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Statistical Models

Statistical Models
First Principles

In a couple of lectures the basic notion of a statistical model is
described. Examples of anova and linear regression are given,
including variable selection to find a simple but explanatory model.
Emphasis is placed on R’s framework for statistical modeling.



Statistical Models

General Problem
addressed by modelling

Given: a collection of variables, each variable being a vector of
readings of a specific trait on the samples in an experiment.

Problem: In what way does a variable Y depend on other variables
X1, . . . ,Xn in the study.

Explanation: A statistical model defines a mathematical
relationship between the Xi ’s and Y . The model is a representation
of the real Y that aims to replace it as far as possible. At least the
model should capture the dependence of Y on the Xi ’s
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Statistical Models

The Types of Variables
in a statistical model

The response variable is the one whose content we are trying to
model with other variables, called the explanatory variables.

In any given model there is one response variable (Y above) and
there may be many explanatory variables (like X1, . . . .Xn).



Statistical Models

Identify and Characterize Variables
the first step in modelling

• Which variable is the response variable;

• Which variables are the explanatory variables;

• Are the explanatory variables continuous, categorical, or a
mixture of both;

• What is the nature of the response variable — is it a
continuous measurement, a count, a proportion, a category, or
a time-at-death?
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Types of Variables Determine Type of Model

The explanatory variables

All explanatory variables continuous Regression

All explanatory variables categorical Analysis of variance (Anova)

Explanatory variables both continuous Analysis of covariance
and categorical (Ancova)



Statistical Models

Types of Variables Determine Type of Model

The response variable — what kind of data is it?

Continuous Normal Regression, Anova, Ancova

Proportion Logistic regression

Count Log linear models

Binary Binary logistic analysis

Time-at-death Survival analysis
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Model Formulas
Which variables are involved?

A fundamental aspect of models is the use of model formulas to
specify the variables involved in the model and the possible
interactions between explanatory variables included in the model.

A model formula is input into a function that performs a linear
regression or anova, for example.

While a model formula bears some resemblance to a mathematical
formula, the symbols in the “equation” mean different things than
in algebra.



Statistical Models

Common Features
of model formulas

Model formulas have a format like

> Y ~ X1 + X2 + Z * W

where Y is the explanatory variable, ∼ means “is modeled as a
function of” and the right hand side is an expression in the
explanatory variables.
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First Examples of Model Formulas

Given continuous variables x and y, the relationship of a linear
regression of y on x is described as

> y ~ x

The actual linear regression is executed by

> fit <- lm(y ~ x)



Statistical Models

First Examples of Model Formulas

If y is continuous and z is categorical we use the same model
formula

> y ~ z

to express that we’ll model y as a function of z, however in this
case the model will be an anova, executed as

> fit <- aov(y ~ z)
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Multiple Explanatory Variables

Frequently, there are multiple explanatory variables invovled in a
model. The + symbol denotes inclusion of additional explanatory
variables. The formula

> y ~ x1 + x2 + x3

denotes that y is modeled as a function of x1, x2, x3. If all of
these are continuous,

> fit <- lm(y ~ x1 + x2 + x3)

executes a mutliple linear regression of y on x1, x2, x3.
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Other Operators in Model Formulas

In complicated relationships we may need to include “interaction
terms” as variables in the model. This is common when a model
involves multiple categorical explanatory variables. A factorial
anova may involve calculating means for the levels of variable A
restricted to a level of B. The formula

> y ~ A * B

describes this form of model.
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Just the Basics

Here, just the basic structure of modeling in R is given, using
anova and linear regression as examples. See the Crawley book
listed in the syllabus for a careful introduction to models of varying
forms.

Besides giving examples of models of these simple forms, tools for
assessing the quality of the models, and comparing models with
different variables will be illustrated.
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Statistical Models

Approximate Y

The goal of a model is to approximate a vector Y with values
calculated from the explanatory variables. Suppose the Y values
are (y1, . . . , yn). The values calculated in the model are called the
fitted values and denoted (ŷ1, . . . , ŷn). (In general, a “hat” on a
quantity means one approximated in a model or through
sampling.)

The goodness of fit is measured with the residuals, (r1, . . . , rn),
where ri = yi − ŷi .



Statistical Models

Measure of Residuals

Two obtain a number that measures the overall size of the
residuals we use the residual sum of squares, defined as

RSS =
n∑

i=1

(yi − ŷi )
2.

As RSS decreases ŷ becomes a better approximation to y .



Statistical Models

Residuals: Only Half of the Story

A good model should have predictive value in other data sets and
contain only as many explanatory variables as needed for a
reasonable fit.

To minimize RSS we can set ŷi = yi , for 1 ≤ i ≤ n. However, this
“model” may not generalize at all to another data set. It is heavily
biased to this sample.

We could set ŷi = ȳ = (y1 + · · ·+ yn)/n, the sample mean, for all
i . This has low bias in that other samples will yield about the same
mean. However, it may have high variance, that is a large RSS .
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Bias-Variance Trade-off

Selecting an optimal model, both in the form of the model and the
parameters, is a complicated compromise between minimizing bias
and variance. This is a deep and evolving subject, although it is
certainly settled in linear regression and other simple models.

For these lectures make as a goal minimzing RSS while keeping the
model as simple as possible.

Just as in hypothesis testing, there is a statistic calculable from the
data and model that we use to measure part of this trade-off.
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Statistics Measure the Fit

Comparing two models fit to the same data can be set up as a
hypothesis testing problem. Let M0 and M1 denote the models.
Consider as the null hypothesis “M1 is not a significant
improvement on M0”, and the alternative the negation. This
hypothesis can often be formulated so that a statistic can be
generated from the two models.



Statistical Models

Model Comparison Statistics

Normally, the models are nested in that the variables in M0 are a
subset of those in M1. The statistic often involves the RSS values
for both models, adjusted by the number of parameters used. In
linear regression this becomes an anova test (comparing variances).

More robust is a likelihood ratio test for nested models. When
models are sufficiently specific to define a probability distribution
for y , the model will report the log-likelihood, L̂. Under some mild
assumptions, −2(L̂0 − L̂1) follows a chi-squared distribution with
degrees of freedom = difference in number of parameters on the
two models.



Statistical Models

Comparison with Null Model

The utility of a single model M1 is often assessed by comparing it
with the null model, that reflects no dependence of y on the
explanatory variables. The model formula for the null model is

> y ~ 1

signifying that we use a constant to approximate y . The natural
constant is the mean of y .

Functions in R that generate models report the statistics that
measure it’s comparison with the null model.
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Statistical Models

Continuous ∼ Factors

Analysis of variance is the modeling technique used when the
response variable is continuous and all of the explanatory variables
are categorical; i.e., factors.

Setup: A continuous variable Y is modeled against a categorical
variable A.
Anova Model Structure: On each level approximate the Y values by
the mean for that level.
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Anova Model Structure

Suppose Y is the vector (y1, . . . , ym). In an anova model the fit
value for yi in level Aj is the mean of the y values in level Aj . So,
the fit vector is a vector of level means.

The null model for an anova uses mean(Y) to approximate every
yi .

An anova model with two levels is basically a t test. The t test
assesses whether it is statistically meaningful to consider the group
means as different, or approximate both the global mean.



Statistical Models

Setup and Assumptions
for a simple anova

Consider the continuous variable Y , partioned as yij , the j th

observation in factor level i . Suppose there are K levels.

Assumptions:

• The anova is balanced, meaning every level has the same
number n of elements. Let Yi = { yij : 1 ≤ j ≤ n }

• Each Yi is normally distributed.

• The variances of the Yi ’s are constant.
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Sums of Squares
measure the impact of level means

Several sums of squares help measure the overall deviation in the
Y values, the deviation in the model and the RSS . Let ȳi be the
mean of Yi , ¯̄y the mean of Y (all values).

SSY =
K∑

i=1

n∑
j=1

(yij − ¯̄y)2

SSA =
K∑

i=1

(ȳi − ¯̄y)2

RSS = SSE =
K∑

i=1

n∑
j=1

(yij − ȳi )
2
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The Statistic to Assess Fit
is F

The statistic used to assess the model is calculated from SSA and
SSE by adjusting for degrees of freedom. Let
MSA = SSA/(K − 1) and MSE = SSE/K (n − 1). Define:

F =
MSA

MSE
.

Under all of the assumptions on the data, under the null
hypothesis that all of the level means are the same, F satisfies an
F distribution with K − 1 and K (n − 1) degrees of freedom.
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Anova in R

An anova in R is executed with the aov function. The sample data
have a vector Y, of values and an associated factor LVS of three
levels, each containing 20 samples. As usual, it should be verified
that the values on each level are normally distributed and there is a
constant variance across the levels. First visualize the relationship
between Y and LVS with a boxplot.

> plot(LVS, Y, main = "Boxplot Anova Sample Data")

> abline(h = mean(Y), col = "red")
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Plot of Sample Data
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Execute Anova and Summarize

> aovFit1 <- aov(Y ~ LVS)

> summary(aovFit1)

Df Sum Sq Mean Sq F value Pr(>F)
LVS 2 31.2 15.6 15.8 3.5e-06 ***
Residuals 57 56.3 1.0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclude: there is a significant difference in level means.
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Plots Assessing the Anova Model

> plot(aovFit1)
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Variables May be Components

Frequently, the variables on which a statistical model is generated
are components in a data frame. If the data frame dat has
components HT and FLD, an anova could be executed as

> aovFld <- aov(HT ~ FLD, data = dat)

All statistical modeling formulas have a data optional parameter.
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Underlying Linear Model

Actually, this analysis of variance is a form of multiple linear
regression, with a variable for each level in the factor. Many
features of modeling are the same and R reflects this.
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Underlying Linear Model
> summary.lm(aovFit1)

Call:
aov(formula = Y ~ LVS)

Residuals:
Min 1Q Median 3Q Max

-2.6095 -0.6876 0.0309 0.6773 2.3485

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.314 0.222 -1.41 0.16
LVSB 1.421 0.314 4.52 3.1e-05
LVSC 1.618 0.314 5.15 3.4e-06

(Intercept)
LVSB ***
LVSC ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.993 on 57 degrees of freedom
Multiple R-Squared: 0.357, Adjusted R-squared: 0.334
F-statistic: 15.8 on 2 and 57 DF, p-value: 3.47e-06



Statistical Models

Getting (Almost) Real

The assumptions of a classical anova aren’t realistic. Various
refined methods handle unbalanced data (levels of different sizes),
non-normally distributed data, multiple nested factors, readings
within a factor collected over time (longitudinal data), and
pseudo-replication.

The types of models to reference are: split-plot, random effects,
nested design, mixed models.

These methods can require significant care in defining the model
formula and interpreting the result.
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Kruskal-Wallis Test

Just as an anova is a multi-level t test, the Kruskal-Wallis test is a
multi-level version of the Mann-Whitney test. This is a
non-parametric test that does not assume normality of the errors.
It sums rank as in Mann-Whitney. For example, the Kruskal-Wallis
test applied to the earlier data is executed by

> kTest <- kruskal.test(Y ~ LVS)

kTest will be an htest object, like that generated by t.test.
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