≤ κ, then we

only need G(i) = min{FK(G(i) + κ), F (i)}.

Proof. Letting Ai denote M ∩ Ai, we choose a sequence 〈(Ei, Bi) | i < δ0〉 as in the proof of the previous

theorem. Let E =
⋃
i<δ0

Ei. Note that the collection of relatively Fa
µ-saturated submodels of M satisfies

conditions 1 and 3 from the definition of K and is closed under increasing unions of length µ; this is enough

to mimic the proof of 3.4.1, 3. Hence, we can find a relatively Fa
µ-saturated submodel of M , M0, such that

|M0| = Fa
µ(|

⋃
i<δ0

Bi|) ≤ G(0) and for every i < δ0, Ei ↓M0

⋃
j<i

Aj .

Next, we build two increasing chains of submodels of M : 〈Mi | i ≤ δ0〉 and 〈M i+1 | i < δ0〉. We try to

preserve the following:

1. Ei+1 ⊂Mi+1 and |Mi+1| = G(i).

2.
⋃

j>i+1

Ej ↓Mi
M i+1 ∪

⋃
j≤i+1

Aj .

3. for j > i, Ej ↓Mi

⋃
k<j

Ak.

4. Mi is Fa
µ-constructible over M0 ∪

⋃
j≤i

M j ∪ E.

5. Mi is relatively Fa
µ-saturated in Mi ∪ E.

6. M i+1 is Fa
µ-constructible over Mi ∪ E.

7. M i+1 is Fa
µ-maximal in M i ∪

⋃
j≤i+1

Aj .

We already have M0. So suppose that we have Mi. Let N be Fa
µ-constructible over Mi ∪

⋃
j≤i+1

Aj and

Fa
µ-maximal in M . Let M i+1 = Mi[Ei+1] ≺ N be Fa

µ-constructible and Fa
µ-maximal in N . Since E is

independent over Mi, this can be regarded as a construction over Mi ∪ E (see the remarks following 2.2.7),

so 6 is satisfied. 7 is satisfied as Mi ∪Ai+1 ⊂ N . By induction, 5 holds for Mi, so by 2.2.7
⋃

j>i+1

Ej ↓Mi
N .

So, 2 holds as well. Towards 1, note that |M i+1| ≤ Fa
µ(|Mi|+ |Ei|).

Let N ′ be Fa
µ-constructible and over M i ∪ E and Fa

µ-maximal in M .

Claim 1. There exists Mi+1 ≺ N ′ such that

A. Mi+1 is relatively Fa
µ-saturated in N ′.

B. Mi+1 is completely closed in the construction of N ′ over M i ∪ E.

C. M i ∪ Ei ⊂Mi+1 and |Mi+1| = G(i).

D. for j > i, Ej ↓Mi

⋃
k<j

Ak.
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Proof of Claim 1. Working in N ′, we construct a sequence 〈(Xj , Yj , Zj) | j < µ〉 by induction. For j = 0 or j

limit, we let Xj = Yj = Zj =
⋃
k<j

(Xk∪Yk∪Zk)∪M i∪Ei. Given some (Xj , Yj , Zj), we find (Xj+1, Yj+1, Zj+1)

as follows. Xj+1 is the complete closure of Zj in the construction of N ′ over M i∪E. Yj+1 ⊃ Xj+1 is relatively

Fa
µ-saturated in N ′ and such that |Yj+1| = Fa

µ(|Xj+1|). Zj+1 ⊃ Yj+1 is obtained by 3.4.1, 1; we require that

|Yj+1| = |Xj+1| and for k > j + 1, Ek ↓Zj+1

⋃
l<k

Al.

Let Mi+1 =
⋃
j<µ

Zj . Since Mi+1 is an increasing union of the Xj , Mi+1 is completely closed in the

construction of N ′ over M i ∪ E; so, condition B is satisfied. Since Mi+1 is an increasing union of the Yj ,

Mi+1 is relatively Fa
µ-saturated in N ′; so condition A is satisfied. Since Mi+1 is an increasing union of the

Zj , forking continuity ensures that Mi+1 satisfies condition D. Finally, replacing Yj with Zj or Zj with Xj+1

cannot increase the size of our sets; as we start with a set of size G(i) where G(i) is Fa
µ-good, replacing Xj

with Yj does not increase the size of our sets; and as all unions are at ordinals j < µ < |M0| ≤ G(i), we do

not increase sizes at limits. So, condition C is satisfied as well. � (Claim 1)

Now we need to check that Mi+1 satisfies conditions 1, 3, 4 and 5. in our main construction. Clearly

conditions 1 and 3 follow from C and D in claim 1. Condition 4 follows from condition B in the claim (noting

that M i ∪ E ⊂ N ′). Finally, condition 5 follows from A in the claim (noting that Mi+1 ∪ E ⊂ N ′).

For i limit, let N ′ be Fa
µ-constructible over

⋃
j<i

Mi∪E and Fa
µ-maximal in M . Following the construction

in the proof of claim 1, we find Mi ≺ N ′ such that
⋃
j<i

Mj ⊂Mi, |Mi| = Fa
µ(|
⋃
j<i

Mi|), Mi is Fa
µ-saturated in

N ′, Mi is completely closed in the construction of N ′ over
⋃
j<i

Mi ∪ E, and for every j > i, Ej ↓Mi

⋃
k<j

Ak.

As above, these conditions ensure that Mi satisfies conditions 1,3,4, and 5.

Claim 2. Mδ0 is a G model.

Proof of Claim 2. Note that for each i < δ0, we have that Ei ⊂M i+1 ⊂Mδ0 . So, |Mδ0 ∩Ai| ≥ |Ei| = G(i).

By condition 4, each Mi is Fa
µ-constructible over M0 ∪

⋃
j≤i

M j ∪ E, and by condition 5, each M i+1 is Fa
µ-

constructible over Mi ∪ E; so, pasting these constructions together, we find that Mδ0 is Fa
µ-constructible

over M i+1 ∪E. By condition 2,
⋃

j>i+1

Ej ↓Mi
M i+1 ∪

⋃
j≤i+1

Aj ; so by monotonicity,
⋃

j>i+1

Ej ↓Mi+1

⋃
j≤i+1

Aj .

Finally, by condition 7, M i+1 will be Fa
µ-maximal in M i ∪

⋃
j≤i+1

Aj . So by 2.2.6, Mδ0 ∩
⋃

j≤i+1

Aj ⊂ M i+1.

As |M i+1| = G(i), we are done. � (claim 2, theorem)

Corollary 3.4.4 Suppose that each Ai is ∞-definable over some A ⊂M . Let µ = [(|A|+ |L|+ |δ0|)++] · δ0
and suppose that M is κr(T )-compact, F (0) > iµ and for each i < δ0, F (i) > (sup

j<i
F (j))<κr(T ). Then for

any nondecreasing function G : δ0 → CARD such that G(0) ≥ |L|+ |A|, there exists a G model.

Proof. Like the proof of 3.3.6. We begin by expanding L by adding constants for elements in A, and

we note that this does not change the fact that T is stable, nor does it change the value of κ(T ). Let

µ′ = (|A| + |L| + |δ0|)+. Choose some G′ : δ0 → CARD such that for every i < δ0, G′(i) < F (i),

G′(i) > iµ′(supj<i(G′(j))) and G(i) is Fa
κr(T)-good By theorem 3.4.3, we can find M ′ ≺M such that M ′ is

a κr(T )-compact, G′-model. The result follows from 1.3.4. �
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