
  

     

International Congress of Mathematical Software 

Seoul, Korea      August 8, 2014 

Numerical Algebraic Geometry: 

Theory and Practice 

Andrew Sommese 

  University of Notre Dame 

  www.nd.edu/~sommese 

In collaboration with 

Daniel Bates (Colorado State University) 

Jonathan Hauenstein (University of Notre Dame) 

Charles Wampler (General Motors R & D) 

 

http://www.nd.edu/~sommese


International Congress of Mathematical Software 

Seoul, Korea      August 8, 2014 

 
 

2 

Many have contributed to the Development of 

Numerical Algebraic Geometry 

 

 Daniel Bates, Daniel Brake, Tianran Chen, Brent 

Davis, Wenrui Hao, Bei Hu, Jonathan Hauenstein, 

Tsung-Lin Lee, Anton Leykin, Tien-Yien Li, 

Timothy McCoy, Mathew Niemerg, Christopher 

Peterson, Jose Rodriguez, Jan Verschelde, Charles 

Wampler, Zhonggang Zeng, Ailing Zhao, . . . . .   
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Surveys of Numerical Algebraic Geometry 

 Reference on the area up to 2005: 
 A.J. Sommese and C.W. Wampler, Numerical solution of systems of 

polynomials arising in engineering and science, (2005), World 
Scientific Press. 

 Survey up to 2010 oriented towards Kinematics 
 C.W. Wampler and A.J. Sommese, Numerical Algebraic Geometry and 

Algebraic Kinematics, Acta Numerica 20 (2011), 469-567. 

 Up to 2013 oriented towards Bertini 

 D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, 
Numerically solving polynomial systems with Bertini, (2013), SIAM. 

 Developments related to systems of PDEs upto 2013 

 W. Hao, B. Hu, and A.J. Sommese, Numerical algebraic geometry and 
differential equations, in Future Vision and Trends on Shapes, 
Geometry and Algebra, ed. by R. De Amicis and G. Conti, Springer 
Proc. in Mathematics & Statistics, Vol. 84 (2014), 39-54. 



International Congress of Mathematical Software 

Seoul, Korea      August 8, 2014 

 
 

4 

Overview 

 Numerical Algebraic Geometry 
 Homotopy Continuation and Computation of Isolated 

Solutions 

 Numerical Issues 

 Genericity and Algebraic Geometry 

 Positive Dimensional Solution Sets 

 How to represent them 

 The Core Computation  

 Singular Points, Endgames, and Adaptive Precision 

 Bertini: open-source software for Num. Alg. Geom.  
 Brief History 

 Future 
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Computing Isolated Solutions of  Polynomial Systems 

 Find all isolated solutions of a polynomial 

system 
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Why? 

 

 

 To  solve problems from engineering 

and science.  



International Congress of Mathematical Software 

Seoul, Korea      August 8, 2014 

 
 

7 

Characteristics of Engineering Systems 

 systems are sparse: they often have symmetries 

and have much smaller solution sets than would 

be expected. 

 systems depend on parameters: typically they 

need to be solved many times for different 

values of the parameters. 

 usually only real solutions are interesting. 

 usually only finite solutions are interesting. 

 nonsingular isolated solutions were the center of 

attention. 
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Solving a system 

 

 Homotopy continuation is our main tool:  

 Start with known solutions of a known system 

and then track those solutions as we deform the 

start system to the system that we wish to solve. 
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Path Tracking 

This method takes a system g(x) = 0, whose solutions  

we know, and makes use of a homotopy, e.g.,   

 

 

Hopefully, H(x,t) = 0 defines “paths” x(t) as t runs  

from 1 to 0.  They start at known solutions of  

g(x) = 0 and end at the solutions of f(x) at t = 0.  

tg(x). t)f(x)-(1  t)H(x, 
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 The paths satisfy the Davidenko equation 

 

 

 

 To compute the paths: use ODE methods to 

predict and Newton’s method to correct. 
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Solutions of   

    f(x)=0 

Known 
solutions of 
g(x)=0 

t=0 t=1 H(x,t) = (1-t) f(x) + t g(x) 

x3(t) 
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Newton 
correction 

prediction 
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What Continuation Computed 

 Given a system f(x) = 0 of n polynomials in n 

unknowns, continuation computes a finite set 

S of solutions such that: 

 any isolated root of f(x) = 0 is contained in S;  

 any isolated root “occurs” a number of times 

equal to its multiplicity as a solution of f(x) = 0; 

 

S was often larger than the set of isolated solutions. 
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Since the goal was to compute a finite set containing 

the solutions, path-crossing was not taken that 

seriously: it usually didn’t prevent computing all 

solutions. 
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Hardware 

 Continuation is computationally intensive.     

On average: 

 in 1985: 3 minutes/path on largest mainframes. 
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Hardware 

 Continuation is computationally intensive.     

On average: 

 in 1985: 3 minutes/path on largest mainframes. 

 in 1991: over 8 seconds/path, on an IBM 3081; 

2.5 seconds/path on a top-of-the-line IBM 3090. 
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Hardware 

 Continuation is computationally intensive.     

On average: 

 in 1985: 3 minutes/path on largest mainframes. 

 in 1991: over 8 seconds/path, on an IBM 3081; 

2.5 seconds/path on a top-of-the-line IBM 3090. 

 2006: about 10 paths a second on a single 

processor desktop CPU; 1000’s of paths/second 

on moderately sized clusters. 

The inherent parallelizability has far-reaching 

consequences! 
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Algorithms 

 middle 80’s: Projective space was beginning to be 

used, but the methods were a combination of 

differential topology and numerical analysis. 

 Late 80’s through early 90’s: algebraic geometric 

methods worked into the theory:  great increase in 

security, efficiency, and speed.  

 middle 90’s on: positive dimensional sets and ever 

larger polynomial systems.  
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Uses of algebraic geometry 

 

 

 Genericity and Bertini Theorems are a major source 

of the uses of Algebraic Geometry. 
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One of the first applications 

Simple but extremely useful consequence of 

algebraicity [A. Morgan (GM R. & D.) and S.] 

 Instead of the homotopy  H(x,t) = (1-t)f(x) + tg(x)  

use H(x,t) = (1-t)f(x) + gtg(x) 
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Genericity giving a methodology 

 

 Morgan + S. : if the parameter space is irreducible, 

solving the system at a random points simplifies 

subsequent solves: in practice speedups by factors 

of 100. 

 

 A. Morgan and A.J. Sommese, Coefficient-parameter 

polynomial continuation, Appl. Math. Comput.  29 

(1989), 123-160. 
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First Major Use of the Methodology 

 Kinematics Problem Posed in 1923 by Alt and 

solved in 1992. 
 

 C.W. Wampler,  A. Morgan, and A.J. Sommese, 

Complete solution of the nine-point path synthesis 

problem for four-bar linkages, ASME Journal of 

Mechanical Design 114 (1992), 153-159. 
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Alt’s System 

 

 

 

 

 

 

in the 24 variables 

with j from 1 to 8. 

 

    0δδ - x) -a (δ )x̂ - â(δγ̂ x̂)δ -(a  γ)xδ - â( jjjjjjjj 

    0δδ -  y)- b(δ )ŷ - b̂(δγ̂ ŷ)δ - (b γ)yδ - b̂( jjjjjjjj 

0γ̂γγ̂γ jjjj 

jj γ̂, γand ŷ ,x̂ ,b̂ ,â  y,x, b, ,a
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 8 degree 2 and 16 degree 3 equations giving 

11,019,960,801 paths to follow. 

  Freudenstein and Roth (early 50’s): use 

Cramers rule and substitution on the g 

variables, we have a system consisting of 8 

equations of degree 7. In 1991, this was 

impractical to solve:  

     78 = 5,764,801solutions. 
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Solve by Continuation 

 

 

 

 

 

 

   
 

  
    

 
 

 

 All 2-homog. 

systems 

All 9-point 

systems 

“numerical reduction” to test case (done 1 time) 

 synthesis program (many times) 
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Nine-point Problem 
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A point to consider 

 

 

 Not all limits of paths are equal!  Singular 

paths can be much more expensive and 

difficult to compute. 
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A Guiding Principle 

Use Special Homotopies to take advantage of 

sparseness 

 

 Algorithms must be structured – when 

possible – to avoid paths leading to singular 

solutions: find a way to never follow the 

paths in the first place. 
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Positive Dimensional Solution Sets 

We now turn to finding the positive dimensional 

solution sets of a system 
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How to represent positive dimensional components? 

 S. + Wampler in ’95:  

 Use the intersection of a component with 

generic linear space of complementary 

dimension.   

 By using continuation and deforming the 

linear space, as many points as are desired 

can be chosen on a component. 
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 Use a generic flag of 

affine linear spaces 

 to get witness point 

supersets 

 This approach has 19th 

century roots in 

algebraic geometry 
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The Numerical Irreducible Decomposition 

Carried out in a sequence of articles with Jan Verschelde 

(University of Illinois at Chicago) and Charles Wampler 

(General Motors Research and Development) 

 Efficient Computation of “Witness Supersets’’ 

 S. and Verschelde, Journal of Complexity 16 (2000), 572-602. 

 Numerical Irreducible Decomposition 

 S., Verschelde, and Wampler, SIAM Journal on Numerical Analysis 

38 (2001), 2022-2046. 

 An efficient algorithm using monodromy 

 S., Verschelde, and Wampler, SIAM Journal on Numerical Analysis 

40 (2002), 2026-2046. 

 Intersections of algebraic sets 

 S., Verschelde, and Wampler, SIAM Journal on Numerical Analysis 

42 (2004), 1552-1571. 
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The Core Numerical Computation 

 Realization slowly grew that path crossing is 

unacceptable and that the core numerical 

computation of Numerical Algebraic 

Geometry is: 

 Given a homotopy H(x;q) = 0; a “good” path 

q(t) in the q-variables defined on (0,1]; and a 

point x* satisfying H(x*;q(1))=0, compute the 

limit as t goes to 0 of the path (x(t);q(t)) starting 

with        (x(1) ;q(1) =  (x*;q(1)) in the (x;q) 

space and satisfying H(x(t);q(t)) = 0. 

In a nutshell: We need to compute the endpoint of 

a path ! 
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Numerical issues posed by multiple components 

Consider a toy homotopy 

 

 

 

Continuation is a problem because the Jacobian with 

respect to the x variables is singular. 
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Deflation 

The basic idea introduced by Ojika in 1983 is to 

differentiate the multiplicity away. Leykin, 

Verschelde, and Zhao gave an algorithm for an 

isolated point that they showed terminated.   

Given a system f, replace it with  
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Singular points cannot be avoided 

To make a viable algorithm for multiple components, 

it is necessary to make decisions on ranks of 

singular matrices.   
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Endgames (Morgan, Wampler, and S.) 

 Example: x(x – 1)2 - t = 0 

We can uniformize around  

a solution at t = 0.  Letting 

t = s2, knowing the solution 

at t = 0.01, we can track 

around |s| = 0.1 and use 

Cauchy’s Integral Theorem  

to compute x at s = 0. 
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      Endgames in Non-traditional Situations 

 Singular solutions not a side issue, but the main 

object!  

For certain classes of systems of hyperbolic PDEs and 

solutions with discontinuities, the Cauchy endgame 

gives an order of magnitude improvement over the 

standard time-stepping method. 

 W. Hao, J.D. Hauenstein, C.-W. Shu, A.J. 

Sommese, Z. Xu, Y.-T. Zhang, A homotopy 

method based on WENO schemes for solving 

steady state problems of hyperbolic conservation 

laws,  J. of Comp. Phys., 250 (2013), 332-346. 
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Endgames 

 Without multiprecision, singular points can 

only be computed reliably for low 

multiplicities. 

 As a consequence, checking whether paths 

go to infinity is not secure!   

 Why?  

 Answer: we change coordinates to infinite 

endpoints are finite, but infinite endpoints often 

have extremely high multiplicities.  



International Congress of Mathematical Software 

Seoul, Korea      August 8, 2014 

 
 

40 

Moment Map 
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Sparse system treated as nonsparse 
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Often high multiplicity solutions at infinity 

 
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The need for multiprecision 

 Why use Multiprecision? 

 to ensure that the region where an endgame 

works is not contained the region where the 

numerics break down;  

 to ensure that a polynomial is zero at a point is 

the same as the polynomial numerically being 

approximately zero at the point;  

 to prevent the linear algebra in continuation from 

falling apart; and 

 to prevent path crossing. 
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Evaluation 

                p(z) = z10 – 28z9 + 1 

 To 15 digits of accuracy one of the roots of this 

polynomial is a = 27.9999999999999. Evaluating 

p(a) term-by-term to 15 digits, we find that p(a) = -2 

    (or, evaluating intelligently p(a) = -0.05784559534077: this 

uses understanding we do not have in higher dimensions).  

 Even with 17 digit accuracy, the approximate root a 

is a = 27.999999999999905 and we still only have 

p(a) = -0.01 (or with intell.: p(a) = -0.0049533155737293). 
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Wilkinson’s Theorem from Numerical Linear Algebra  

 Solving Az = f,  with A an N by N matrix, 

we must expect to lose upto                           digits of 

accuracy.  Geometrically,                                is 

on the order of the inverse of the distance in  

from A to to the set defined by det(A) = 0. 

 

 

              

)](cond[log10 A

||||||||)( cond 1 AAA
1NNP
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Double precision not enough even at nice solutions! 

High condition numbers of        to         occur at nice 

solutions of discretizations of many systems of 

differential equations, e.g., 

 W. Hao, J.D. Hauenstein, B. Hu,Y. Liu, A.J. Sommese, and Y.-

T. Zhang, Continuation along bifurcation branches for a tumor 

model with a necrotic core, J. Sci. Comp., 53 (2012), 395-413. 

 W. Hao, J.D. Hauenstein, B. Hu, T. McCoy,and A.J. Sommese, 

Computing steady-state solutions for a free boundary problem 

modeling tumor growth by Stokes equation, J. Comp. and 

Appl. Math., 237 (2013), 326-334. 

 W. Hao, B. Hu, and A.J. Sommese, Cell cycle control and 

bifurcation for a free boundary problem modeling tissue 

growth,  J. Sci. Comp., 56 (2013), 350-365. 

 

 

710
910
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Path-Crossing is dire in modern algorithms! 
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and isn’t avoidable with only double precision 

Near-singular conditions actually arise.  For 
the current best polynomial system to solve 
Alt’s problem: 
 

 Out of 143,360 paths: 

 1184 paths (0.826%) used higher precision and then 
dropped back to double precision before starting the 
endgame 

  680 paths (0.474%) used at least 96-bit precision and 
then dropped back to double precision before starting the 
endgame 
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Using Higher Precision 

 One approach is to simply run paths at a higher 

precision. 
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Using Higher Precision 

 One approach is to simply run paths at a higher 

precision. 

This is computationally very expensive! 

From D.J. Bates, J.D. Hauenstein, A.J. Sommese,  and  

C.W. Wampler, Adaptive multiprecision path tracking, 

SIAM Journal on Numerical Analysis 46 (2008) 722-746. 
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Bertini 

 

 Bertini uses data types modeled on the 

geometry and is designed to dynamically 

adjust the precision to achieve a solution 

with a prespecified error.   

 The current version of Bertini was developed by 

Daniel Bates, Jon Hauenstein, Charles Wampler, 

and Andrew Sommese. 
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Bertini: available at bertini.nd.edu 

 First released in Fall 2006.  Written in C. 

 Many strengths: 

 Very good adaptive precision tracker, which was 

refined and improved in sucessive releases. 

 Provision for user-defined homotopies. 

 Natural data structures, e.g., specification of 

paths in parameter spaces to track over is 

straightforward. 
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 Many signs of age to some extent internally 

“corrected for”  

 Hard and (by today’s standards) very small 

limits on numbers of variables, number of 

equations. 

 No support for scripting or building new systems 

out of old systems. 

 Many different names for essentially the same 

functions with different inputs 
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Being redesigned in C++ by D.J. Bates, D.A. 

Brake, J.D. Hauenstein, A.J. Sommese, C.W. 

Wampler, and others. 

Scripting facilities that allow 

 concatenation of systems and building of new 

systems out of old without the user needing to 

have concern for the underlying internal 

evaluation scheme 
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 Different research has led to distinct specialty 

versions of Bertini with special features, e.g., 

 Support for sparse linear algebra and specification of 

polynomial systems of the sort arising in discretization 

of systems of differential equations. 

 Support for checking stability. 

 Support for studying systems depending on several 

parameters: for details, attend Dan Bates’ talk. 

 Support for real algebraic decompositions: for details, 

attend Dan Brake’s talk. 
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 Designed to work with other programs. 

The article 

 D.J. Bates, W. Decker,  J.D. Hauenstein, C. Peterson, G. 

Pfister, F.-O. Schreyer, A.J. Sommese, and C.W. 

Wampler, Probabilistic algorithms to analyze the 

components of an affine algebraic variety, Applied 

Mathematics and Computation, 231 (2014),  619-633. 

drove home for us that it is best to use 

symbolic programs for several stages in 

the analysis of a polynomial system. 
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    Thank You! 


