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Microarrays

Most Expression Analysis is Comparative

Frequently the important investigations with microarrays are to
identify the genes whose expression levels change between two
sample groups. To understand the effect of a drug we may ask
which genes are up-regulated (increased in expression) or
down-regulated (decreased in expression) between treatment and
control groups.

Other paradigms involve clustering genes that follow the same
expression pattern across a set of samples, or clustering samples
with similar expression patterns across genes. This is beyond the
scope of the course (timewise).
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Differential Expression Compares Means

Each sample group will contain numerous replicates. The group
expression level for a probe will be summarized as the mean of the
expression levels in the group replicates. Thus, differential
expression problems are a comparison of means. When there are
two sample groups this is a t test of some kind.
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One Gene Example

As a very simple example we ask if Mmp7 is differentially
expressed between the vehicle and sulindac samples in the mouse
expression data created previously.

> load("/Users/steve/Documents/Bio/Rcourse/Lect10/sulindacObjects/sulEset1")

> library(affy)

> library(moe430a)
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Steps in Testing One Gene

• Find the probe(s) associated with the gene.

• For each probe create the vector of expression values for the
two sample groups.

• Execute a t test for each probe.

• To be conservative we use the Mann-Whitney non-parametric
t test.
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Find the Probe(s) for Mmp7

The environment we need to query is moe430aSYMBOL, but we
need to work backwards from the value to the key. A test like
moe430aSYMBOL == "Mmp7" doesn’t work with an environment.
We extract the symbols into a long character vector with names
the probes.

> prbs <- featureNames(sulEset1)

> moeSyms <- unlist(mget(prbs, envir = moe430aSYMBOL))

> moeSyms[1:3]

1415670_at 1415671_at 1415672_at
"Copg" "Atp6v0d1" "Golga7"
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Find the Probe(s) for Mmp7

moeSyms has many NA values, which complicates the matching
process. (NA matches anything.)

> mmp7S1 <- moeSyms[moeSyms == "Mmp7"]

> mmP7S <- mmp7S1[!is.na(mmp7S1)]

> mmP7S

1449478_at
"Mmp7"
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Extract the Expression Vectors
for the Mmp7 probe

> sulExp <- exprs(sulEset1)

> pd <- phenoData(sulEset1)

> sMmp7 <- sulExp["1449478_at", pd$treatment ==

+ "S"]

> vMmp7 <- sulExp["1449478_at", pd$treatment ==

+ "V"]

> sMmp7

S1.cel S3.cel S4.cel S6.cel S8.cel S9.cel
11.138 9.711 9.648 11.212 10.715 10.090

> vMmp7

V2.cel V3.cel V4.cel V5.cel V6.cel V7.cel V8.cel
11.195 9.408 12.317 12.262 11.871 11.753 11.549
V9.cel
11.416
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Execute the t Test

Use the Mann-Whitney, also called the Wilcoxon Rank Sum test.

> wilcox.test(sMmp7, vMmp7)

Wilcoxon rank sum test

data: sMmp7 and vMmp7
W = 7, p-value = 0.02930
alternative hypothesis: true location shift is not equal to 0
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Conclusion About Mmp7

Conclude that Mmp7 expression is decreased in the sulindac
treated samples.

However, if all we wanted to know about is one gene we’d just use
RT-PCR, not an array with 22,000 features. The purpose of an
array is to get a list of genes that are differentially expressed, after
testing each one. This brings into play the multiple hypothesis
testing problem.
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Many Genes Tested at Once

In array-based differential expression analysis the problem is to
generate a list of genes that are differentially expressed, being as
complete as possible.

From a statistical point of view, for each gene we are testing the
null hypothesis that there is no differential expression across the
sample groups. This may represent thousands of tests.
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Example of the Problem

Suppose that 1000 genes are represented on an array and we test
each with a t test with a Type I error threshold of 0.05. We might
expect 40 genes to be differentially expressed. Of the 960
non-differentially expressed genes we can expect 5% errors, or
.05× 960 = 48 false positives. In other words, there are more false
positives than truly differentially expressed genes.

This illustrates the multiple hypothesis testing problem. With many
independent tests the percentage of false positives may overwhelm
the true positives and make the analysis effectively useless.

Most experimenters would state as the goal in such a multiple gene
differential analysis is that the probability of one false positive is
0.05. That is, that the experiment-wise Type I error is 0.05.
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Bonferroni Correction

Suppose that a collection of g null hypotheses are being tested; i.e,
differential expression of g genes is being assessed. The family-wise
error rate (FWER) is the probability of rejecting at least one null
hypothesis, given that they are all true (one false positive). If α is
the desired FWER this can be achieved by testing each null
hypothesis with a Type I error of α/g . This is called the
Bonferroni Correction.

If the desired FWER is 0.05 and there are 1000 genes tested, set
the threshold for each at 0.00005.

Slightly less brutal is the S̆idák correction that replaces α by
K (g , α) = 1− g

√
1− α, but this still places a very high threshold

on satisfying each test.
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Step-Down Methods
Westfall-Young

The methods above treat all tests as the same in that they set the
same Type I error for all g tests. There is another method
developed by Westfall-Young, called a step-down method, that is
less restrictive but still gives an FWER of the desired α.

There are, in fact, several other processes for controlling FWER.
It’s a big problem that’s received a lot of attention.

The procedure we will use is a recent development using a
bootstrap estimation of the joint null distribution for all tests. This
is theoretically steep. It is implemented in the multtest package.



Microarrays

Step-Down Methods
Westfall-Young

The methods above treat all tests as the same in that they set the
same Type I error for all g tests. There is another method
developed by Westfall-Young, called a step-down method, that is
less restrictive but still gives an FWER of the desired α.

There are, in fact, several other processes for controlling FWER.
It’s a big problem that’s received a lot of attention.

The procedure we will use is a recent development using a
bootstrap estimation of the joint null distribution for all tests. This
is theoretically steep. It is implemented in the multtest package.



Microarrays

Step-Down Methods
Westfall-Young

The methods above treat all tests as the same in that they set the
same Type I error for all g tests. There is another method
developed by Westfall-Young, called a step-down method, that is
less restrictive but still gives an FWER of the desired α.

There are, in fact, several other processes for controlling FWER.
It’s a big problem that’s received a lot of attention.

The procedure we will use is a recent development using a
bootstrap estimation of the joint null distribution for all tests. This
is theoretically steep. It is implemented in the multtest package.



Microarrays

False Discovery Rate

In some problems controlling the FWER is too lofty a goal. It
leaves out false positives but hides too many true positives. A
compromise is to control the false discovery rate (FDR). The FDR
is the percentage of false positives among all the rejected
hyptheses.

Given 1000 tests for differential expression, if we control the FDR
at 0.05 and the procedure reports 40 genes as differentially
expressed, we expect at most 2 of these to be false positives.
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Adjusted P-Values

Recall that in a single hypothesis test, a p-value is often returned.
This is the minimal Type I Error rate for which the null hypothesis
would be rejected with the given data. Part of any multiple testing
procedure is to create an adjusted p-value for each test (each
gene). Just as we call the gene differentially expressed in a single
test if the p-value is < the Type I Error, we call a gene
differentially expressed in a multiple test procedure if the adjusted
p-value is < the FWER, or FDR if that is what we’re controlling.
This makes it easy to process these mutliple testing procedures as
we would single tests.
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Power Versus Error Control

Differential expression analysis is a setting where the problem of
minimizing error and maximizing power is at the forefront. It is
provably impossible to have it both ways. Setting FWER or FDR
at 0.05 increases the probability that there are many differentially
expressed genes not on the list the procedure generates. It is only a
sample of the differentially expressed genes. This must be kept in
mind when drawing conclusions from an analysis.

Better procedures for comparing the “transcription states” of two
sample groups are needed. This is now in progress.
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Prefiltering the Gene List

Many genes are only expressed in specific tissues or at special
times, such as in development. Of all the features on an array, only
50% or so will show any sign of expression in a given sample, and
fewer still show any variation across the samples. In a search for
differentially expressed genes it makes sense to exclude these from
the list of genes in the multiple testing process. Making the list of
genes shorter makes the multiple testing correction less severe.

This may seem backwards. How do we eliminate genes from a test
for differential expression without testing them? We use very crude
measures that select only genes that are certainly not of interest.
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The Genefilter Package

This package contains functions to aid in prefiltering ExpressionSet
objects. Recall the use of IQR previously. Genes in a matrix of
expression values were checked for an IQR value > .5 and the
matrix was restricted to those that meet this requirement.
Genefilter tools accomplish roughly the same thing, but can be
applied to ExpressionSet objects more smoothly.

To begin:

> library(genefilter)
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Filter Functions Are Applied
to Expression Sets

Filter functions applied to an expression matrix amounts to testing
each gene for a condition, returning a logical vector. This vector
can then be used to subset the ExpressionSet object.

The method will be illustrated on an ExpressionSet object of breast
cancer arrays.

> load("./eset3UPPS1")
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Show the ExpressionSet
> eset3UPPS1

ExpressionSet (storageMode: lockedEnvironment)
assayData: 22283 features, 123 samples
element names: exprs, se.exprs

phenoData
rowNames: GSM110625, GSM110627, ..., GSM110873 (123 total)
varLabels and varMetadata:
GSM.ID..A.B.chip.: arbitrary numbering
Cohort: arbitrary numbering
...: arbitrary numbering
tumor.size..mm.: arbitrary numbering

featureData
featureNames: 1007_s_at, 1053_at, ..., AFFX-r2-P1-cre-5_at (22283 total)
varLabels and varMetadata: none

experimentData: use 'experimentData(object)'
Annotation [1] "hgu133a"
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First Establish a Floor

Genes that are barely expressed in most of the samples are likely to
have little biological interest. genefilter has a function pOverA
that tests if a certain fraction of samples have expression values
over a theshold. The following creates a filter function that tests a
gene for expression value over 3.5 in 25% of the samples.

> f1 <- pOverA(0.25, 3.5)

> ffun1 <- filterfun(f1)

> flrGene <- genefilter(exprs(eset3UPPS1),

+ ffun1)
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Filter the ExpressionSet

> flrGene[1:5]

1007_s_at 1053_at 117_at 121_at 1255_g_at
TRUE TRUE TRUE FALSE FALSE

> sum(flrGene)

[1] 13484

This removes almost 10, 000 probes. Use this logical vector to
subset the ExpressionSet.

> f1eset3UPPS1 <- eset3UPPS1[flrGene, ]
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Further Filter by IQR

Retain only genes with an IQR > .75, a reasonable spread with a
good outcome.

> f2 <- function(x) {

+ IQR(x) > 0.75

+ }

> ffun2 <- filterfun(f2)

> sprdGns <- genefilter(exprs(f1eset3UPPS1),

+ ffun2)

> sum(sprdGns)

[1] 5390

> f3eset3UPPS1 <- f1eset3UPPS1[sprdGns,

+ ]
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Prefiltering Result
> f3eset3UPPS1

ExpressionSet (storageMode: lockedEnvironment)
assayData: 5390 features, 123 samples
element names: exprs, se.exprs

phenoData
rowNames: GSM110625, GSM110627, ..., GSM110873 (123 total)
varLabels and varMetadata:
GSM.ID..A.B.chip.: arbitrary numbering
Cohort: arbitrary numbering
...: arbitrary numbering
tumor.size..mm.: arbitrary numbering

featureData
rowNames: 1007_s_at, 1294_at, ..., AFFX-r2-Hs28SrRNA-3_at (5390 total)
varLabels and varMetadata: none

experimentData: use 'experimentData(object)'
Annotation [1] "hgu133a"



Microarrays

Outline

Microarrays
Introduction to Differential Expression Analysis
Multiple Testing Problem
Prefiltering the Gene List
Multtest Package
Differential Expression Example



Microarrays

A Versatile Package for Multiple Testing

The multtest package is useful for performing differential
expression analysis. A single function MTP handles numerous
testing problems simply by setting optional parameters. First load
the library.

> library(multtest)

Problem. Identify a set of genes differentially expressed in the
breast cancer expression set between the samples with normal p53
status and mutated p53.

The factor in the phenoData defining the p53 status is named p53
with the following distribution. p53+ denotes the mutant.

> table(phenoData(f3eset3UPPS1)$p53)

p53+ p53-
27 96
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MTP Parameters

The function performing the analysis is called MTP. Below are the
most important options found from ?MTP.

In any differential expression problem there is a need to specify the
matrix of expression values and the factor defining the two sample
groups. The matrix of expression values are assigned to the
parameter X. The factor defining the sample groups is assigned to
Y.

Note that it is possible to do an ANOVA test when the factor has
more than two levels.
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MTP Options
for setting test statistic

The parameter test is used to set the test statistic. The default
value is t.twosamp.unequalvar. For an ANOVA use f.

To use a nonparametric version of a test, like the Wilcoxon rank
sum test, set the parameter robust equal to TRUE. The default is
FALSE.

alternative is a character string that describes the form of the
alternative hypothesis. The default is two.sided. Other
possibilities are less or greater.

typeone sets the type of control over multiple testing. The default
is fwer, but fdr is a good option. Others are possible.

alpha sets the Type I error rate, after multiple testing correction.
The default is 0.05. It is possible to give a vector if you want to
test multiple levels.
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MTP Output
a new object class

The MTP function returns an object of class MTP. There are
numerous slots. The important ones for reading off the
differentially expressed genes and understanding the amount of
differential expression are as follows.

statistic : The vector of values of the test statistic, one for each
null hypothesis; i.e., probe.

adjp : The vector of adjusted p-values. When this is < alpha we
reject the null.

reject : This is a logical matrix reporting if a null hypothesis is
rejected for a given gene (rows) and value of alpha (columns).
(Normally this has one column.)
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Getting Results
from the MTP object

Given an MTP object, mtpObj, summary(mtpObj), reports simple
results like the numbe rof rejections, however we need to know
which probes are rejected.

mtpObj@reject is a logical matrix. When alpha is a single
number, mtpObj@reject has one column and the vector of rejects
can be obtained by

rejs <- rownames(mtpObj@reject)[mtpObj@reject]

rejs is then a vector of probes. We can use other slots in mtpObj
to find corresponding adjusted p-values and statistic values.
Annotation information is used to identify gene names and symols
from the probes. Normally, they are reported in a table sorted by
adjusted p-value. The function mtpOut (written by myself)
produces such a table.
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Example Problem from Breast Cancer

Problem. Identify a set of genes differentially expressed in the
breast cancer expression set between the samples with normal p53
status and mutated p53.

The ExpressionSet object following prefiltering is f3eset3UPPS1
and the factor defining p53 status is
phenoData(f3eset3UPPS1)$p53.

Do differential expression using MTP with all defaults: a two-sided,
two sample t test with unequal variances, FWER as MTP
adjustment, and α = .05.
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Execute MTP on this Set

> X3 <- exprs(f3eset3UPPS1)

> Fp <- f3eset3UPPS1$p53

> names(Fp) <- colnames(X3)

> mtpp531 <- MTP(X = X3, Y = Fp)

running bootstrap...
iteration = 100 200 300 400 500 600 700 800 900 1000
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MTP Object Summary
> summary(mtpp531)

MTP: ss.maxT
Type I error rate: fwer

Level Rejections
alpha=0.05 0.05 89

Min. 1st Qu. Median Mean 3rd Qu.
adjp 0.00 0.993 1.0000 0.9100 1.000
rawp 0.00 0.010 0.0995 0.2440 0.423
statistic -9.59 -1.290 0.3570 0.2450 1.890
estimate -3.02 -0.269 0.0719 0.0638 0.408

Max.
adjp 1.00
rawp 1.00
statistic 6.87
estimate 3.38
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A Table of Rejects

Now use the mtpOut function or one you write to create a table of
results. The function writes the

> mtpP53out <- mtpOut(mtpp531, X3, Fp, hgu133aSYMBOL,

+ hgu133aGENENAME, "mtpp53OutTbl1")

The file written into the working directory is mtpp53OutTbl1.csv.
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Interpreting the Gene List

A check of the values for an individual gene shows that a negative
t statistic in the table means the probe is up-regulated in the
mutant (p53+).

Many of the genes on the list are invovled in cell cycle regulation.
Cell cycle accelaration is a major factor in the aggressiveness of
breast cancer. This gives some insight into the way p53 mutation
promotes tumor growth.

Interpretation of this information can be aided by a facility for
marking up KEGG pathway diagrams. The function prepColors3
produces a data.frame of coloring codes and Entrez Ids in the
format KEGG needs.
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Mark-up KEGG Pathways

> colTbl <- prepColors3(mtpP53out, hgu133aENTREZID)

> write.csv(colTbl, file = "colTbl1.csv")

As this mark-up shows, RRM2, significantly up-regulated in the
mutant samples, is involved in DNA repair with p53.
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Where is p53?

We are comparing samples with normal p53 to those with a
mutant p53. Why isn’t p53 at the top of the list of genes
differentially expressed here?

Plot the expression values of the p53 gene for the two sample
groups and compare. The gene symbol is TP53. A search of the
symbols reveals two probes for this gene. In one probe the
expression values are uniformly very low. For the other the plot
follows.
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Plot of TP53 Expression
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Nature of the Mutation
of p53

The mutation of TP53 does not prohibit transcription of the
mRNA or translation of the mRNA into a protein. However, the
mutant protein structure prohibits its normal binding to DNA.
That is, it cannot act as a transcription factor like the wild-type
p53 protein. Thus, the effect of the mutation is found
“down-stream” in the other genes. The mutation in the mRNA is
likely not in the 25mer comprising the probe so there is no
significant change in expression value measurement.
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How Complete is the Picture?

We generated a list of 89 differentially expressed genes, corrected
for multiple testing. How many have we missed? To gain some
insight, we execute a t test on each probe and consider it probably
differentially expressed if the p-value of this test is < 0.05. Leave
out the multiple testing correction.

The genefilter package provides a function rowttests for
executing a t test on each row of an expression matrix based on
some factor.



Microarrays

Testing the Power

> ttests <- rowttests(X3, Fp)

> probDiff <- ttests$p.value < 0.05

> sum(probDiff)

[1] 2296

This is the sobering reality of problems in which the number of
variables significantly exceeds the number of samples. What is
gained through these basic methods is still valuable, but we have
only begun to understand the expression-based differences between
cell types. Methods are under development and significant
improvements aren’t unreasonable.
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