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Statistical Models

Regression

Regression analysis is the appropriate statistical method when the
response variable and all explanatory variables are continuous.
Here, we only discuss linear regression, the simplest and most
common form.

Remember that a statistical model attempts to approximate the
response variable Y as a mathematical function of the explanatory
variables X1, . . . ,Xn. This mathematical function may involve
parameters. Regression analysis attempts to use sample data find
the parameters that produce the best model
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Linear Models

The simplest such model is a linear model with a unique
explanatory variable, which takes the following form.

ŷ = a + bx .

Here, y is the response variable vector, x the explanatory variable,
ŷ is the vector of fitted values and a (intercept) and b (slope) are
real numbers. Plotting y versus x , this model represents a line
through the points. For a given index i , ŷi = a + bxi approximates
yi . Regression amounts to finding a and b that gives the best fit.
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Linear Model with 1 Explanatory Variable
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Plotting Commands
for the record

The plot was generated with test data xR, yR with:

> plot(xR, yR, xlab = "x", ylab = "y")

> abline(v = 2, lty = 2)

> abline(a = -2, b = 2, col = "blue")

> points(c(2), yR[9], pch = 16, col = "red")

> points(c(2), c(2), pch = 16, col = "red")

> text(2.5, -4, "x=2", cex = 1.5)

> text(1.8, 3.9, "y", cex = 1.5)

> text(2.5, 1.9, "y-hat", cex = 1.5)
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Linear Regression = Minimize RSS
Least Squares Fit

In linear regression the best fit is found by minimizing

RSS =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − (a + bxi ))2.

This is a Calculus I problem. There is a unique minimum and
unique a and b achieving the minimum.
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No Difference with Multiple
Explanatory Variables

Suppose there are k continuous explanatory variables, x1, . . . , xk .
A linear model of y in these variables is of the form

ŷ = a + b1x1 + b2x2 + · · · + bkxk .

The multiple linear regression problem is to find a, b1, . . . , bk that
minimze RSS . With the mild assumption of independence in the
x1, . . . , xk , there is a again a unique solution. It’s just a problem in
matrix algebra rather than high school algebra.
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Is the Model Predictive?

No assumptions have yet been made about the distribution of y or
any other statistical properties. In modeling we want to calculate a
model (a and b1, . . . , bk) from the sample data and claim the same
relationship holds for other data, within a certain error. Is it
reasonable to assume the linear relationship generalizes?

Given that the variables represent sample data there is some
uncertainty in the coefficients. With other sample data we may get
other coefficients. What is the error in estimating the coefficients?

Both of these issues can be addressed with some additional
assumptions.
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Assumptions in Linear Models

Given a linear model ŷ = a + b1x1 + · · · + bkxk of the response
variable y , the validity of the model depends on the following
assumptions. Recall: the residual vector is y − ŷ .

Homoscedasticity (Constant Variance) The variance of the
residuals is constant across the indices. The points should be
evenly distributed around the mean. Plotting residuals versus fitted
values is a good test.

Normality of Errors The residuals are normally distributed.
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Assessment Methods

These conditions are verified in R linear fit models with plots,
illustrated later.

If a plot of residuals versus fitted values shows a dependence
pattern then a linear model is likely invalid. Try transforming the
variables; e.g., fit log(y) instead of y , or include more complicated
explanatory variables, like x2

1 or x1x2.

With normality of residuals, RSS satisfies a chi-squared
distribution. This can be used as a measure of the model’s quality
and compare linear models with different sets of explanatory
variables.
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Linear Models in R

Given: A response variable Y and explanatory variables X1, X2,
...,Xk from continuous random variables.

A linear regression of Y on X1, X2, ..., Xk is executed by the
following command.

> lmFit <- lm(Y ~ X1 + ... + Xk)

The values of the estimated coefficients and statistics measuring
the goodness of fit are revealed through

summary(lmFit)
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Example Problem

There is one response variable yy and five explanatory variables x1,
x2, x3, x4, x5, all of length 20. The linear fit is executed by

> lmFit1 <- lm(yy ~ x1 + x2 + x3 + x4 +

+ x5)
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Results of the Linear Fit

> summary(lmFit1)

Call:
lm(formula = yy ~ x1 + x2 + x3 + x4 + x5)

Residuals:
Min 1Q Median 3Q Max

-1.176 -0.403 -0.106 0.524 1.154

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.660 1.098 4.24 0.00082
x1 3.235 1.207 2.68 0.01792
x2 3.147 0.688 4.57 0.00043
x3 -6.486 1.881 -3.45 0.00391
x4 -1.117 0.596 -1.87 0.08223
x5 1.931 0.241 8.03 1.3e-06
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Results of the Linear Fit
continued

(Intercept) ***
x1 *
x2 ***
x3 **
x4 .
x5 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.684 on 14 degrees of freedom
Multiple R-Squared: 0.974, Adjusted R-squared: 0.965
F-statistic: 106 on 5 and 14 DF, p-value: 1.30e-10



Statistical Models

What Class is lmFit1?

> class(lmFit1)

[1] "lm"

> names(lmFit1)

[1] "coefficients" "residuals"
[3] "effects" "rank"
[5] "fitted.values" "assign"
[7] "qr" "df.residual"
[9] "xlevels" "call"
[11] "terms" "model"

These can be used to extract individual components, e.g.,
lmFit1$fitted.values is the vector of fitted values, the “hat”
vector.
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Explanation of Coefficients

The Estimate column gives the model’s estimate of a (Intercept)
and b1, b2, b3, b4, b5. The vector of fitted values is

yy-hat = 4.660 + 3.235*x1 + 3.147*x2 - 6.486*x3 +
-1.117*x4 + 1.931*x5

From the assumed normal distribution of the residuals it’s possible
to estimate the error in the coefficients (see the second column).
The t test is a test of null hypothesis that the coefficient is 0. If
the p-value in the fourth column is < 0.05 then the variable is
significant enough to be included in the model.
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Measures of Fit Quality

Several parameters are given that measure the quality of the fit.
The distribution of values of the residuals is given.

The model degrees of freedom, df, is the length of yy minus the
number of parameters calculated in the model. Here this is
20 − 6 = 14. By definition the residual standard error is√

RSS

df
.

Clearly, it’s good when this is small.
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Measures of Fit Quality

A quantity frequently reported in a model is R2. Given the y values
y1, . . . , yn, the mean of y , ȳ , and the fitted values ŷ1, . . . , ŷn,

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

.

This is a number between 0 and 1. The quality of fit increases with
R2. The adjusted R2 does some adjustment for degrees of
freedom.

In our example R2 is 0.974, which is very high.
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Plots to Assess the Model

Remember the assumptions on the residuals needed to consider the
linear model valid. We need an even scatter of residuals when
plotted versus the fitted values, and a normal distribution of
residuals. R produces 4 plots we can use to judge the model. The
following code generates the 4 plots in one figure, then resets the
original graphic parameters.

> oldpar <- par(mfrow = c(2, 2))

> plot(lmFit1)

> par(oldpar)
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Plots of lmFit1
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Using R2 to Compare Models?

A problem with R2, though, is that it doesn’t follow a distribution.
We can’t compare the R2’s in two models and know when one is
meaningfully better.

Just as an F statistic assessed the significance of an anova model,
we use a statistic that follows an F distribution to compare two
linear models, and to compare a single model to the null model.
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Comparing Linear Models

A typical concern in a linear modeling problem is whether leaving a
variable out meaningfully diminishes the quality of the model.
There is some disadvantage in that RSS may increase some in the
smaller model, however using fewer variables is a simpler model,
always a plus. We need to measure the trade-off.
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The F Statistic

Suppose the data contain N samples (N = length of y). Consider
two linear models M0, M1. M0 has p0 variables and RSS value
RSS0. Model M1 has p1 > p0 variables, the variables in M0 are
included in those used in M1, and the RSS value is RSS1. Let F be
the number defined as

F =
(RSS0 − RSS1)/(p1 − p0)

RSS1/(N − p1 − 1)
.

Under the assumption that the residuals are normally distributed,
F satisfies an F distribution with p1 − p0 and N − p1 − 1 degrees
of freedom.
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Tested with Anova

There is a simple way to execute this test in R. If fit1 and fit2
are the objects returned by lm for the two nested models, the test
is executed by

> compMod <- anova(fit1, fit2)

This is not aov, which models a continuous variable against a
factor. The similarity is that both use the F distribution to measure
the statistic; all such tests are an analysis of variance in some form.
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Test One Model Against the Null

In the summary(lmFit1) output the last line reports an F statistic.
This is a comparison between the model and the null model, that
sets all coefficients to 0 except the intercept. This statistic can be
> .05 when y has no dependence on the explanatory variables.
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Remove Variable from lmFit1
and Test the Result

The variable judged least significant in lmFit1 is x4. For it, the
p-value is .08, which is above the threshold. Generate another
model without it.

> lmFit2 <- lm(yy ~ x1 + x2 + x3 + x5)
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Inspect lmFit2

> summary(lmFit2)

Call:
lm(formula = yy ~ x1 + x2 + x3 + x5)

Residuals:
Min 1Q Median 3Q Max

-1.15346 -0.33076 0.00698 0.29063 1.30315

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.622 1.024 3.54 0.00300
x1 1.013 0.237 4.27 0.00067
x2 2.137 0.461 4.63 0.00032
x3 -2.975 0.152 -19.63 4.1e-12
x5 1.935 0.260 7.44 2.1e-06
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Inspect lmFit2
continued

(Intercept) **
x1 ***
x2 ***
x3 ***
x5 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.739 on 15 degrees of freedom
Multiple R-Squared: 0.968, Adjusted R-squared: 0.959
F-statistic: 113 on 4 and 15 DF, p-value: 5.34e-11
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Compare the Two Models with Anova

> compFit1Fit2 <- anova(lmFit2, lmFit1)

> compFit1Fit2

Analysis of Variance Table

Model 1: yy ~ x1 + x2 + x3 + x5
Model 2: yy ~ x1 + x2 + x3 + x4 + x5
Res.Df RSS Df Sum of Sq F Pr(>F)

1 15 8.18
2 14 6.54 1 1.64 3.5 0.082 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Use lmFit2 In Place of lmFit1

Since the p-value is 0.082, which is > 0.05, we accept the null
hypothesis that the model using 5 variables (lmFit1) is not
significantly better than the model using 4 variables (lmFit2). In
this situation we use lmFit2 as a model preferred over lmFit1.
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Variable Selection
a simple but typical case

The following steps yield a model with the fewest number of
variables that is statistically as meaningful as a larger model.

• Generate an initial model using all reasonable explanatory
variables.

• Identify the variable with the smallest p-value.

• Compute a linear model using the smaller set of variables.

• Compute an anova for the two models. If the p-value is
< 0.05 then the larger model is significantly better than the
smaller. We accept the larger model as optimal. Otherwise,
repeat steps 2–4.
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Linear Models are Broadly Applicable

More complicated models can be generated by transforming a
variable or including interactions between variables. Instead of
fitting y to

a + b1x1 + b2x2

it may be more meaningful to fit log(y) to

a + c1x1 + c2x
2
1 + c3x2 + c4x1 · x2.

This is still considered a linear model since it is linear in the
parameters. R’s handling of generalized lienar models is applicable
here.
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