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Microarrays

Just the Highlights
for analyzing resulting data

• A microarray contains oligonucleotide “probes” that bind
mRNA from a sample.

• There may be numerous probes from the coding regions of
any given gene.

• mRNA is flourescence labelled and the data captured as an
image. Image intensity is correlated with the amount of
mRNA.

• One array is hybridized with mRNA from one sample.

• Quality assessment is important. Many arrays need to be
discarded.
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Microarrays

From Image to Expression Values

• Initial processing produces an intensity level for each probe
cell. This is a start at measuring expression level. The
resulting data is stored in a file xxx.CEL and called a .CEL file.

• A meaningful hypothesis driven experiment requires replicates
and often different biological traits. We need to compare and
contrast assays from different samples. This requires
calculating probe expression levels that are “normalized” across
arrays.

• The process of moving from a set of .CEL files to a set of
expression levels for all samples in the experiment has several
component processes. In R the result is an ExpressionSet
object.
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.CEL Files to ExpressionSet

There are several steps to the process, and several accepted
methods, based on different algorithms. This is a complicated
subject, still evolving, that borrows from image processing and
molecular biology.

Two major issues all methods must address are background
correction and normalization.

Common methods are MAS 5.0, RMA, and GCRMA.
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Background Correction

In image processsing there is always an issue in measuring true
signal versus background noise.

• The MAS 5.0 method developed by Affymetrix does averaging
over regions in the array for both PM and MM probe cells.

• The RMA method by Irrizary, et al, uses a statistical model of
exponential signal and normal noise on only the PM probe
cells.
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Normalization

• The Affymetrix scaling method is to select one array as a
baseline and then then scale all others to have the same mean
intensity as this one.

• The quantile normalization method, used by RMA and
GCRMA, imposes the same empirical distribution on all
arrays. Array measurements are transformed until all Q-Q
plots are linear and diagonal (as much as possible).
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GCRMA

GCRMA is refine ment to RMA that adds a step of adjusting
expression values based on the propensity of some probes to
undergo non-specific binding. The authors argue that it adds a
level of precision to the numbers – they are closer to measuring
real concentrations.
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What are Expression Values?

• The numbers on an ExpressionSet created with MAS 5.0 are
on the same scale as the signal intensities and range from 100
to several thousand. Normally a threshold of 500 is used to
decide if the gene is expressed at all. Amount of mRNA is
roughly proportional to the measure.

• Expression values in a set created with RMA or GCRMA are
on a log2 scale. Values range from 2 to 15 or so. Amount of
mRNA is roughly 2x , where x is the expression value.

• In comparing expression levels of a particular probe across two
samples or groups of samples the term fold change is
sometimes used. A doubling of mRNA amount is a 2 fold
change. To the extent that this is captured by expression
values this means a doubling of number in MAS 5.0 data, or
an increase of 1 for RMA or GCRMA.
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Outline of the Steps
CEL files to ExpressionSet

• Collect the .CEL files in a separate directory. Optionally
include a text file table of tab separated phenotypic data, one
line for each sample.

• Use ReadAffy() in the affy package to create an
AffyBatch object. This has an intensity measure for each
probe cell, and for each array. It is a matrix-like object.

• Use functions from the simpleaffy or the affyQCReport
package to check the quality of arrays. Exclude any samples
that fail the quality check and generate a new AffyBatch
object.

• Generate the final ExpressionSet object with expresso, rma
(in the affy package) or gcrma (in the gcrma package).

• Other slots of the ExpressionSet object can be filled in “by
hand”. See the PDF on the ExpressionSet class in Biobase.
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Example with Arrays from Mouse Experiment

The arrays are from an experiment using a mouse model of colon
cancer, ApcMin/+. In a very small nutshell, the goal is to assess the
effect of an NSAID, sulindac, on gene expression in colon
adenomas. The mice were divided into two populations, those
receiving sulindac and a control group that only received the
vehicle by which the drug was administered. These two words will
label the phenotypes. The samples will be coded with “S” and “V”
to further distinguish.
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First Inspect the CEL File Directory

> list.files(path = "/Users/steve/Documents/Bio/Castellino/sulindac2/CELs")

[1] "S1.cel" "S2.cel"
[3] "S3.cel" "S4.cel"
[5] "S5.cel" "S6.cel"
[7] "S7.cel" "S8.cel"
[9] "S9.cel" "V1.cel"
[11] "V2.cel" "V3.cel"
[13] "V4.cel" "V5.cel"
[15] "V6.cel" "V7.cel"
[17] "V8.cel" "V9.cel"
[19] "phenodata.txt"
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What Does phenodata.txt Look ?

The phenodata.txt file contains the labels needed to separate the
two groups.

> phenofilepath <- "/Users/steve/Documents/Bio/Castellino/sulindac2/CELs/phenodata.txt"

> pd1 <- read.table(file = phenofilepath,

+ header = TRUE)

> pd1[1:3, ]

[1] S S S
Levels: S V

> pd1[15:18, ]

[1] V V V V
Levels: S V
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Read CEL files into AffyBatch Object

Load the affy library and create an AffyBatch object with the
ReadAffy() function. This can simultaneously read in the
phenodata from the file specified.

> library(affy)
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Read CEL files into AffyBatch Object
continued

> celpath <- "/Users/steve/Documents/Bio/Castellino/sulindac2/CELs"

> batch1 <- ReadAffy(celfile.path = celpath,

+ phenoData = phenofilepath)

> batch1

AffyBatch object
size of arrays=712x712 features (10 kb)
cdf=MOE430A (22690 affyids)
number of samples=18
number of genes=22690
annotation=moe430a
notes=
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Browse the AffyBatch Object

The AffyBatch object is very basic. It just contains basic
uncorrected intensity measures for the probe cells. To learn about
the slot names and applicable methods execute

> class?AffyBatch

Just to see what slots make up the object:

> slotNames(batch1)

[1] "cdfName" "nrow"
[3] "ncol" "assayData"
[5] "phenoData" "featureData"
[7] "experimentData" "annotation"
[9] ".__classVersion__"



Microarrays

The phenoData is Here

> phenoData(batch1)

rowNames: S1.cel, S2.cel, ..., V9.cel (18 total)
varLabels and varMetadata:
treatment: read from file

> phenoData(batch1)$treatment

[1] S S S S S S S S S V V V V V V V V V
Levels: S V
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Next Step is Quality Assessment

For Affymetrix arrays there are several quality checks that should
be done. These can all be done through one of several packages,
like simpleaffy or affyQCReport. The tests here were developed
by Affymetrix to judge the quality of the hybridization, relative
RNA concentrations, scanning quality, etc. Read the
documentation in QCandSimpleaffy.pdf. I won’t try to explain
these steps, just illustrate why some arrays were rejected.
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First Check the Image Quality

The crudest check is of basic image quality. This can spot
scratches and other anomalies on the array. Executing
image(batch1) produces 18 plots, one at a time. Here we plot 4
interesting ones, all in one 2× 2 matrix.

> oldpar <- par(mfrow = c(2, 2))

> image(batch1[, 5:8])

> par(oldpar)
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Execute the QC Function

The main function in simpleaffy for quality control is qc. It
returns an object of class QCstats.

> qc.batch1 <- qc(batch1)

> slotNames(qc.batch1)

[1] "scale.factors" "target"
[3] "percent.present" "average.background"
[5] "minimum.background" "maximum.background"
[7] "spikes" "qc.probes"
[9] "bioBCalls"
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Inspect the QC Results
Average Background

> qc.batch1@average.background

S1.cel S2.cel S3.cel S4.cel S5.cel S6.cel S7.cel
105.76 162.13 106.99 74.46 100.96 72.28 145.50
S8.cel S9.cel V1.cel V2.cel V3.cel V4.cel V5.cel
109.04 64.95 157.94 117.82 116.47 77.87 99.23
V6.cel V7.cel V8.cel V9.cel
64.91 57.58 109.13 77.59

S2, S7 and V1 are problematic. This could be due to differing
concentrations in RNA, incorporating more or less label, or other
factors in producing images with varying overall intensity.
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Inspect the QC Results
Scale Factor

> qc.batch1@scale.factors

[1] 0.6192 0.5281 0.6585 0.6132 0.4181 0.5863
[7] 0.7668 0.5760 1.0212 0.4765 0.5405 0.6316
[13] 0.9635 0.8385 0.8244 1.1304 0.6489 0.7243

Scale factor is a measure of how mean intensities vary across the
arrays. They should be within 3-fold of each other. These are OK.
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Inspect the QC Results
Percent Present

> qc.batch1@percent.present[1:15]

S1.cel.present S2.cel.present S3.cel.present
44.06 44.57 43.13

S4.cel.present S5.cel.present S6.cel.present
47.29 48.10 49.38

S7.cel.present S8.cel.present S9.cel.present
37.56 47.41 45.40

V1.cel.present V2.cel.present V3.cel.present
43.26 43.26 41.95

V4.cel.present V5.cel.present V6.cel.present
48.97 47.18 47.43

A probe pair is present if PM is significantly larger than MM. This
number measure the percentage of pairs present. It should be
between 35 and 55, with little variation across the arrays. OK here.
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Conclusions from QC

Should exclude S5 due to the spot. We should also eliminate S2,
S7 and V1 for excessive average background.

The loss in degrees of freedom is painful, however bad arrays
increase variance and make it harder to find differentially expressed
genes.

Create a new directory of CEL files containing only the good ones.
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Create New AffyBatch Object
using the good CEL files

First, redo the steps generating the AffyBatch object using only
the good CEL files.

> newcelpath <- "/Users/steve/Documents/Bio/Rcourse/Lect10/sulindacObjects/CELs"

> newphenopath <- "/Users/steve/Documents/Bio/Rcourse/Lect10/sulindacObjects/CELs/phenodata.txt"

> batch2 <- ReadAffy(celfile.path = newcelpath,

+ phenoData = newphenopath)

> batch2

AffyBatch object
size of arrays=712x712 features (10 kb)
cdf=MOE430A (22690 affyids)
number of samples=14
number of genes=22690
annotation=moe430a
notes=
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Run GCRMA

Executing GCRMA does background correction and normalization,
resulting in an ExpressionSet object.

> library(gcrma)

> sulEset1 <- gcrma(batch2)
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GCRMA Output
It takes some time

Adjusting for optical effect..............Done.
Computing affinities.Done.
Adjusting for non-specific binding..............Done.
Normalizing
Calculating Expression
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The Resulting Object

> sulEset1

ExpressionSet (storageMode: lockedEnvironment)
assayData: 22690 features, 14 samples
element names: exprs

phenoData
rowNames: S1.cel, S3.cel, ..., V9.cel (14 total)
varLabels and varMetadata:
treatment: read from file

featureData
featureNames: 1415670_at, 1415671_at, ..., AFFX-r2-P1-cre-5_at (22690 total)
varLabels and varMetadata: none

experimentData: use 'experimentData(object)'
Annotation [1] "moe430a"
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Important Slots

The point of this is the expression values. The matrix is extracted
with the exprs method (function).

> expSul <- exprs(sulEset1)

> expSul[1:4, 1:3]

S1.cel S3.cel S4.cel
1415670_at 8.045 8.336 7.983
1415671_at 8.119 8.615 8.664
1415672_at 12.004 11.444 11.655
1415673_at 3.566 3.336 3.297
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Samples and Probes (Features)

> sampleNames(sulEset1)

[1] "S1.cel" "S3.cel" "S4.cel" "S6.cel" "S8.cel"
[6] "S9.cel" "V2.cel" "V3.cel" "V4.cel" "V5.cel"
[11] "V6.cel" "V7.cel" "V8.cel" "V9.cel"

> featureNames(sulEset1)[1:6]

[1] "1415670_at" "1415671_at" "1415672_at"
[4] "1415673_at" "1415674_a_at" "1415675_at"
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Expand on Supporting Info

The phenoData slot has minimal information. Let’s give a better
explanation of the treatment. We must unravel the phenoData
object and learn what slot of it should be altered and how to do it.
Extract the slot and work with it on the side.

> pd <- phenoData(sulEset1)

> slotNames(pd)

[1] "varMetadata" "data"
[3] "dimLabels" ".__classVersion__"
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PhenoData Data
> pd@data

treatment
S1.cel S
S3.cel S
S4.cel S
S6.cel S
S8.cel S
S9.cel S
V2.cel V
V3.cel V
V4.cel V
V5.cel V
V6.cel V
V7.cel V
V8.cel V
V9.cel V
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Editing the phenoData

> pd@varMetadata

labelDescription
treatment read from file

> class(pd@varMetadata)

[1] "data.frame"

> dim(pd@varMetadata)

[1] 1 1
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Editing the phenoData
> pd@varMetadata[1, 1] <- "Sulindac treated versus vehicle (control)"

> phenoData(sulEset1) <- pd

> sulEset1

ExpressionSet (storageMode: lockedEnvironment)
assayData: 22690 features, 14 samples
element names: exprs

phenoData
rowNames: S1.cel, S3.cel, ..., V9.cel (14 total)
varLabels and varMetadata:
treatment: Sulindac treated versus vehicle (control)

featureData
featureNames: 1415670_at, 1415671_at, ..., AFFX-r2-P1-cre-5_at (22690 total)
varLabels and varMetadata: none

experimentData: use 'experimentData(object)'
Annotation [1] "moe430a"
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Fill in Other Slots

The experimentData slot contains the MIAME information needed
to properly attribute the data. This is empty until you create the
object and assign it to the slot.
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Tie Probes to Genes
and what we know about them

Interpreting the result of an array analysis requires connecting
probes to genes and the available biological information about the
genes. The Annotation slot in the ExpressionSet object reports the
array type. This was read from the CEL file. The annotation
information about the probes are accessed through a package with
the same name as the array.

> library(moe430a)
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Annotation Consists of Environments

An environment in R is a set of key-value pairs. Here the keys are
probe IDS and the values are traits of the corresponding
oligonucleotide; or the key is a code for a trait and the value is a
vector of probe IDS with that trait. Documentation is not good,
but all packages and environments are accessed the same way.

After loading the library (moe430a in our case) the list of
environments is generated by

> moe430a()
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Environment List
Quality control information for moe430a
Date built: Created: Mon Apr 23 12:48:20 2007

Number of probes: 22690
Probe number mismatch: None
Probe missmatch: None
Mappings found for probe based rda files:

moe430aACCNUM found 22690 of 22690
moe430aCHR found 22360 of 22690
moe430aCHRLOC found 21260 of 22690
moe430aENZYME found 2787 of 22690
moe430aENTREZID found 22388 of 22690
moe430aGENENAME found 22388 of 22690
moe430aGO found 20374 of 22690
moe430aMAP found 21712 of 22690
moe430aOMIM found 0 of 22690



Microarrays

Environment List
moe430aPATH found 6035 of 22690
moe430aPFAM found 21854 of 22690
moe430aPMID found 22289 of 22690
moe430aPROSITE found 21854 of 22690
moe430aREFSEQ found 21972 of 22690
moe430aSYMBOL found 22388 of 22690
moe430aUNIGENE found 22289 of 22690

Mappings found for non-probe based rda files:
moe430aCHRLENGTHS found 21
moe430aENZYME2PROBE found 737
moe430aGO2ALLPROBES found 7873
moe430aGO2PROBE found 5784
moe430aPATH2PROBE found 184
moe430aPMID2PROBE found 95903
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Example Environment Values
Select a probe ID and extract the values of different environments
for this “key” as follows. Work with the probe 1423110_at.

> moe430aSYMBOL$"1423110_at"

[1] "Col1a2"

> moe430aGENENAME$"1423110_at"

[1] "procollagen, type I, alpha 2"

> moe430aUNIGENE$"1423110_at"

[1] "Mm.277792"

> moe430aCHRLOC$"1423110_at"

6
4455696
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Getting Many Values

Normally we don’t just want values for a single probe. We’ve found
a list of probes that are differentially expressed and we want the
list of corresponding symbols. The relevant function in R is mget.

A vector of probe IDs is provided as prbVec. It has length 10.
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Mget the Symbols

> prbSymsL <- mget(prbVec, envir = moe430aSYMBOL)

> class(prbSymsL)

[1] "list"

> prbSyms <- unlist(prbSymsL)

> prbSyms

1423110_at 1424131_at 1434369_a_at
"Col1a2" "Col6a3" "Cryab"

1454959_s_at 1421934_at 1460336_at
"Gnai1" "Cbx5" "Ppargc1a"

1416194_at 1438651_a_at 1416040_at
"Cyp4b1" "Agtrl1" "Lipf"

1417292_at
"Ifi47"
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Mget Returns a List
with names the probes

Normally the values in an environment aren’t simple characters or
numbers. mget must return a list to capture the information.



Microarrays

Getting Functional Information

Just having a list of gene names may not help understand the
biology. More useful is to fold in information about the biological
processes involving these genes. Bioconductor annotations use the
Gene Ontology (GO) http://www.geneontology.org/, and
pathway information at KEGG http://www.genome.jp/kegg/.
You should read the documentation and browse the sites
(especially GO) to understand this functional information.
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Get Associated GO Terms
and then dig deeper

A list of GO terms associated with a probe can be obtained as
follows. We use our collagen probe as an example and store the
result for further inspection.

> colGO <- moe430aGO$"1423110_at"

> class(colGO)

[1] "list"

> names(colGO)

[1] "GO:0006817" "GO:0007155" "GO:0007169"
[4] "GO:0005578" "GO:0005581" "GO:0005615"
[7] "GO:0005737" "GO:0005198" "GO:0005201"
[10] "GO:0005515" "GO:0030020"
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Digging Deeper into GO Terms

What does colGO contain for one of the components; i.e., one of
the Go terms?

> colGO[[1]]

$GOID
[1] "GO:0006817"

$Evidence
[1] "IEA"

$Ontology
[1] "BP"
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Digging Deeper into GO Terms

It’s possible to simply go to the GO site, enter the term into the
search box and inspect the results. But, if there are many terms it
may be easier to use Bioconductor’s internal tools. In the GO
package there is an environment, called GOTERMS, from which you
can extract the English description. To use this, load two more
libraries.

> library(annotate)

> library(GO)
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What the Terms Mean

> GOTERM$"GO:0006817"

GOID = GO:0006817

Term = phosphate transport

Definition = The directed movement of
phosphate into, out of, within or
between cells.

Ontology = BP
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Can Apply over Vectors

If you have a vector of GO term IDs, like the names(colGO), you
can extract all of the Term slots of the corresponding GOTERM
objects using lapply and some good programming.
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Probes for a Given GO term

At least as important as finding GO terms for a given probe is
finding all probes on the array associated with a given term. A
search of the GO website reveals GO terms of special interest, like
GO:0003700, “transcription factor activity”. Then the associated
probes are found as follows.

> tfPrbs <- moe430aGO2PROBE$"GO:0003700"

> length(tfPrbs)

[1] 1379

This will be used later to focus differential expression analyses to
selected processes of particular interest.
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Annotate has Many Uses

The annotate package has many additional functions that perform
Web queries to NCBI to get data for a given GenBank accession
number. For example, getSEQ gets the sequence; getPMID fetches
a vector of PubMed IDs referencing the nucleotide.
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KEGG Pathway Annotations

KEGG has created databases of pathways, linked to information
about the component genes. KEGG assigns a 5 digit code to each
path. Bioconductor metadata packages can access these
associations. For a given probe, the environment moe430aPATH
finds all paths using an associated protein. Conversely, given a
KEGG pathway code, moe430aPATH2PROBE gives the vector of
probes involved in the pathway. This can be useful for focusing a
differnetial expression experiment on a given pathway. The caveat
is that pathway annotations are far from complete.
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