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Beth’s Theorem and Deflationism

Timothy Bays

In 1999, Jeffrey Ketland published a paper which posed a series of technical problems for deflationary theories

of truth. Ketland argued that deflationism is incompatible with standard mathematical formalizations of

truth and that alternate deflationary formalizations are unable to explain some central uses of the truth

predicate in mathematics. He also used Beth’s definability theorem to argue that, contrary to deflationists’

claims, the T-schema cannot provide an ‘implicit definition’ of truth. In this paper, I want to challenge

this final argument. Whatever other faults deflationism may have, the T-schema does provide an implicit

definition of the truth predicate. Or so, at any rate, I shall argue.1

1 Notation and preliminaries

Let me start by setting out some context. Let L = {0, 1,+,×, <} be the language of first-order arithmetic

and let PA be the theory based on the first-order Peano axioms.2 Our goal is to add a new truth predicate

1The paper at issue here is Ketland 1999. For reasons of space, the present paper will focus fairly tightly on Ketland’s

discussion of implicit definition. I should note, however, that some of Ketland’s other arguments have also sparked considerable

discussion in the literature. The reader interested in this broader discussion is advised to start with the survey in Shapiro 2002.

They should then turn to Field 1999, Tennant 2002, and Tennant 2005 for some responses to Ketland’s arguments, and to

Ketland 2005 for Ketland’s replies.

2Some more-detailed remarks on notation are probably in order here. Throughout this paper, I will let =,¬,&, and ∃

constitute the official first-order logical vocabulary, and I will treat ∨,→,↔, and ∀ as abbreviations. (I will make free use of

these abbreviations wherever they seem to improve readability.) Although the languages L and L+ will officially contain only

a small number of non-logical primitives, I will often abuse notation and write, e.g., ‘φ ∈ L’ to mean that φ is a formula built

up from from the primitives in L (plus, of course, the logical connectives).

Throughout this paper, N is the model which has the natural numbers as its domain and which interprets the symbols in L

in the ordinary manner. If M is a model for L and P is a new predicate, then 〈M;P 〉 is a model which results from expanding

M to the language L ∪ {P}—that is, from choosing a new subset of M to serve as the interpretation of P . Recall, here, that

this kind of expansion does not add any new elements to our domain, and it does not change the satisfaction relation for the

original language—so, if φ is a formula in L, then M |= φ ⇔ 〈M;P 〉 |= φ. If m is an element of some model M, I will write

M |= T[m] to mean that m lives in the subset of M picked out by T (similarly for M |= φ[m] where φ(x) is a formula with only

x free).

Finally, let φ be a formula in L. Then pφq is the code of φ under some appropriate coding scheme, and ˙pφq is the term which

represents this code in PA—that is, if the code of φ is n, then ˙pφq = 0 + 1 + 1 + . . . + 1 with n 1’s. For convenience, I will

assume that our coding scheme associates a sentence with every natural number. Readers who prefer alternate coding schemes

should add the sentence ∀n[T(n)→ Sent(n)] to each of the truth theories that we consider (where Sent(n) is a formula which

numeralwise represents ‘n is the code of a sentence’ in PA).
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to L.3 In particular, we let L+ = L ∪ {T} where T is a new unary predicate, and we then add some new

axioms to PA which ensure that T acts as a truth predicate for L—that is, if 〈N; T〉 satisfies our new axioms,

then the following biconditional holds for every sentence φ ∈ L :

〈N; T〉 |= T( ˙pφq)⇐⇒ N |= φ.

Now, for our purposes, there two basic ways of going about this. First, we could simply add every instance

of the T-schema to PA. That is, for every sentence φ ∈ L, we could add the sentence

T( ˙pφq) ↔ φ

as a new axiom. Let us call the resulting theory PAd . If we also expand PA’s induction scheme to include

formulas which contain our new predicate T, then we will call the resulting theory PA+
d .

4

Second, we could follow Tarski and give a full-fledged recursive definition of truth. This would involve

adding some variant of the following axioms to PA:5

1. ∀φ [ Atomic(φ)→ [T(φ)↔ Tr0(φ)] ].

2. ∀φ [ T(¬φ)↔ ¬T(φ)].

3. ∀φ∀ψ [ T(φ&ψ)↔ T(φ) & T(ψ)].

4. ∀φ∀i [ T(∃vi φ(vi))↔ ∃nT(φ(ṅ)) ].

Let us call the resulting theory PAT . If we also expand PA’s induction scheme to include formulas which

contain our new predicate T, then we will call the resulting theory PA+
T .

3Ketland’s original argument is formulated in somewhat more general terms, in that he works with a broader class of

languages and considers base theories which extend PA. For our purposes, though, this level of generality is not necessary, so I

will stick with PA itself. Moving to the general case would require only minor notational changes.

4I should note, here, that Ketland himself does not discuss the theory I’m calling PA+
d in Ketland 1999. That being said,

several authors have discussed this theory in relation to Ketland’s paper, and including it does not substantially complicate my

argument.

5This way of formulating the axioms is perspicuous, but only because it suppresses a lot of the underlying coding apparatus.

Technically, for instance, our language only lets us quantify over numbers, not formulas. So, each instance of ‘∀φ [. . .]’ in the

above axioms really abbreviates a more-complicated expression of the form ∀x [Sent(x) → [. . .] ], where Sent(x) numeralwise

represents ‘x is the code of a sentence’. Similarly, when things are spelled out fully, we will have to use coding and numeralwise

representability to capture the uses of negation, implication, quantification, and substitution which occur in axioms 2–4. So,

modulo logical equivalence, axiom 2 really looks something like

∀x∀y [Sent(x) & Sent(y) & Neg(y, x)→ [ T(y)↔ ¬T(x)] ]

and axiom 4 looks like

∀x∀i ∀z [Formula(x) & Variable(i) & ExQuant(z, i, x)→ [ T(z)↔ ∃n ∃z′ [Subst(z′, i, n, x) & T(z′)] ] ]

where Neg,ExQuant, and Subst numeralwise represent various negation, quantification, and substitution relations. (Note:

in axiom 1, Atomic(x) represents ‘x is an atomic sentence’, and Tr0(x) represents ‘x is a true atomic sentence’. The latter can

be already defined in PA—so, using a formula in L—without appealing to the general notion of truth.)
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Ketland’s main purpose in Ketland 1999 is to argue that Tarskian theories like PA+
T have real advantages

over deflationary theories like PAd and PA+
d . So, he highlights some positive features of PA+

T —it proves some

general facts about truth, it helps to prove a semantic version of the incompleteness theorem, etc.—and some

negative features of PAd and PA+
d —they do not prove general facts about truth, they do not help to prove

the incompleteness theorem, etc. It is in this later (negative) part of Ketland’s argument where his remarks

on implicit definition occur, and so it is to this latter part of the argument that I turn next.

2 Ketland’s complaints

In section 4 of his paper, Ketland argues that PAd and PA+
d have four negative features.6 First, he notes that

these theories have non-standard models. In particular, let M be a non-standard model of PA, and let m be

any non-standard element of M such that M |= Sent[m]. Then we can expand M to a model for the language

L+ such that 〈M; T〉 |= PA+
d and 〈M; T〉 |= T[m]. This is true, even though there is no intuitive sense in

which m codes up a true sentence of arithmetic. What is more, some of these non-standard models fail to

satisfy even very basic principles concerning truth. So, for instance, we can build non-standard models of

PA+
d which do not satisfy axiom 2 in the Tarskian truth definition—that is, 〈M; T〉 6|= ∀φ [ T(¬φ)↔ ¬T(φ)].

Second, PAd and PA+
d do not prove basic generalizations about truth. The example in the last paragraph

shows that they do not prove the second of our Tarskian axioms. With a little work, we can extend this

example to show that they do not prove either bivalence or non-contradiction—that is,7

• PA+
d 6` ∀φ [ T(φ) ∨ T(¬φ)].

• PA+
d 6` ∀φ¬[ T(φ) & T(¬φ)].

Similar arguments show that PAd and PA+
d do not prove basic facts about & and ∃.

Third, PAd and PA+
d are ω-incomplete. Informally, we can note that although these theories do not

imply axiom 2, they do imply all the relevant ‘instances’ of axiom 2—that is, for every φ ∈ L,

PAd ` T( ˙p¬φq)↔ ¬T( ˙pφq).

More formally, although PAd and PA+
d do not prove axiom 2, they do prove every sentence of the form

∀y [Sent(ṅ)&Sent(y)&Neg(ṅ, y)→ [ T(ṅ)↔ ¬T(y)] ]

where n is a particular natural number.8 Hence, whether we think of ω-completeness in terms of formulas

or in terms of numbers, PAd and PA+
d are ω-incomplete.

6Although it is somewhat tangential to the main point of this paper, I should note that it is not clear just who these criticisms

are really supposed to be directed against. Deflationists like Field tend to to formulate their theories using substitutional

quantifiers, and Ketland’s complaints do not obviously apply to such theories (see Field 1994, Field 1999, and Field 2001). In

this sense, then, Ketland’s focus on PAd and PA+
d may amount to attacking some straw men.

7As before, this way of formulating things suppresses a lot of the underlying coding apparatus. For convenience and

perspicuity, I will continue to use this kind of notation/formulation throughout the remainder of this paper.

8Note that these sentences are simply instantiations of axiom 2 to particular natural numbers.
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Finally, Ketland uses Beth’s definability theorem to argue that PAd and PA+
d do not provide an implicit

definition of the truth predicate. To spell this argument out, I start by recalling the following definitions:

Definition 1: Let T be a theory in some language L∗, let P be a unary predicate not in L∗, and let Φ(P )

be a collection of sentences in L∗ ∪ {P}. We say that T∪Φ(P ) implicitly defines P , if for every L∗-model

M such that M |= T, there is exactly one way to expand M to L∗ ∪ {P} such that 〈M; P 〉 |= T∪Φ(P ).9

Definition 2: Let T be a theory in some language L∗, let P be a unary predicate not in L∗, and let Φ(P )

be a collection of sentences in L∗∪{P}. We say that T∪Φ(P ) explicitly defines P if there is some ψ(x) ∈ L∗

such that T∪Φ(P ) |= ∀x [P (x)↔ ψ(x)].

These definitions put us in a position to formulate Beth’s definability theorem:

Theorem (Beth): Let T be a theory in some language L∗, let P be a predicate not in L∗, and let Φ(P ) be

a collection of sentences in L∗ ∪ {P}. Then T∪Φ(P ) implicitly defines P if and only if T∪Φ(P ) explicitly

defines P.

Given all this, Ketland argues as follows. Suppose that PAd or PA+
d implicitly defines T. Then, by Beth’s

theorem, PA+
d must also explicitly define T. Hence, there must be some ψ(x) ∈ L such that

PA+
d ` ∀x [T(x)↔ ψ(x)] (1)

Further, since PA+
d contains the T-schema, we can use (1) to show that for every particular φ ∈ L,

PA+
d ` ψ( ˙pφq)↔ φ (2)

Since we know that N can be expanded to a model of PA+
d , (2) entails that

N |= ψ( ˙pφq)↔ φ (3)

for every φ ∈ L. This, however, makes ψ into a truth-predicate for L, and that contradicts Tarski’s theorem

on the indefinability of truth.10 So, PAd and PA+
d must not provide an implicit definition of T after all.

9That is, there is exactly one subset of M’s domain which, when chosen as the interpretation of P, will allow the model 〈M; P 〉

to satisfy T∪Φ(P ). It is worth noting here that there is an alternate way of formulating the notion of implicit definition. Let

P ′ be another new predicate, and let Φ(P ′) be the result of substituting P ′ for P throughout Φ(P ). Then T∪Φ(P ) implicitly

defines P if

T∪Φ(P ) ∪ Φ(P ′) |= ∀x [P (x)↔ P ′(x)].

For some purposes, this alternate formulation is nicer than the one given above (though Ketland himself formulates the notion

using expansions). I will say a bit more about the alternate definition when we get to section 3 (see especially fn. 13 on p. 5).

10Recall that Tarski’s theorem says that there is no formula ψ(x) ∈ L such that for every φ ∈ L, N |= ψ( ˙pφq)↔ φ. Note that

this does not vitiate the overall project of using T as a truth predicate, since T(x) does not live in L. The trick in Ketland’s

proof comes in using the implicit definability of T to generate a ψ(x) which does live in L and which perfectly ‘matches’ T(x).

It is this ψ which generates a conflict with Tarski’s theorem.
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3 Tu quoque

Before turning to my main argument, I want to briefly highlight an initial oddity concerning the four

arguments sketched in the last section. In particular, I will note that, when they are considered at a high

enough level of abstraction, all four of Ketland’s claims about PAd and PA+
d carry over nicely to PAT and

PA+
T . So, although Ketland may well have highlighted some negative features of PAd and PA+

d , it is not clear

that these features help to distinguish PAd and PA+
d from PAT and PA+

T .

First, a simple compactness argument shows that PA+
T has non-standard models and that, in any such

model, 〈M; T〉, there will be some non-standard element m such that 〈M; T〉 |= T[m].11 Second, Gödelian

considerations show that there are natural (and, indeed, true!) generalizations about truth which PAT and

PA+
T do not prove. So, for instance, let Provable+(x) numeralwise represent the provability of L-sentences

in PA+
T .

12 Then, given the normal interpretation of T on N,

〈N; T〉 |= ∀φ [Provable+(φ)→ T(φ)].

However, a simple application of Löb’s theorem shows that:

PA+
T 6` ∀φ [Provable+(φ)→ T(φ)].

Third, PAT and PA+
T are ω-incomplete. Let Proof+(x, y) numeralwise represent the relation ‘y is the code

of a sentence in L, and x is the code of a proof of that sentence in PA+
T .’ Then it is straightforward to show

that, for every n,

PAT ` ¬Proof+(ṅ, ˙p1 = 0q).

But, by the second incompleteness theorem,

PA+
T 6` ∀x¬Proof+(x, ˙p1 = 0q).

Finally, if we understand ‘implicit definition’ in the manner relevant to Beth’s theorem, then neither PAT

nor PA+
T provides an implicit definition of the truth predicate. This can be proved using exactly the same

argument as we used to prove the corresponding claim for PAd and PA+
d (just substitute PA+

T for PA+
d

throughout the argument on page 4).13

Together, these points show that the simple development of Ketland’s arguments in section 4 of his

paper—a development which simply runs through a series of awkward technical facts about PAd and then

11On this front, PAd and PA+
d may seem to come out ahead of PAT and PA+

T . If M is a non-standard model of PA, then

it is possible to expand M to a model of PA+
d without making 〈M; T〉 |= T[m] for any non-standard m. In contrast, every

non-standard model of PAT contains some non-standard m such that 〈M; T〉 |= T[m]. This latter claim follows from the fact

that PA ` ∀x∃y [ y > x& Tr0(y)]; hence, PAT ` ∀x ∃y[ y > x& T(y)].

12So, for any natural number n, N |= Provable+(ṅ) if and only if n is the code of some φ ∈ L and PA+
T ` φ. Note that the

proofs at issue here may involve formulas in L+, but the final sentence φ has to live in L.
13In footnote 9, I gave an alternate formulation of implicit definition. Since it is equivalent to the definition given on page

4, it wo not help to evade the argument just given. Nonetheless it does suggest something interesting. Let T and T′ be unary

predicates, and let PA(T) and PA(T′) be full-fledged Tarskian truth theories—including induction—which are formulated in
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leaves the matter at that—is not enough to distinguish PAd and PA+
d from PAT and PA+

T . I should note,

here, that, although I think this point is technically interesting, it should not be overemphasized: there is

room in principle for a more sophisticated argument which claims that (at least some of) Ketland’s points

raise deeper problems for PAd and PA+
d than for PAT and PA+

T . Certainly the generalizations about truth

which PA+
d fails to prove are more central to the theory of truth than those which PA+

T fails to prove, and

the ω-incompleteness of PA+
d involves fundamental axioms of truth in a way in which the ω-incompleteness

of PA+
T does not. (Indeed, one might even argue that Ketland’s second and third points about PAd highlight

a real weakness in that theory’s account of truth, while my analogous points about PA+
T simply reflect the

underlying weakness of PA itself.) Finally, whereas deflationists sometimes claim that the T-schema serves to

implicitly define the truth predicate, it is not clear that anyone has made a similar claim about the Tarskian

axioms. Once again, therefore, there may be room for distinguishing the dialectical situation of the PAd and

PA+
d cases from that of the PAT and PA+

T cases.14

4 Implicit definition

The above arguments show that neither PA+
d nor PA+

T provide an implicit definition of the truth predicate.

How much should this fact bother us? In his paper, Ketland suggests that it should bother the deflationist

quite a bit. After all, deflationists often claim that the T-schema does serve to implicitly define—or to ‘fix the

extension of’—the truth predicate. On the surface, then, there seems to be a conflict between deflationists’

understanding of the T-schema and Ketland’s theorems on implicit definitions.

I think, however, that this particular conflict is mostly illusory and that it depends almost entirely on

an equivocation concerning the phrase ‘implicit definition’. Beth’s theorem, after all, turns on a particularly

strong reading of this phrase. For PAd or PA+
d to ‘implicitly define’ T in the sense of Beth’s theorem, they

would have to fix the extension of T on all models of PA, including all the non-standard models. Put

terms of these new predicates (so, PA(T) is just a new notation for PA+
T ). Then Ketland’s argument shows that:

PA(T) + PA(T′) 6` ∀x [ T(x)↔ T′(x) ].

However, if we expand our induction scheme so as to include formulas in the combined language, L ∪ {T} ∪ {T′}, then we can

use induction on the formula T(x)↔ T′(x) to show that:

PA(T) + PA(T′) + I(T ∪ T′) ` ∀x [ T(x)↔ T′(x) ].

So, if we allow ourselves induction principles for a rich enough language, then we can prove that any two instances of the

Tarskian truth definition are equivalent, and that is at least similar to the notion of implicit definition discussed in footnote

9. For more on this kind of argument, see Ketland’s remarks in Ketland 2003, pp. 9–10; see also McGee 1991, p. 73. For an

interesting application of this type of implicit definition in the context of defining the logical particles, see Belnap 2006.

All that being said, this result still does not show that there is a unique way to expand an arbitrary model of PA to

L ∪ {T} ∪ {T′} so that the resulting expansion satisfies PA(T) ∪ PA(T′) ∪ I(T ∪ T′). It simply shows that any particular

expansion will have to assign T and T′ the same extension (although there may be—and, indeed, usually are—many ways of

choosing that extension).

14That being said, people have claimed that the Tarskian axioms provide an explicit definition of truth, and this claim is also

false on the conception of ‘explicit definition’ that is relevant to Beth’s Theorem.
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otherwise, they would have to determine the application of T, not just to every sentence in L, but to every

object that any model of PA thinks is a sentence in L.15

It seems to me, however, that this is not what deflationists have in mind when they claim that the

T-schema ‘fixes the extension’ of the truth predicate. As far as I can see, they are simply claiming that

the T-schema fixes the application of T to every genuine sentence in L, and there is nothing in Ketland’s

argument which tells against this more restricted claim. In fact, I think that this restricted claim is pretty

clearly correct. Let me say two things about this.

First, if we limit ourselves to the standard model of PA, then PAd does ‘fix the extension’ of T. Let

〈N; T〉 |= PAd and let n be the code of some sentence φ ∈ L. Then the fact that 〈N; T〉 satisfies the T-

schema means that the number n will live in the extension of T just in case N |= φ (and will live outside

the extension of T just in case N 6|= φ). Since every sentence φ ∈ L has a determinate truth value on N,

and since our coding scheme associates every natural number with a sentence, this will fix the extension of

T for every natural number.16 Hence, there is only one way to expand N to the language L+ such that the

resulting model satisfies PAd. Further, this expansion ‘gives the right answer’ for all formulas of L. Suppose,

once again, that 〈N; T〉 |= PAd. Then for every φ ∈ L,

〈N; T〉 |= T( ˙pφq)⇐⇒ 〈N; T〉 |= φ.

So, not only does PAd fix the extension of T on the standard model, but it does so correctly.

Second, if we turn our attention to non-standard models of PA, then we find that PAd still uniquely

defines T on the standard part of those models. So, let N′ be a non-standard model of PA, and let N′′ and

N′′′ be expansions of N′ to L+ such that both expansions satisfy PAd. Then for any natural number n,

N′′ |= T(ṅ)⇐⇒ N′′′ |= T(ṅ).

Further, these expansions continue to ‘give the right answer’ concerning T’s application to both ordinary

natural numbers and to genuine sentences of L. On the one hand, we know that for any number n,

N′′ |= T(ṅ)⇐⇒ n is the code of an L-sentence, φ, and N′′ |= φ.

15To further emphasize the strength of the notion of implicit definition that is in play in Beth’s theorem, we can examine that

notion’s application to simple recursive definitions. Consider, for instance, the standard recursive definition of exponentiation:

x0 = 1

xn+1 = xn · x

Although any mathematician would be happy with this definition—and, indeed, although this kind of recursive definition

probably constitutes a paradigm case of ‘implicit definition’ in the mathematical context—it does not count as an ‘implicit

definition’ for the purposes of Beth’s theorem (since it does not fix the interpretation of exponentiation on the non-standard

parts of non-standard models of arithmetic). The fact that (even) this kind of recursive definition fails Beth’s test for being an

‘implicit definition’ highlights just how strong Beth’s conditions on implicit definition really are.

16If our coding scheme does not associate a sentence with every natural number, then the T-schema will only fix the extension

of T on those numbers which code sentences. But in this case, the axiom ∀n[T(n)→ Sent(n)] (see fn. 2) will fix the extension

of T on those numbers which do not code sentences (i.e. by forcing those numbers to live outside the extension of T).
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On the other hand, we know that for any φ ∈ L,

N′′ |= T( ˙pφq)⇐⇒ N′′ |= φ.

So, even on non-standard models, PAd will still fix the interpretation of T on the standard parts of those

models, and it will do so in exactly the way that we would want it to.

The upshot of these first two points is this: the only thing which keeps PAd and PA+
d from providing

implicit definitions of T—in the sense of ‘implicit definition’ used in Beth’s theorem—is the fact that these

theories do not fix the extension of T on the non-standard parts of non-standard models of arithmetic. That

is, if M is a non-standard model of PA and m is a non-standard element of M such that M |= Sent[m], then

PAd and PA+
d do not fix the application of T to m. But why should this bother the deflationist? After all,

PAd was supposed to fix the interpretation of T on sentences of L, and we already know that there is no

intuitive sense in which non-standard elements like m code up L-sentences. So, while the inability of PAd

and PA+
d to determine the value of T on m may be a problem for Beth’s theorem, it is just not a problem

for the deflationist’s conception of ‘implicit definition’.17

Let me make a purely textual comment about this matter. In claiming that deflationists regard the

T-schema as an implicit definition of truth, Ketland cites remarks by Quine and Haack to the effect that

the T-schema ‘fixes the extension’ of the truth predicate.18 A quick check, however, shows that both of

these authors explain their remarks in ways that tell against Ketland’s invocation of Beth’s theorem. In

particular, let TS(T) and TS(T′) be two versions of the T-schema, formulated using the predicates T and T′

respectively. Then Quine and Haack both notice that, for every φ ∈ L:

TS(T) ∪ TS(T′) ` T( ˙pφq)↔ T′( ˙pφq). (4)

As we saw above, this claim is clearly true. Further, it underlies a perfectly natural conception of what it is

for TS(T) to ‘fix the extension’ of T on L. In this context, therefore, Ketland’s invocation of Beth’s theorem

simply misses the point.

As far as I can tell, this problem generalizes pretty widely. Although I can find many deflationists who

talk about the T-schema ‘implicitly defining’ or ‘fixing the extension of’ the truth predicate (the latter more

17From a technical perspective, this is really the key point. Ketland’s application of Beth’s theorem turns less on the details of

our truth theory (see section 3) than on the fact that PA cannot pin down the appropriate extension for the Sent(x) predicate.

This predicate should apply to all and only the codes of genuine L-sentences, but in non-standard models it also applies to

various non-standard elements (elements which do not, in any interesting sense, code sentences of L). If there somehow were a

way to correctly pin down the extension of Sent(x) across all models of PA, then theories like PAd would implicitly define T,

and they would do so even by the standards of Beth’s Theorem.

An quick analogy might be helpful here. We can think of the T-schema as a recipe for determining the application of T to

particular sentences in L (or, more formally, to the codes of those sentences). If a model insists that some odd, non-standard

element in its domain is really a sentence code, then it is not the T-schema’s fault that it cannot determine the application of

T to that element. Similarly, a cake recipe tells you how to combine certain ingredients to make a chocolate cake. If you insist

that talcum powder is really a special kind of sugar, then it is not your recipe’s fault when your cake turn out to be inedible.

18See Quine 1953, p. 136 and Haack 1978, p, 100. Ketland’s own remarks come on p. 84 of his paper.
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often than the former), they all explain this usage by way of something like (4) above. To date, I cannot

find anyone who actually argues that the T-schema implicitly defines truth in the strong sense of ‘implicit

definition’ that is relevant to Beth’s theorem. Nor does Ketland’s own paper provide any evidence of such

claims. Without such evidence, Ketland’s criticism of deflationism seems only to attack a straw man.

In the end, then, I just do not think that deflationists should be very troubled about the fact that PAd

and PA+
d do not implicitly define T in the sense of ‘implicit definition’ that is used in Beth’s theorem. If you

are only concerned with applying T to standard codes of genuine formulas, then PAd and PA+
d do a perfectly

good job of fixing the extension of T. The fact that they do not also define T in some stronger sense—a

sense which involves evaluating T at objects which have no connection with the L-sentences in which we are

really interested—should not be too worrisome. Unless Ketland has has an explicit argument connecting the

deflationists’ modest use of ‘implicit definition’ with the strong sense of ‘implict definition’ used in Beth’s

theorem, his criticisms will simply wind up equivocating on two, very different, senses of this phrase.

This assessment reflects my overall reaction to the arguments in section 4 of Ketland’s paper. Even if

we grant Ketland his mathematics, the philosophy in this section is unpersuasive. On the surface, all four

of the criticisms that Ketland mounts against PAd and PA+
d apply equally well to PAT and PA+

T (with

essentially identical arguments in the case of criticisms 1 and 4). So, it is not clear that these criticisms

help to distinguish PAd and PA+
d from PAT and PA+

T . Further, although Ketland is certainly right that PAd

and PA+
d do not implicitly define T in the sense of ‘implicit definition’ that is used in Beth’s theorem, this

is not the sense of ‘implicit definition’ that is relevant to deflationism. On the deflationist’s conception of

implicit definition—a conception which focuses solely on fixing the extension of T on the class of genuine

L-sentences—PAd and PA+
d do a perfectly good job of implicitly defining T, and Beth’s theorem is not

applicable. Or so, at any rate, I have argued.19
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