
Tutorial on Loops and Functions

September 28, 2007

This tutorial gives a few examples of typical uses of loops in simple data analysis
problems.

Problem 1. In the first example, suppose we are given numerous vectors, say 10,
and asked to perform a t test on all possible pairs. As output, produce a table of
illustrative test components, sorted by p-value.

In practice we’d be given the vectors; here I’ll create some sample data. The 10
vectors will be stored in a list. First create an empty list. Then execute a loop that
generates a vector of length 20, randomly from normal distributions with varying
means. We start from a mean of −2 and increase it by 0.5 at each step. We’ll leave
the standard deviation at 1 (the default) in each sample.

> X <- vector(mode = "list", length = 10)

> m <- -2

> for (i in 1:10) {

+ X[[i]] <- rnorm(20, mean = m)

+ m <- m + 0.5

+ }

> names(X) <- paste("x", 1:10, sep = "")

We’re given 10 vectors, x1, . . . ,x10 and asked to perform a t test on each pair. If
we execute a t test on x1,x2, there is no need to repeat the test on x2,x1. Order only
matters in how certain numbers are reported (in a two-sided test). The following
array displays the pairs on which a t test should be run.

x1x2 x1x3 x1x4 · · · x1x10
x2x3 x2x4 · · · x2x10

. . . · · · ...
x8x9 x8x10

x9x10

That is, for each i, 1≤ i≤ 9, we execute a t test on xix j, for every j, i+1≤ j≤ 10.
We will need a loop inside a loop to run all these tests. Each iteration of the double

1

loop performs one t test. We’ll want to store selected components of the test object
as rows in a data frame. To keep track of the variables in that particular t test we
need to associate it with a descriptive name. As the row names of the data frame
we use the name “1-2” for the t test with x1, x2, and similarly for other variables. As
useful components of the t-test we select statistic, p.value, estimate.

To store to t test results we create data frame with 45 entries (the total number of
tests) having 0’s as the entries and the characters “1” to “45” as the rownames. The
counter l keeps track of which of the 45 tests we are running and identifies the row
in which data should be stored.

> testDat <- data.frame(Statistic = numeric(45), P.value = numeric(45),

+ Estimate = numeric(45))

> rownames(testDat) <- as.character(1:45)

> l <- 1

> for (i in 1:9) {

+ for (j in (i + 1):10) {

+ nm <- paste(i, j, sep = "-")

+ tst <- t.test(X[[i]], X[[j]], var.equal = TRUE)

+ rownames(testDat)[l] <- nm

+ testDat[l, 1:3] <- c(tst$stat, tst$p.val, tst$est)

+ l <- l + 1

+ }

+ }

Now sort the rows of testDat by p-value.

> testDat1 <- testDat[order(testDat$P.value),]

The first 10 rows and the last 10 rows of the table are reported on the following
page.

Problem 2. Write a function in two variables, x and n, that successively takes the
exponential of x n times. NOTE: This function gets very large as n increases.

> iterExp <- function(x, n) {

+ y <- x

+ for (i in 1:n) {

+ y <- exp(y)

+ }

+ y

+ }

Samples:

2

Statistic P.value Estimate
1-10 −15.40 6.33e−18 −1.74
4-10 −14.00 1.41e−16 −0.89
1-9 −12.85 2.09e−15 −1.74

2-10 −12.79 2.44e−15 −0.96
3-10 −11.72 3.44e−14 −0.99
4-9 −11.13 1.60e−13 −0.89
1-8 −10.61 6.50e−13 −1.74
2-9 −10.43 1.04e−12 −0.96
3-9 −9.73 7.22e−12 −0.99
1-7 −9.27 2.69e−11 −1.74

Table 1: First 10 Rows

Statistic P.value Estimate
1-3 −2.55 1.48e−02 −1.74
3-5 −2.51 1.65e−02 −0.99
7-8 −2.35 2.38e−02 0.94

8-10 −2.24 3.11e−02 1.75
6-7 −1.94 6.00e−02 0.36
5-6 −1.92 6.20e−02 −0.21
8-9 −1.16 2.53e−01 1.75

9-10 −1.07 2.90e−01 2.16
3-4 −0.41 6.83e−01 −0.99
2-4 −0.33 7.42e−01 −0.96
2-3 0.11 9.15e−01 −0.96

Table 2: Last 10 Rows

> iterExp(5, 2)

[1] 2.851124e+64

> iterExp(2, 5)

[1] Inf

3

