
Where did R come from? Primitive Data Types in R

R Language Fundamentals
Data Types and Basic Maniuplation

Steven Buechler

Department of Mathematics
276B Hurley Hall; 1-6233

Fall, 2007



Where did R come from? Primitive Data Types in R

Outline

Where did R come from?

Primitive Data Types in R
Overview
Atomic Vectors
Subsetting Vectors
Higher-order data types (slightly)



Where did R come from? Primitive Data Types in R

Programming with Data Began with S

• The S language has been developed since the late 1970s by
John Chambers and colleagues at Bell Labs as a language for
programming with data.

• The language combines ideas from a variety sources (awk,
lisp, APL, e.g.) and provides an environment for
quantitative computations and visualization.

• Provides an explicit and consistent structure for manipulating,
analyzing statistically, and visualizing data.



Where did R come from? Primitive Data Types in R

Programming with Data Began with S

• The S language has been developed since the late 1970s by
John Chambers and colleagues at Bell Labs as a language for
programming with data.

• The language combines ideas from a variety sources (awk,
lisp, APL, e.g.) and provides an environment for
quantitative computations and visualization.

• Provides an explicit and consistent structure for manipulating,
analyzing statistically, and visualizing data.



Where did R come from? Primitive Data Types in R

S Becomes Software

• S-Plus is a commercialization of the Bell Labs framework. It is
“S” plus “graphics”.

• R is an independent open source implementation originally
developed by Ross Ihaka and Robert Gentleman at the
University of Auckland in the mid-1990s. R comes before S.

• R is currently distributed under the GNU open software license
and developed by the user community.



Where did R come from? Primitive Data Types in R

S Becomes Software

• S-Plus is a commercialization of the Bell Labs framework. It is
“S” plus “graphics”.

• R is an independent open source implementation originally
developed by Ross Ihaka and Robert Gentleman at the
University of Auckland in the mid-1990s. R comes before S.

• R is currently distributed under the GNU open software license
and developed by the user community.



Where did R come from? Primitive Data Types in R

R is Infinitely Expandable

• Applications of R normally use a package; i.e., a library of
special functions designed for a specific problem.

• Hundreds of packages are available, mostly written by users.

• A user normally only loads a handful of packages for a
particular analysis (e.g., library(affy)).

• Standards determine how a package is structured, works well
with other packages and creates new data types in an easily
used manner.

• Standardization makes it easy for users to learn new packages.



Where did R come from? Primitive Data Types in R

Bioconductor is a Set of Packages

• Bioconductor is a set R packages particularly designed for
biological data analysis.

• Bioconductor Project sets standards used across packages,
identifies needed packages and organizes development cycles
and responsible parties.

• Biconductor project is headed by Robert Gentleman and
located at Fred Hutchinson in Seattle.



Where did R come from? Primitive Data Types in R

Bioconductor is a Set of Packages

• Bioconductor is a set R packages particularly designed for
biological data analysis.

• Bioconductor Project sets standards used across packages,
identifies needed packages and organizes development cycles
and responsible parties.

• Biconductor project is headed by Robert Gentleman and
located at Fred Hutchinson in Seattle.



Where did R come from? Primitive Data Types in R

Bioconductor is a Set of Packages

• Bioconductor is a set R packages particularly designed for
biological data analysis.

• Bioconductor Project sets standards used across packages,
identifies needed packages and organizes development cycles
and responsible parties.

• Biconductor project is headed by Robert Gentleman and
located at Fred Hutchinson in Seattle.



Where did R come from? Primitive Data Types in R

Outline

Where did R come from?

Primitive Data Types in R
Overview
Atomic Vectors
Subsetting Vectors
Higher-order data types (slightly)



Where did R come from? Primitive Data Types in R

Fundamental Data Objects

• vector - a sequence of numbers or characters, or
higher-dimensional arrays like matrices

• list - a collection of objects that may themselves be
complicated

• factor - a sequence assigning a category to each index

• data.frame - a table-like structure (experimental results
often collected in this form)

• environment - hash table. A collection of key-value pairs

Classes of objects, like expression data, are built from these.
Most commands in R involve applying a function to an object.



Where did R come from? Primitive Data Types in R

A Variable is “Typed” by What it Contains

• Unlike C variables do not need to be declared and typed.
Assigning a sequence of numbers to x forces x to be a
numeric vector.

• Given x, executing class(x) reports the class. This indicates
which functions can be used on x.



Where did R come from? Primitive Data Types in R

Outline

Where did R come from?

Primitive Data Types in R
Overview
Atomic Vectors
Subsetting Vectors
Higher-order data types (slightly)



Where did R come from? Primitive Data Types in R

Atomic Data Elements

• In R the “base” type is a vector, not a scalar.

• A vector is an indexed set of values that are all of the same
type. The type of the entries determines the class of the
vector. The possible vectors are:

• integer
• numeric
• character
• complex
• logical

• integer is a subclass of numeric

• Cannot combine vectors of different modes



Where did R come from? Primitive Data Types in R

Creating Vectors
and Learning R Syntax

Assignment of a value to a variable is done with <- (two symbols,
no space).

> v <- 1

> v

[1] 1

> v <- c(1, 2, 3)

> v

[1] 1 2 3

> s <- "a string"

> class(s)

[1] "character"



Where did R come from? Primitive Data Types in R

Creating Vectors
and accessing attributes

Vectors can only contain entries of the same type: numeric or
character; you can’t mix them. Note that characters should be
surrounded by “ ”. The most basic way to create a vector is with
c(x1, . . . , xn), and it works for characters and numbers alike.

> x <- c("a", "b", "c")

> length(x)

[1] 3



Where did R come from? Primitive Data Types in R

Vector Names
Entries in a vector can and normally should be “named”. It is a way
of associating a numeric reading with a sample id, for example.

> v <- c(s1 = 0.3, s2 = 0.1, s3 = 1.1)

> v

s1 s2 s3
0.3 0.1 1.1

> sort(v)

s2 s1 s3
0.1 0.3 1.1

> names(v)

[1] "s1" "s2" "s3"

> v2 <- c(0.3, 0.1, 1.1)

> names(v2) <- c("s1", "s2", "s3")



Where did R come from? Primitive Data Types in R

Vector Arithmetic
Basic operations on numeric vectors

Numeric vectors can be used in arithmetic expressions, in which
case the operations are performed element by element to produce
another vector.

> x <- rnorm(4)

> y <- rnorm(4)

> x

[1] -0.6632 0.3255 0.7577 -1.0309

> x + 1

[1] 0.33676 1.32546 1.75772 -0.03094

> v <- 2 * x + y + 1

> v

[1] -0.1536 1.1608 2.4672 -2.0510

The elementary arithmetic operations are the usual +, -, *, /,
^. See also log, exp, log2, sqrt etc., again applied to each entry.



Where did R come from? Primitive Data Types in R

More Vector Arithmetic
Statistical operations on numeric vectors

In studying data you will make frequent use of sum, which gives
the sum of the entries, max, min, mean, and var(x)

> var(x)

[1] 0.6965

which is the same thing as

> sum((x - mean(x))^2)/(length(x) - 1)

[1] 0.6965

A useful function for quickly getting properties of a vector:

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu.
-0.98900 -0.61500 -0.26900 -0.33900 0.00708

Max.
0.17300



Where did R come from? Primitive Data Types in R

Generating regular sequences
• c - concatenate
• seq, :, and rep
• vector, numeric, character, etc.

seq(1,30) is the same thing as c(1, 2, 3, ..., 29, 30); and
this is the same as 1 : 30. Functions in R may have mutliple
parameters that are set as arguments to the function. seq is an
example.

> x1 <- seq(-1, 0, by = 0.1)

> x1

[1] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
[10] -0.1 0.0

> rep(x1, times = 2)

[1] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
[10] -0.1 0.0 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4
[19] -0.3 -0.2 -0.1 0.0



Where did R come from? Primitive Data Types in R

Generating regular sequences
vector, etc.

a <- character(n) creates a character vector a of length n, with
each entry ””. integer(n) and numeric(n) create integer and
numeric vectors of length n with entries 0. The first command is
shorthand for

> a <- vector(mode = "character", length = 10)

vector has greater applicability than just creating these common
vectors.



Where did R come from? Primitive Data Types in R

Logical Vectors

Working with data often involves comparing numbers.
Comparisons in R output logical values TRUE, FALSE or NA, for
“not available”. Just as with arithmetic operations, logical
comparisions with a vector are applied to each entry and output as
a vector of truth values; i.e. a logical vector.

> v <- seq(-3, 3)

> tf <- v > 0

> tf

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE



Where did R come from? Primitive Data Types in R

Logical Comparisons

Logical vectors are largely used to extract entries from a dataset
satisfying certain conditions. Illustrated soon. The logical operators
are: <, <=, >, >=, ==, for exact equality and != for inequality.

If c1 and c2 are logical expressions, then c1 & c2 is their
intersection (“and”), c1 | c2 is their union (“or”), and !c1 is the
negation of c1.



Where did R come from? Primitive Data Types in R

Missing Values

One smart feature of R is that it allows for missing values in vectors
and datasets; it denotes them as NA. You don’t have to coerce
missing values to, say 0, in order to have a meaningful vector.
Many functions, like cor(), have options for handling missing
values without just exiting. How to find NA values in a vector?

• > x <- c(1:3, NA)

> x == NA

[1] NA NA NA NA

• > is.na(x)

[1] FALSE FALSE FALSE TRUE



Where did R come from? Primitive Data Types in R

Missing Values

One smart feature of R is that it allows for missing values in vectors
and datasets; it denotes them as NA. You don’t have to coerce
missing values to, say 0, in order to have a meaningful vector.
Many functions, like cor(), have options for handling missing
values without just exiting. How to find NA values in a vector?

• > x <- c(1:3, NA)

> x == NA

[1] NA NA NA NA

• > is.na(x)

[1] FALSE FALSE FALSE TRUE



Where did R come from? Primitive Data Types in R

Outline

Where did R come from?

Primitive Data Types in R
Overview
Atomic Vectors
Subsetting Vectors
Higher-order data types (slightly)



Where did R come from? Primitive Data Types in R

Extracting Subsequences of a Vector

Getting elements of a vector with desired properties is extremely
common, so there are robust tools for doing it. An element of a
vector v is assigned an index by its position in the sequence,
starting with 1. The basic function for subsetting is [ ]. v[1] is
the first element, v[length(v)] is the last. The subsetting
function takes input in many forms.



Where did R come from? Primitive Data Types in R

Subsetting with Positive Integral Sequences

> v <- c("a", "b", "c", "d", "e")

• > J <- c(1, 3, 5)

> v[J]

[1] "a" "c" "e"

• > v[1:3]

[1] "a" "b" "c"

• > v[2:length(v)]

[1] "b" "c" "d" "e"



Where did R come from? Primitive Data Types in R

Subsetting with Positive Integral Sequences

> v <- c("a", "b", "c", "d", "e")

• > J <- c(1, 3, 5)

> v[J]

[1] "a" "c" "e"

• > v[1:3]

[1] "a" "b" "c"

• > v[2:length(v)]

[1] "b" "c" "d" "e"



Where did R come from? Primitive Data Types in R

Subsetting with Positive Integral Sequences

> v <- c("a", "b", "c", "d", "e")

• > J <- c(1, 3, 5)

> v[J]

[1] "a" "c" "e"

• > v[1:3]

[1] "a" "b" "c"

• > v[2:length(v)]

[1] "b" "c" "d" "e"



Where did R come from? Primitive Data Types in R

Subsetting with Negated Integral Sequences
This is a tool for removing elements or subsequences from a
vector.

• > v

[1] "a" "b" "c" "d" "e"

> J

[1] 1 3 5

> v[-J]

[1] "b" "d"

• > v[-1]

[1] "b" "c" "d" "e"

> v[-length(v)]

[1] "a" "b" "c" "d"



Where did R come from? Primitive Data Types in R

Subsetting with Negated Integral Sequences
This is a tool for removing elements or subsequences from a
vector.

• > v

[1] "a" "b" "c" "d" "e"

> J

[1] 1 3 5

> v[-J]

[1] "b" "d"

• > v[-1]

[1] "b" "c" "d" "e"

> v[-length(v)]

[1] "a" "b" "c" "d"



Where did R come from? Primitive Data Types in R

Subsetting with Logical Vector
Important!

Given a vector x and a logical vector L of the same length as x,
x[L] is the vector of entries in x matching a TRUE in L.

• > L <- c(TRUE, FALSE, TRUE, FALSE, TRUE)

> v[L]

[1] "a" "c" "e"

• > x <- seq(-3, 3)

> x >= 0

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE

> x[x >= 0]

[1] 0 1 2 3



Where did R come from? Primitive Data Types in R

Subsetting with Logical Vector
Important!

Given a vector x and a logical vector L of the same length as x,
x[L] is the vector of entries in x matching a TRUE in L.

• > L <- c(TRUE, FALSE, TRUE, FALSE, TRUE)

> v[L]

[1] "a" "c" "e"

• > x <- seq(-3, 3)

> x >= 0

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE

> x[x >= 0]

[1] 0 1 2 3



Where did R come from? Primitive Data Types in R

Subsetting with Logical Vector
More examples

> names(x) <- paste("N", 1:length(x), sep = "")

> names(x)[x < 0]

[1] "N1" "N2" "N3"

> y <- c(x, NA, NA)

> z <- y[!is.na(y)]

> z

N1 N2 N3 N4 N5 N6 N7
-3 -2 -1 0 1 2 3



Where did R come from? Primitive Data Types in R

Subsetting by Names

If x is a vector with names and A is a subsequence of names(x),
then x[A] is the corresponding subsequence of x.

> x

N1 N2 N3 N4 N5 N6 N7
-3 -2 -1 0 1 2 3

> x[c("N1", "N3")]

N1 N3
-3 -1



Where did R come from? Primitive Data Types in R

Assignment to a Subset
A subset expression can be on the receiving end of an assignment,
in which case the assignment only applies the subset and leaves the
rest of the vector alone.

> z <- 1:4

> z[1] <- 0

> z

[1] 0 2 3 4

> z[z <= 2] <- -1

> z

[1] -1 -1 3 4

> w <- c(1:3, NA, NA)

> w[is.na(w)] <- 0

> w

[1] 1 2 3 0 0



Where did R come from? Primitive Data Types in R

Outline

Where did R come from?

Primitive Data Types in R
Overview
Atomic Vectors
Subsetting Vectors
Higher-order data types (slightly)



Where did R come from? Primitive Data Types in R

Factors Represent Categorical Data
Just the basics

Typically in an experiment samples are classified into one of a set
group of categories. In R such results are stored in a factor. A
factor is a character vector augmented with information about the
possible categories, called the levels of the factor.

> d1 <- c("M", "F", "M", "F", "F", "F")

> d2 <- factor(d1)

> d2

[1] M F M F F F
Levels: F M



Where did R come from? Primitive Data Types in R

Factors (Continued)
Still just the basics

> table(d2)

d2
F M
4 2

> ht <- c(73, 68, 70, 69, 62, 64)

> htmeans <- tapply(ht, d2, mean)

The data contained in a factor can be coded in a character vector,
but there are many additional functions that can apply to a factor.
Factors are used in ANOVA.



Where did R come from? Primitive Data Types in R

Lists
An ordered collection of objects

Remember that a vector can only contain numbers, characters or
logical values. Frequently, though, we want to create collections of
vectors or other data objects of mixed type. In R this is done with
a list. The objects in a list are known as its components. Lists are
often created quite explicitly:

> Lst <- list(name = "Joe", height = "182",

+ no.children = 3, child.ages = c(5,

+ 7, 10))

Components are always numbered and can be referenced as such.
Lst[[1]] is the first component (namely "Joe"); etc. to

> Lst[[4]]

[1] 5 7 10

Since the last component is a vector you can extract the first entry
of it as Lst[[4]][1].



Where did R come from? Primitive Data Types in R

List Length and Components
For Lst a list, length(Lst) is the number of components;
names(Lst) is the character vector of component names.

Often the ordering of components is artificial. We want simple
ways of getting the value of a component using the name. There
are two ways:

> Lst[["height"]]

[1] "182"

More commonly:

> Lst$height

[1] "182"

> Lst$name

[1] "Joe"



Where did R come from? Primitive Data Types in R

List Subsetting
Versus component extraction

For a list LL with n components and s a subsequence of 1:n,
LL[s] denotes the sublist with components corresponding to the
indices in s.

> s <- 1:2

> L1 <- Lst[s]

> L1

$name
[1] "Joe"

$height
[1] "182"

NOTE: LL[[1]] is different from LL[1]. LL[[1]] is the value of
the first component; LL[1] is the list with one component whose
value is LL[[1]].



Where did R come from? Primitive Data Types in R

List Subsetting Example
Versus component extraction

> Lst[[1]]

[1] "Joe"

> class(Lst[[1]])

[1] "character"

> Lst[1]

$name
[1] "Joe"

> class(Lst[1])

[1] "list"

Further note: Lst[[m]] only makes sense when m is a single
integer. Lst[[1:2]] produces an error.
Lists can be concatenated like vectors.


	Where did R come from?
	Primitive Data Types in R
	Overview
	Atomic Vectors
	Subsetting Vectors
	Higher-order data types (slightly)


