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Abstract The underlying nodal distribution in sensor networks is almost univer-
sally modeled as a Poisson point process. While this assumption is valid
in many cases, there are also certain impracticalities to this model. In
this paper, we study the network characteristics in a scenario where a
finite and fixed number of nodes are distributed uniformly randomly
in a d-dimensional ball centered at the origin. The important quantity
analyzed is the network interference seen at the center of the ball. We
obtain a closed-form analytical expression for the moment generating
function of the interference which is then used to compute its moments
and to evaluate the network outage performance. The moments provide
an accurate characterization of the asymptotic behavior of the network
interference as the number of nodes increases.

Introduction
A sensor network is often assumed to be formed by scattering nodes

randomly inside the phenomenon that needs to be studied [1]. In most
cases in literature, the distribution of nodes in such a network is taken
to be a Poisson point process (PPP), since the study of such a sys-
tem is analytically convenient and leads to some insightful results. For
the so-called “Poisson network” of intensity λ, the number of nodes in
any given set of Lebesgue measure V is Poisson with mean λV and the
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number of nodes in disjoint sets are independent of each other. Even
though practical networks may be created by dropping sensors uniformly
randomly, they differ from Poisson networks in certain aspects. First,
networks are formed by usually scattering a fixed (and finite) number of
nodes in a given area (or very close to it). The underlying nodal distri-
bution forms a binomial point process (BPP), which we describe in the
next section. Secondly, the point process formed is non-stationary and
non-isotropic, meaning that the network characteristics as seen from a
node’s perspective is not homogeneous for all nodes. Intuitively, receiv-
ing nodes near the boundary are less susceptible to interference than
the ones in the center. Furthermore, the number of nodes in disjoint
sets are not independent but governed by a multinomial distribution.
Fig. 1 shows a realization of the two processes with the same density.
The PPP is clearly not a good model at times; there are more points in
the realization than the number dropped. A simple scenario where the
PPP assumption is not suitable is when we have a network with a small
number of nodes. Besides, the operation of protocols may be relying on
a certain number of nodes being present in the network. This motivates
the need to study and accurately characterize finite uniformly random
networks, in an attempt to extend the plethora of results for the PPP
to the often more realistic case of the BPP. We call this new model a
“binomial network”.
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Figure 1. (Left) A realization of 10 sensor nodes uniformly randomly distributed
in a circular area of unit radius. (Right) The Poisson network with the same density
(λ =3.18) has 14 nodes. The shaded box at the origin represents the base station.
When the nodes form a PPP, there may be any number of nodes in that area.

A typical binomial network consists of several nodes transmitting to
a central base station that collects data. During communication, these
nodes potentially interfere with each other. In order to accurately de-
termine network parameters such as outage, throughput or transmission
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capacity [2], the interference distribution needs to be calculated. How-
ever, the pdf of the interference can be evaluated in closed-form for a
very small number of cases. We work around this issue by resorting to
moment generating functions (MGFs). In this paper, the MGF of the
interference at the origin is analytically obtained and used to compute
the cumulants of the interference for a wide range of path loss expo-
nents. The moments of the interference are used to give a rough idea of
when the interference actually converges to a Gaussian distribution as
the number of nodes in the network are increased. For cases where the
central limit theorem is valid, the kurtosis of the interference is used to
determine the rate of convergence to the Gaussian. Other applications
of the MGF include estimating the network outage performance.

1. The Binomial Point Process
Conditioned on the total number of nodes in a given volume, the

PPP transforms into the BPP [3]. A BPP Φ(N)
W is formed as a result

of distributing N points independently and uniformly in a compact set
W ⊂ Rd. For a Borel subset A of W , let Φ(N)

W (A) denote the number of
points of Φ(N)

W falling in A. By definition, Φ(N)
W (A) is binomial(n, p) with

parameters n = N and p = νd(A)/νd(W ), where νd() is the standard
d-dimensional Lebesgue measure. The intensity of this process is defined
to be N/νd(W ).

2. System and Channel Model
There are a total of N transmitting nodes uniformly randomly dis-

tributed in a d-dimensional ball of radius R centered at the origin, de-
noted as bd(0, R). The density of the process is given by λ = N/(cdR

d),
where cd = νd(bd(0, 1)). cd can be expressed in terms of the gamma
function as

cd =
πd/2

Γ(1 + d/2)
.

We assume that each node collects data and transmits it to a base station
positioned at the origin in a single-hop fashion. Communication takes
place in packets of fixed length and all transmissions are synchronized
slot-wise. This way, each of the N nodes transmits simultaneously, mak-
ing the network interference-limited. We assume that the background
noise in the network is much weaker than the interference and neglect it
in our analysis. The attenuation in the channel is modeled as a product
of a distance component (that varies according to the large-scale path
loss law with exponent γ) and a flat, block fading component. In order
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to accommodate a variety of cases (including the one with no fading),
the amplitude fading random variable H is assumed to be m-Nakagami-
distributed [4]. The Rayleigh fading case is realized by setting m = 1
and m →∞ is used to study the case of no fading. When dealing with
received signal powers, we use the power fading variable denoted by
G = H2. We take the mean of G to be 1. For m = 1, G is exponentially
distributed with unit mean.
An outage is defined to occur when the SIR at the base station is smaller
than a predefined threshold, Θ, which depends on the detector structure
and the modulation and coding scheme [5]. Finally, we remark that the
results presented in this paper are for an “average network”, that is one
obtained by averaging over all possible realizations.

3. Interference Modeling
In this section, we consider a d-dimensional binomial network and

analytically derive the MGF of the interference at the origin in closed-
form. By transforming the BPP to a PPP, we also compute the MGF
of the interference in a Poisson network. The MGF expressions are
extensively needed in the later sections of the paper to calculate the
interference moments and the outage probabilities.

3.1 Moment Generating Function
Theorem 1 Consider a network consisting of N transmitting nodes
uniformly randomly distributed in a d-dimensional ball of radius R. Let
λ = N/(cdR

d). The MGF of the interference at the origin resulting only
from the nodes in the annular region S with inner radius A and outer
radius B (0 ≤ A < B ≤ R) is

MI(s) =
(

1− λ

N

∫ B

A
EG

[(
1− exp

(−sGr−γ
))

dcdr
d−1

]
dr

)N

. (1)

Proof: Let K denote the number of transmitting nodes in the
region S. The probability distribution of K is by definition binomial,

PK(k) =
(

N

k

)(
Bd −Ad

Rd

)k (
1− Bd −Ad

Rd

)N−k

.

The interference at the origin 0 due to the k nodes in the annulus is given
as a sum of the received signal strengths from the individual nodes.

I(g, 0) =
k∑

i=1

Ii(gi, ri) =
k∑

i=1

gir
−γ
i , (2)
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where ri is the Euclidean distance from the ith node to the base station
and gi is the fading state on that link.

The MGF of the interference M(s) = E
[
e−sI(g,0)

]
, where the expec-

tation is taken over both the fading states G and the locations of the
nodes1. As the Ii’s are independent, the conditional MGF (given that
there are k nodes) is expressible in a product form. We have

MI|k(s) = E
[
e−s(I1(g1,r1)+I2(g2,r2)+...+Ik(gk,rk))

]
=

k∏

i=1

Mi(s).

Since the nodes are uniformly distributed in the annular volume, we
have for each i, 1 ≤ i ≤ k

Mi(s) =
1

cd (Bd −Ad)

∫ B

A
EG

[
dcdr

d−1 exp
(−sGr−γ

)]
dr. (3)

All the interference terms are i.i.d, therefore each of the MGFs takes the
same form and we have

MI|k(s) =
(

d

Bd −Ad

∫ B

A
EG

[
rd−1 exp

(−sGr−γ
)]

dr

)k

. (4)

Taking the inverse Laplace transform gives

PI|K(x|k) =
1
2π

∫ c+i∞

c−i∞
MI|k(s)esxds,

where c is a real number appropriately chosen so that the contour path
of integration is in the region of convergence of MI|k(s).
Using the law of total probability, we obtain

PI(x) =
N∑

k=0

PK(k)PI|K(x|k)

= 1
2π

∫ c+i∞
c−i∞ esx

(
d

Rd

∫ B
A EG

[
rd−1e−sGr−γ

]
dr + 1− Bd−Ad

Rd

)N

ds.

The MGF of the interference is thus given by

MI(s) =
(

1 +
d

Rd

∫ B

A
EG

[
rd−1 exp

(−sGr−γ
)]

dr − Bd −Ad

Rd

)N

, (5)

1We use E
[
e−sI(·)] instead of E

[
esI(·)], because we can obtain the pdf by simply taking the

inverse Laplace transform of M(s).
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which is identical to (1). ¤
To simplify the expression for the MGF in (1), interchange the integral
and expectation (possible due to Fubini’s theorem) to obtain

MI(s) =

(
1− λ

N
EG

[∫ B

A

(
1− exp

(−sGr−γ
))

dcdr
d−1dr

]

︸ ︷︷ ︸
D(s)

)N

. (6)

D(s) can be simplified as

D(s) = cdB
d
[
1− e−sGB−γ

]
− cdA

d
[
1− e−sGA−γ

]
+ cd (sG)d/γ

Γ
(

1− d

γ
, sGB−γ

)
− cd (sG)d/γ Γ

(
1− d

γ
, sGA−γ

)
, (7)

where Γ(a, z) is the upper incomplete Gamma function, defined as

Γ(a, z) =
∫ ∞

z
exp(−t)ta−1dt.

Eqn. (7) is obtained by first making a change of variables t = sGr−γ

and later on integration by parts. The pdf of the interference is given
by the inverse Laplace transform of the MGF.

Corollary 2 The MGF of the interference seen at any node in a ho-
mogeneous Poisson network of density λ is

MI(PPP)(s) = exp (−λEG [D(s)]) . (8)

Proof: If the number of transmitting nodes N tends to infinity
in such a way that λ = N/(cdR

d) remains a constant, then the BPP
asymptotically (as R → ∞) behaves as a PPP [3]. Taking the limit
as N → ∞ in (6), we obtain (8). This is the MGF of the interference
distribution as seen at the base station. Due to the stationarity of the
Poisson process, this is representative of the MGF of the interference as
seen at any node as well. The same expression for the practical cases of
d = 1 and d = 2 is studied in [6]. ¤

4. Cumulants and Moments of the Interference
In this section, we use the MGF to analytically compute the moments

(or cumulants) of the interference distribution. These are used to provide
an indication of the interference’s behavior. For example, they can be
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used to check if the interference converges to a Gaussian and if so, how
fast. We are particularly interested in the first two cumulants which give
the mean and variance respectively. The cumulants are easier to obtain
than the moments in this case, and are dealt with in detail below. The
nth cumulant of the interference is defined as

Cn = (−1)n dn

dsn
ln MI(s)

∣∣∣
s=0

. (9)

Let

Tn :=





d
RdEG [Gn]

[
Bd−nγ−Ad−nγ

d−nγ

]
, γ 6= d

n

d
RdEG [Gn] ln

(
B
A

)
, γ = d

n .

(10)

Proposition 3 The cumulants can be expressed recursively as

Cn = NTn −
n−1∑

i=1

(
n− 1
i− 1

)
CiTn−i. (11)

Proof: The proof is very simple but tedious and as follows. One
sees after repeatedly differentiating D(s) that

dn

dsn
D(s)

∣∣∣
s=0

= (−1)n+1 N

λ
Tn.

The details in the steps of differentiation are cumbersome and are omit-
ted here. Denote the MGF of the interference (6) as M1

I (s) for the case
of the exponent in MI(s) equal to one i.e.,

M1
I (s) = 1− λ

N
EG [D(s)] . (12)

Then, the Tn’s can also be expressed as

Tn = (−1)n dn

dsn
M1

I (s)
∣∣∣
s=0

. (13)

Therefore, if I1 is the random variable whose MGF is M1
I (s), then the

Tn’s are the moments of I1.
Now, the cumulants of I(t) (9) are written as

Cn = N(−1)n dn

dsn
ln M1

I (s)
∣∣∣
s=0

= NC1
n, (14)

where C1
n’s are the cumulants of the variable I1. By the recursive equa-

tion for the moment-cumulant relation [7], Tn and C1
n are related as

C1
n = Tn −

n−1∑

i=1

(
n− 1
i− 1

)
C1

i Tn−i,
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whence (11) is obtained by taking C1
n = Cn/N . ¤

The mean and variance of the interference are easily calculated from the
first two cumulants.

µI = C1 =
Nd

Rd

[
Bd−γ −Ad−γ

d− γ

]
, (15)

and

σ2
I = C2 =

Nd

Rd
EG

[
G2

] [
Bd−2γ −Ad−2γ

d− 2γ

]
− µ2

I

N
. (16)

The nth moment µn is a nth degree polynomial in the first n cumulants.
The coefficients of the polynomial are those occurring in the Faà di-
Bruno’s formula [8]. For example, the first four moments are

E[I] = C1.

E[I2] = C2 + C2
1 .

E[I3] = C3 + 3C1C2 + C3
1 .

E[I4] = C4 + 4C1C3 + 3C2
2 + 6C2

1C2 + C4
1 .

For m-Nakagami fading, the moments of the power fading variable G
are given below [4], using which the cumulants (and moments) of the
interference distribution can be exactly computed.

EG[Gn] =
(m + n− 1)!
mn(m− 1)!

. (17)

4.1 Cumulants for a Poisson Network
As we let N → ∞ and R → ∞ keeping the density λ constant, we

arrive at a Poisson network. The nth cumulant of I for a Poisson network
is given by

Cn = λdcdEG[Gn]
Bd−nγ −Ad−nγ

d− nγ
. (18)

When we let B → ∞, a necessary condition for the nth moment to be
finite is γ > nd. We remark that for practical values of γ and d, this
does not generally hold for n > 2 and all the higher-order cumulants are
infinite. The ratio of the nth cumulants with and without fading is given
by

Cn|m=m

Cn|m=∞
=

(m + n− 1)!
mn(m− 1)!

(19)

Interestingly, the mean interference is independent of m, while the vari-
ance ratio varies as is 1 + 1/m. Thus the variance of the interference
doubles for Rayleigh fading as compared to the no-fading case (as also
observed in [9]).
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4.2 Special Cases
In this section, we study the behavior of the interference for certain

specific values of the system parameters.

4.2.1 A = 0, B → ∞, 0 < d < γ for a Poisson network of
density λ. The interference approaches an α-stable distribution (in
the limiting case) with index of stability α = d/γ [10]. For the above
parameters, the MGF takes the form

MI(s) = exp
(
−λcdEG

[
Gd/γ

]
Γ (1− d/γ) sd/γ

)
. (20)

The interference never converges to a Gaussian distribution. For the
special case of α = 0.5, the interference assumes a Lévy distribution and
its pdf is obtained on taking the inverse Laplace transform as

PI(x) =

√
β

π
x−3/2 exp(−β/x), x ≥ 0, (21)

where β = (πλ2c2
dE2

G[G1/2])/4. All the moments of the interference are
infinite. Furthermore, the CDF can be written in terms of the Q-function
as FI(x) = 2Q(

√
β/x). The same expressions have been obtained earlier

for the two-dimensional network for a deterministic channel [11]and in
the presence of Rayleigh fading [12].

4.2.2 A ≥ 0, B < ∞. If Cn < ∞ for n = 1, 2, then conditions
for the central limit theorem are met and the interference approaches a
Gaussian as the number of interferers N goes to ∞.
For A > 0 and B < ∞ for any d and γ, all the moments are finite, so in
the limiting case

PI(x) → N (C1, C2) =
1√

2πC2
exp(−(x− C1)2/2C2). (22)

When A = 0, the interference approaches a Gaussian for d > 2γ. For
1/2 ≤ γ/d < 1, the mean interference is finite while its variance is
unbounded.

4.2.3 A > 0, B → ∞, d < γ. In this case too, the interference
approaches a Gaussian for large N , since all the cumulants are finite.

4.3 Kurtosis and Convergence to a Gaussian
In the case that Cn exists and is finite for n = 1, 2, it is known that the

interference approaches a Gaussian distribution as N →∞. But really,
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how fast does this occur? The kurtosis is a good parameter to use to
decide the rate of the process at which the distribution is approximately
Gaussian. In probability theory and statistics, (excess) kurtosis is a
measure of the “peakedness” of the probability distribution of a real-
valued random variable. Higher kurtosis means more of the variance is
due to infrequent extreme deviations, as opposed to frequent modestly-
sized deviations. It is commonly defined as the fourth central moment
divided by the square of the variance of the probability distribution
minus 3, i.e.,

κ(I) =
E

[
(I − µI)4

]

σ4
I

− 3 =
C4

C2
2

. (23)

The “−3” term is present to equate the Gaussian distribution’s (excess)
kurtosis to zero.

Fig. 2 plots the kurtosis of the interference function for various val-
ues of the network parameters and helps calculate the N for which its
behavior is approximately Gaussian (Kurtosis→ 0).

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

No. of transmitters in the network, N

K
ur

to
si

s 
of

 th
e 

in
te

rf
er

en
ce

 d
is

tr
ib

ut
io

n

R = 10, B = 10, d = 2, γ = 4

 

 

A = 2

A = 4

A = 6

A = 8

Figure 2. Kurtosis of the interference distribution for different values of A. In each
case, the interference distribution converges to a Gaussian.
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5. Outage Analysis
In this section, we determine the outage performance of the binomial

network under Rayleigh fading. The outage at the origin is calculated by
assuming that the desired transmitter node is located at unit distance
from the origin and is transmitting at unit power. The received signal
power at the base station due to that node is therefore exponential with
unit mean. The outage probability Pr(O) is calculated as

Pr(O) = EI [Pr(G/I < Θ | I)] = EI [1− exp(−IΘ)]
= 1−MI(Θ). (24)

The probability of success ps is equal to MI(Θ).
Fig. 3 compares the success probabilities for the PPP and BPP nodal
distributions. We see that the PPP model provides an upper bound on
the performance in a binomial network and is not a good assumption
to use when there are very few interferers in the network. This is also
apparent from Jensen’s inequality and the fact that D is concave.
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6. Concluding Remarks
In this paper, we characterize the interference in a network where

the nodes are distributed as a BPP. We derive a closed-form analytical
expression for the MGF of the interference at the origin and use it to
calculate its cumulants. Under certain specific values of the system pa-
rameters, the pdf of the interference is shown to converge to a Gaussian
distribution asymptotically as the number of transmitters is increased.
We also study the outage behavior of the network and conclude that us-
ing the Poisson model in analyses provides an overly optimistic estimate
of the network’s performance when the number of interferers is small.
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