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Abstract—We investigate the performance of a random access
network consisting of source-destination dipoles. The source
nodes transmit information packets to their destinations over a
shared spectrum. All the transmitters in this network adhere to
an age threshold slotted ALOHA (TSA) protocol: every source
node remains silent until the age of information (AoI) reaches
a threshold, after which the source accesses the radio channel
with a certain probability. We derive a tight approximation for
the signal-to-interference-plus-noise ratio (SINR) meta distri-
bution and verify its accuracy through simulations. We also
obtain analytical expressions for the average AoI. Our analysis
reveals that when the network is densely deployed, employing
TSA significantly decreases the average AoI. The update rate
and age threshold must be jointly optimized to fully exploit the
potential of the TSA protocol.

Index Terms—Random access network, slotted ALOHA, age
of information, stochastic geometry, interference.

I. INTRODUCTION

The next generation (6G) wireless system [1], [2] is
envisioned to not just provide fast communications, but
also enable real-time sensing and even decision making
capabilities, necessitating the deployment of massively dis-
tributed, ad hoc networks in which sensors collect and send
information updates to data fusion centers. In light of the
timeliness requirement, the transmissions shall be conducted
with minimal coordination overhead using simple random
access schemes.

To quantify timeliness, the notion of age of information
(AoI) has been proposed in [3], [4], which is evaluated from
the receiver’s perspective, measuring the time elapsed since
the latest information packet received at the destination has
been generated from the source. It is proven in [5] that
optimizing the AoI metric differs intrinsically from classical
networking formulations that maximize throughput or min-
imize delay. Consequently, this has triggered new research
focused specifically on AoI optimization. The concept of
AoI, on the other hand, also facilitates networking designs
[6], where age-relevant information can be leveraged to
construct distributed transmission policies to significantly
improve the performance of a wireless system. A particular
example is the age threshold slotted ALOHA (TSA) protocol
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[7] which modifies the slotted ALOHA by incorporating an
age threshold into it. Under this protocol, every source node
remains silent until the AoI reaches a predefined threshold,
after which the source accesses the radio channel with a
constant probability, as in the conventional slotted ALOHA.

The present paper studies the effect of the TSA protocol
on various network performance metrics through the lens
of the signal-to-interference-plus-noise ratio (SINR) model,
under which the packet transmission over a wireless link
is successful only if the SINR at the receiver surpasses a
decoding threshold. The SINR model is close to reality but
complex for analysis, as the transmissions of a single node
impact all other nodes, resulting in a space-time coupling of
the involved nodes. As such, the traffic generation pattern of
a source has a composite influence on the AoI by affecting
the status updating interval and the time spent in packet
delivery. This effect is linked through the interference the
nodes cause.

A. Contributions

The main contributions of this paper are summarized
below.

• We establish a mathematical framework for investigat-
ing the effects of TSA protocol in large-scale wireless
networks. Our model encompasses key features such as
the status updating rate, age threshold, channel fading,
deployment density, and co-channel interference.

• We derive a tight approximation for the SINR meta
distribution [8], [9] and verify its accuracy through
simulations. The result is given in the form of a fixed-
point functional equation, accounting for the spatial-
temporal interactions amongst the transmitters.

• We also obtain an analytical expression for the time
average AoI. We provide a set of special case studies
to explore the effect of TSA on the network age
performance and garner useful design insights.

• Our analysis demonstrates the advantages of TSA over
the conventional slotted ALOHA. Specifically, when
the deployment density increases, the AoI under slotted
ALOHA surges sharply. In contrast, TSA substantially
reduces the average AoI, endowing the network with
timeliness. Although one needs to adequately optimize
the update rate and age threshold to reap the full harvest.



B. Related Works

Here, we briefly review the AoI related studies in wire-
less networks based on the SINR model [10]–[19]. These
works combine stochastic geometry and queueing theory
to develop theoretical models that characterize the effects
from spatial and temporal attributes, facilitating the AoI
analysis in a random access network. Particularly, [10] uses
the favorable/dominant argument to derive upper and lower
bounds of the AoI, and the upper bound is improved by
[11] through a careful reconstruction of the dominant system.
By integrating a discrete-time Markov chain with stochastic
geometry, [12] derives the time average of peak AoI in large-
scale wireless networks, while [13] and [14] investigate the
network average AoI under different buffer configurations
(unit size versus infinite capacity) and queueing disciplines
(first-come first-serve and last-come first-serve with preemp-
tion or replacement). Additionally, [19] examines the AoI
performance of random access networks operating under
frame slotted ALOHA-based protocols, [20] extends the
performance metric from linear AoI to that under a non-
linear cost function, and [15] presents a comprehensive study
on the interplay between throughput and AoI in a cellular-
based IoT network. Several distributed algorithms have been
proposed in [16]–[18], capitalizing on the source nodes’ local
observations to devise status update rate [16], channel access
probability [17], and/or power control scheme [18] that adapt
in accordance with the transmitters’ local communication
environment and optimize AoI. Nevertheless, these existing
results primarily pertain to the conventional slotted ALOHA
protocol, whilst the effects of the age threshold remain
unexplored.

II. SYSTEM MODEL

A. Spatial Configuration

We consider a wireless network containing a set of
source nodes and their intended destinations located in the
Euclidean plane. The source nodes are scattered according
to a homogeneous PPP Φ̃ of spatial density λ. A source
located at Xi ∈ Φ̃, i ≥ 1, has a dedicated receiver at yi
that is at a distance r from it and oriented in a random
direction. Then, according to the displacement theorem [21],
the locations of the receivers, denoted as Φ̄ = {yi}∞i=1,
also constitute a homogeneous PPP with the same density.
Every source tries to communicate its latest status to the
corresponding destination. The status information of each
source is encapsulated into information packets and trans-
mitted over a shared spectrum. When a source node sends
out information packets, it transmits at a fixed power. We
assume that the channel between any pair of nodes is affected
by the Rayleigh fading, which varies independently across
time slots, and path loss that follows the power law. We also
assume the received signal is subjected to white Gaussian
thermal noise.

B. Temporal Pattern

We partition the time into equal-length intervals, each
being the duration to transmit a single packet. We assume
the network is synchronized. We consider each source node

employs the generate-at-will model [22] for the status up-
date. Particularly, if a node decides to transmit, it generates
a new sample at the beginning of the time slot and sends
the information packet to the destination immediately. By
the end of the same time slot, the packet is successfully
decoded if the received SINR exceeds a decoding threshold;
otherwise, the transmission fails. The delivery of packets,
therefore, incurs a delay of one time slot. Since the time
scale of fading and packet transmission is much smaller
than that of the spatial dynamics, we assume the network
topology is static, i.e., an arbitrary point pattern is realized at
the beginning and remains unchanged over the time domain.
Additionally, we assume the time starts at t = −∞, hence
the system dynamic has reached the steady state at t = 0.

C. Age of Information

We put the main focus upon the notion of AoI in this
paper. AoI grows linearly with time in the absence of new
updates at the destination, and it reduces to the time elapsed
since the generation of the delivered packet when a new
information packet is received. We add a receiver located
at the origin o to the point process Φ̄. We also add its
tagged transmitter, denoted by X0, to Φ̃. Then, by applying
Slivnyak’s theorem [21], it is sufficient to concentrate our
analysis on this transmitter-receiver pair. We slightly abuse
the definition and coin this receiver as the typical one even
before averaging over the point processes.1 We also refer
to the wireless connection between the typical receiver and
its tagged transmitter as the typical link. The age evolution
process over the typical link can be written as

∆0(t) = t−G0(t), (1)

where G0(t) is the generation time of the latest packet
delivered over this link at time t. A pictorial example is
provided in Fig. 1.

D. Transmission Protocol

In this work, we employ the slotted ALOHA protocol in
conjunction with an age threshold to control the channel
access of the source-destination pairs. Specifically, every
source node stays silent until its AoI reaches a threshold,
denoted by A, upon which the source node turns on the status
updating mode: it generates a fresh sample with probability
η at the beginning of each time slot and immediately sends
that packet to the destination. If the transmission succeeds,
the receiver feeds back an ACK to the source, and the age
is reset to one. Otherwise, the source will generate a new
packet in the next time slot, again with probability η. Note
that there are no retransmissions of the undelivered packets
in this mechanism.

E. Performance Metric

We adopt the average AoI over the network as our primary
performance metric. Concretely, we denote by ∆j(t) the AoI

1A detailed discussion on the concept of typicality in stochastic spatial
models is available in [23].
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Fig. 1. An example of the time evolution of age over the link under
consideration. The time instance G0(ti) and ti denote the moment when
the i-th packet is generated and delivered, respectively, and the age is reset
to ti −G0(ti).

of link j at time slot t, and define the time-average AoI over
this link as

∆̄j = lim sup
T→∞

1

T

T∑
t=1

∆j(t). (2)

Then, the network average AoI is given by

∆̄ = lim sup
R→∞

∑
j:Xj∈B(o,R) ∆̄j

λπR2
(3)

where B(o,R) represents a disk centered at the origin with
radius R.

Since the point process of source-destination pairs is
stationary, the AoI averaged over different links across a
static realization of the network is equivalent to taking the
expectation of the time-average AoI at the typical link, i.e.,

∆̄ = E
[
∆̄0

]
. (4)

Note that if every packet can be successfully delivered upon
each transmission attempt (namely, when the AoI of a source
node reaches threshold A), the time average AoI across
the network is (A + 1)/2. This idle scenario provides a
fundamental lower bound to the network average AoI, i.e.,

∆̄ ≥ A+ 1

2
. (5)

III. ANALYSIS OF AVERAGE AOI
A. Preliminaries

1) SINR at the typical receiver: If the typical source sends
out an information packet at time slot t, the SINR received
at the destination can be written as:

SINR0(t) =
H00(t)r

−α∑
j ̸=0 Hj0(t)νj(t)∥Xj∥−α + 1/ρ

(6)

where α is the path loss exponent, ρ is the signal-to-noise
ratio (SNR), Hji(t) ∼ exp(1) stands for the channel fading
from source j to receiver i at time slot t, ∥ · ∥ denotes the
Euclidean norm, and νj(t) ∈ {0, 1} represents the updating
decision of node j, which is set to 1 if node j decides to
send a new update to the destination at time slot t and 0
otherwise.

2) Conditional transmission success probability: Because
the network is static, we leverage the notion of the condi-
tional transmission success probability [24] to quantify the
transmission quality of each information packet. Particularly,
given the node positions Φ ≜ Φ̃ ∪ Φ̄, the conditional
transmission success probability of the typical receiver at
a given time slot t is defined as [8], [9], [24]

µΦ
0 (t) = P

(
SINR0(t) > θ | Φ

)
, (7)

where θ is the decoding threshold. If we view the dynamics
over the typical link from the perspective of queueing theory,
the quantity µΦ

0 (t) provides complete information about
how fast packets are delivered over the wireless channel.
Therefore, we also refer to it as the service rate when there
is no ambiguity.

Since the system has reached the steady state, when we
condition on the network topology Φ, events of successfully
transmitting an information packet over each time slot are
i.i.d. with probability µΦ

i = µΦ
i (t), ∀t ≥ 0. Consequently,

we drop the time index in the following analysis.
3) Conditional average AoI: Using the above results, we

can derive a conditional form of the average AoI as follows.
Lemma 1: Given the point process Φ, the time average

AoI over the typical link under TSA is given as:

∆̄0 =
A+ 1

2
+

A− 1

2
+

1

ηµΦ
0

1 +AηµΦ
0

. (8)

Proof: Please see Appendix A.
The lemma discloses that the conditional transmission suc-

cess probability µΦ
0 plays an essential role in characterizing

the average AoI. As such, we detail the steps in deriving the
distribution of µΦ

0 next.

B. Distribution of the Service Rate

We can observe from (6) that the randomness in the
SINR0 stems from three sources: (i) the channel fading, (ii)
the active states of interferers, and (iii) the spatial topology
of the network. In what follows, we present the steps to
average out the randomness in SINR one by one and finally
obtain the distribution of the service rate.

Firstly, due to interference effects, the source nodes’ active
states are correlated in time, hindering tractable analysis.
To that end, we adopt the following approximation, which
replaces the mutual/local interactions with an average or
effective global interaction [12], [25].

Approximation 1: The source nodes experience indepen-
dent interference over time, and hence their active states are
independent of each other.

The accuracy of this approximation will be verified in
Fig. 2. Following Approximation 1, we can obtain an initial
expression for the conditional transmission success proba-
bility.

Lemma 2: Conditioned on the point process Φ, the
probability of successful transmission over the typical link
is

µΦ
0 = e−

θrα

ρ

∏
i̸=0

(
1− aΦi

1 + ∥Xi∥α/θrα
)

(9)



where aΦi = limT→∞
∑T−1

t=0 νi,t/T denotes the conditional
active probability of node i, i.e., the fraction of time that
node i is activated and accessing the radio channel.

Proof: The proof is similar to Lemma 3 of [13] and is
omitted here.

Next, let us calculate the chance that source node i is
interfering with the typical receiver at a given time slot:

Lemma 3: Conditioned on the point process Φ, the active
probability of source node i is

aΦi =
η

1 +AηµΦ
i

. (10)

Proof: Please see Appendix B.
And we denote the unconditioned active probability of the
typical source node as

φ = E
[
aΦ0
]
. (11)

Combining the two lemmas, we have the following theo-
rem.

Theorem 1: The cumulative distribution function (CDF)
of the service rate satisfies

F (u) = P(µΦ
0 ≥ u)

=
1

2
−
∫ ∞

0

Im

{
exp
(
− jω log u− jω

θrα

ρ

− λπr2θδΩδ

∞∑
k=1

(
jω

k

)(
δ − 1

k − 1

)∫ 1

0

ηkdF (s)

(1 +Aηs)k

)} dω

πω

(12)

where j =
√
−1, δ = 2/α, Im{·} denotes the imaginary

part of a complex quantity, and

Ωδ =
πδ

sin
(
πδ
) . (13)

Proof: Please see Appendix C.
The CCDF of µΦ

0 , 1− F (u), is commonly known as the
SINR meta distribution [8], [9], [24]. It quantifies the fraction
of source-destination pairs in the network that attain an SINR
that surpasses the threshold θ with probability at least u.
Due to the space-time interactions among the nodes, the
expression of F (u) given in (12) is a fixed-point functional
equation.

It is worthwhile to write down the first moment of µΦ
0 ,

a.k.a. the transmission success probability, which has been
widely used to assess the performance of wireless links.

Corollary 1: When the network is interference limited,
i.e., 1

ρ → 0, the transmission success probability Ps(θ) =
E[P(SIR0 > θ|Φ)] can be expressed as

Ps(θ) = exp
(
−λπr2θδφΩδ

)
(14)

≈ exp

(
− λπr2θδηΩδ

1 +AηPs(θ)

)
, (15)

where φ is defined in (11) and can be calculated as

φ =

∫ 1

0

ηdF (u)

1 +Aηu
. (16)

Proof: By assigning m = 1 in (45), we have (14); and
(15) follows by applying Jensen’s inequality.

Following this corollary, we consider two extreme oper-
ation regimes of the age threshold to garner better insights
into the TSA protocol. Particularly, when A = 0, we have

Ps(θ) = exp(−λπr2θδηΩδ), (17)

which is the well-known transmission success probability
under the slotted ALOHA protocol [26]. On the other hand,
if A ≫ 1, we have from (15)

1

Ps(θ)
≈ exp

(
λπr2θδηΩδ

1 +AηPs(θ)

)
≈ 1 +

λπr2θδηΩδ

Ps(θ) +AηPs(θ)
,

(18)

and solving this fixed-point equation yields

Ps(θ) ≈ 1− λπr2θδηΩδ

1 +Aη
. (19)

C. Average AoI

Next, we present the analytical expression for the average
AoI.

Theorem 2: The network average AoI under the TSA
protocol is given by

∆̄ =
A+1

2

(
1− φ

η

)
+

exp
(

θrα

ρ + λπr2θδφΩδ

(1−φ)1−δ

)
η

, (20)

where φ(η,A) is given in (16).
Proof: According to (4), calculating ∆̄ is equivalent

to computing E[∆̄0]. Using the expression in (8), we can
expand ∆̄0 as follows:

∆̄0 =
A+ 1

2
×
(
1− 1

1 +AηµΦ
0

)
+

1

ηµΦ
0

. (21)

Then, by taking an expectation on both sides of the above
equation, we have:

E
[
∆̄0

]
=

A+ 1

2
×
(
1− φ

η

)
+

1

η
E
[ 1

µΦ
0

]
, (22)

and the result follows by taking m = −1 in (45).
The expression given in Theorem 2 accounts for the effects

from the temporal perspective such as the status updating rate
and age threshold, as well as the spatial perspective, i.e.,
the deployment density, topology, and interference, on the
age performance. We can see from (20) that these network
parameters jointly influence the average AoI in a composite
manner. In order to gather more insights, we study a few
special cases as follows.

1) Very lazy updating: If the source nodes update to their
destinations in a very low frequency, i.e., η → 0, we have

φ

η
→ 1 (23)

which results in ∆̄ → ∞, according to (20). This observation
aligns with the current consensus about AoI that a prolonged
update rate is detrimental to age performance.



2) Very aggressive updating: If the source nodes update
to their destinations in a very high frequency, i.e., η → 1,
we have

φ =

∫ 1

0

dF (u)

1 +Au
< 1 (24)

and

1− φ =

∫ 1

0

Au

1 +Au
dF (u)

≥
∫ 1

0

u

1 + u
dF (u) ≥ Ps(θ)

2
. (25)

Consequently, the network average AoI can be bounded as

∆̄ <
A

2
+ exp

(
θrα

ρ
+

λπr2θδΩδ

(Ps(θ)/2)
1−δ

)
. (26)

This result indicates that integrating an age threshold into the
slotted ALOHA protocol can effectively alleviate the severe
interference in the aggressive updating scenario, which could
result in an unbounded network average AoI (we will detail
this phenomenon in the subsequent case).

3) Sparse deployment: When the nodes are sparsely de-
ployed, i.e., λ → 0, the network is in the noise-limited
regime. As such, the SINR in (6) reduces to

SINR0 ≈ ρH00r
−α (27)

and the link service rate is given by

µΦ
0 = P (SINR0 > θ | Φ) = exp

(
− θrα

ρ

)
. (28)

As a consequence, we have

∆̄ =
A+ 1

2
+

A−1
2 +

exp
(

θrα

ρ

)
η

1 +Aηe−
θrα

ρ

. (29)

If we take the derivative of ∆̄ with respect to A in (29), we
obtain

∂∆̄

∂A
=

Aηe−
θrα

ρ +A2η2e−
2θrα

ρ

2
(
1 +Aηe−

θrα

ρ
) > 0, (30)

which implies that the age threshold is not effective in
reducing AoI in sparse networks. Indeed, if the influence
from interference is mild, one shall rev up the updating rate
at every source node to promote fresh information delivery.

4) No age threshold: If the network operates without an
age threshold, i.e., A = 0, the node activation probability
reduces to φ(η, 0) = η. By substituting it into (20), we have:

∆̄ =
1

η
exp

(
θrα

ρ
+
λπr2θδηΩδ

(1− η)
1−δ

)
. (31)

It can be seen from (31) that without an age threshold,
aggressively increasing the status updating rate η can be
deleterious to the AoI, irrespective of the network density
(to see this, let η → 1 and it gives ∆̄ → ∞). The main
reason is ascribed to the positive probability of having an
interferer arbitrarily close. Therefore, if nodes are updating
at a very high frequency, one shall impose an age threshold
to reduce the updating frequency.

On the other hand, we can adjust the parameter η to
optimize AoI in this scenario. Specifically, we can take a

derivative on the right hand side of (31) with respect to η,
assign it to zero, and solve for the optimal updating rate at
each node, which is given by the solution to

λπr2θδΩδη(1− δη)(1− η)δ−2 = 1. (32)

5) Large age threshold: For fixed η, we have

∆̄ ∼ A

2
, A → ∞, (33)

which indicates that for large A, the network average AoI
goes up monotonically with the age threshold. In other
words, raising the age threshold too high does not benefit
the AoI performance. This result also implies that the
time average AoI approaches the fundamental lower bound
(A+ 1)/2 as A → ∞.

IV. SIMULATION AND NUMERICAL RESULTS

In this section, we provide simulation results to vali-
date the accuracy of the approximations in our analytical
framework. Based on the analysis, we further investigate
the AoI and delay performance under different settings
of network parameters. Particularly, we consider a square
region with a side length of 1, 000 unit length, in which
source-destination pairs are scattered according to a Poisson
bipolar network with spatial density λ. The topology remains
unchanged once it is generated. To eliminate the favorable
interference coordinations induced by network edges, we use
wrapped-around boundaries [27] that allow dipoles that leave
the region on one side to reappear on the opposite side,
thus mirroring the missing interferers beyond the scenario
boundary. Then, the dynamics of status updates over each
link are run over 10, 000 time slots. Specifically, every source
node records the age information locally and remains silent
when the age is below the threshold A. If the AoI of a source
node exceeds threshold A, it turns into the updating mode:
at the beginning of each time slot, channel gains are inde-
pendently instantiated, and status updates are generated with
probability η. A packet is successfully received if the SINR
at the intended destination exceeds the decoding threshold.
The AoI statistics of the receivers of all the links are recorded
to construct the average AoI. Unless differently specified,
we use the following parameters: r = 2.5, λ = 5 × 10−2,
α = 3.8, θ = 0 dB, Ptx = 17 dBm, and σ2 = −90 dBm.

Fig. 2 compares the simulated CCDF of the conditional
transmission success probability to the analysis presented
in Theorem 1, for various values of the age threshold.
We notice the closed match between the analytical results
and simulations, which validates Approximation 1 used in
our mathematical derivation. This figure also provides fine-
grained information about the link qualities across the net-
work. For instance, in the depicted situation, when A = 0 (in
this case, TSA reduces to the conventional slotted ALOHA
protocol) only 3% of the link pairs can achieve the desired
SINR, while that portion sheers up to 70% when A increases
to 15. Therefore, adopting an age threshold into the slotted
ALOHA is effective in boosting up the link performance.

In Fig. 3, we plot the typical node’s transmission success
probability as a function of the SINR decoding thresh-
old under a variety of age thresholds. We can see that
incorporating an age threshold into the slotted ALOHA
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protocol is beneficial for enhancing link performance. This
can be ascribed to the effectiveness of the age threshold in
mitigating the interference.

Fig. 4 depicts the network average AoI as a function of
the status updating rate η, for a set of ascending values of
age threshold. We can see that when the network operates
under slotted ALOHA without an age threshold, an optimal
frequency for status updating exists that minimizes the
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average AoI of the typical source node. This is achieved by
striking a balance between (a) information freshness at the
source and (b) spatial contention in the radio access channels
across the network. On the other hand, by imposing an age
threshold at the transmitters, the receivers enjoy a leveled-
down interference and hence can rev up their update rates
to achieve a smaller AoI. Nonetheless, by comparing the
cases between A = 5 and A = 15, we notice that merely
increasing the age threshold is not always beneficial for
reducing the average AoI. Therefore, the age threshold shall
be carefully optimized.

As a consequence, we draw the network average AoI as
a function of the age threshold in Fig. 5. The results of
this figure demonstrate that for a given status update rate,
an optimal age threshold exists that minimizes the network
average AoI. Moreover, by contrasting the situations under
rare updating, i.e., η = 0.1, and frequent updating, i.e.,
η = 0.7, we note that employing the TSA protocol at the
source nodes and correspondingly increasing their update
rates can efficaciously reduce the average AoI. These obser-
vations corroborate the effectiveness of the slotted ALOHA
with an age threshold in reducing the average AoI.

To investigate the joint effect of network densification and
TSA protocol on the age performance, we plot the average,
as well as the variance of AoI for an ascending value of



deployment density in Fig. 6. From Fig. 6(a), we observe
that despite densifying the infrastructure inevitably increases
the network average AoI in all the considered cases, the one
under the conventional slotted ALOHA surge rapidly while
those under the TSA protocol goes up steadily. Particularly,
with a ten-fold increase in the deployment density, TSA
protocol with A = 10 attains a network average AoI smaller
than that under the slotted ALOHA by order of magnitude.
The reason for this is that imposing an age threshold at the
source nodes can effectively alleviate the spatial contention
among the transmitters, facilitating information delivery in
the network by controlling interference.

V. CONCLUSION

In this paper, we conducted an analytical study toward
understanding the effect of TSA protocol on the age per-
formance of a large random access network. We established
a theoretical framework that accounts for update rate, age
threshold, signal propagation factors, and interference. We
derived analytical expressions for the SINR meta distribution
as well as the average AoI. Based on the analysis, we
thoroughly explored the effect of TSA on network perfor-
mance. Specifically, we confirmed that incorporating an age
threshold into the slotted ALOHA protocol is beneficial for
reducing the average AoI, whereas the gain is particularly
pronounced when the network is densely deployed. Nonethe-
less, one needs to jointly optimize the update rate and age
threshold to fully exploit the potential of TSA.

APPENDIX

A. Proof of Lemma 1

Let us denote In as the time interval between two consec-
utive transmission attempts over the typical link and Jk the
waiting time at the destination between successful receptions
of the k-th and (k+1)-th updates, respectively. We have the
following relationship between In and Jk according to the
age threshold-based transmission protocol:

Jk = A+

N∑
n=1

In (34)

where N is a random variable that represents the number of
attempts between two successful transmissions. We further
introduce a variable Lk, which represents the area under the
AoI evolution curve across the k-th successful update, as
follows:

Lk =

Jk∑
j=1

j =
1

2
Jk(Jk + 1). (35)

Then, given the point process Φ, we can calculate the
conditional average AoI over the typical link as

∆̄0 =
E
[
Lk|Φ

]
E
[
Jk|Φ

]
=

1

2
+

E
[
J2
k |Φ
]

2E
[
Jk|Φ

] . (36)

Moreover, notice that N follows a geometric distribution
with parameter µΦ

0 , we can compute E[Jk|Φ] and E[J2
k |Φ]

respectively as:

E
[
Jk|Φ

]
= A+

∞∑
n=1

E
[
In
]
nµΦ

0

(
1− µΦ

0

)n−1

= A+
E
[
In
]

µΦ
0

(37)

and

E
[
J2
k |Φ
]
= A2+2AE

[ N∑
n=1

In
∣∣Φ]+E

[( N∑
n=1

In

)2∣∣Φ]
= A2+

2AE[In] + E[I2n]

µΦ
0

+
2
(
1− µΦ

0

)(
E[In]

)2(
µΦ
0

)2 .

(38)

According to the TSA protocol, when a source node is
allowed to transmit, it generates new updates with probability
η independently over time; thus, we have

E[In] =
1

η
, (39)

E[I2n] =
2− η

η2
. (40)

The proof is completed by substituting (37), (38), (39), (40)
into (36).

B. Proof of Lemma 3
Without loss of generality, let us consider the time interval

between the k-th and (k + 1)-th successful updates. If we
position a time slot t uniformly at random within this
interval, the probability that the AoI ∆i(t) exceeds threshold
A is given by

P (∆i(t) > A) =

1
ηµΦ

i

A+ 1
ηµΦ

i

. (41)

As the event that node i being activated at time slot t needs
to satisfy two conditions: (a) the AoI of node i exceeds
threshold A and (b) the node generates a new update; we
have

aΦi = η P (∆i(t) > A) . (42)

The result follows from further simplifying the above.

C. Proof of Theorem 1
To obtain the distribution of µΦ

0 , we start by calculating
its m-th moment, given by the following:

E
[
(µΦ

0 )
m
]

= e−
mθrα

ρ E
[∏
i̸=0

(
1− 1

1+∥Xi∥α/θrα
· η

1+AηµΦ
i

)m]
(a)
= e−

mθrα

ρ e
−λ

∫
x∈R2 E

[
1−
(
1− 1

1+∥x∥α/θrα
· η
1+Aηµx

)m]
dx

(b)
= exp

(
− mθrα

ρ
− λ

∫
x∈R2

m∑
k=1

(
m

k

)
(−1)k+1dx

(1+∥x∥α/θrα)k

× E
[( η

1 +Aηµx

)k]
︸ ︷︷ ︸

Q1

)
,

(43)



where (a) follows by using the probability generating func-
tional (PGFL) of PPP and (b) by expanding the expression
via binomial theorem.

Due to ergodicity, the conditional transmission success
probability {µΦ

i }i∈N are i.i.d. across the transmitters. As
such, let us assume the distribution of µΦ

0 , denoted as F (·),
is available. Then, Q1 can be computed as:

Q1 =

∫ 1

0

ηkF (ds)

(1 +Aηs)k
. (44)

By substituting (44) into (43), it yields:

E
[
(µΦ

0 )
m
]

= exp

(
− mθrα

ρ
− λπr2θδ

m∑
k=1
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= exp
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sin(πδ)

×
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0

ηkF (ds)(
1 +Aηs

)k
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.

(45)

Finally, by using the Gil-Pelaez theorem [28], we can derive
the CDF of µΦ

0 as:

F (u) = P(µΦ
0 < u)

=
1

2
− 1

π

∫ ∞

0

Im
{
u−jωE

[
(µΦ

0 )
jω
]}dω

ω
. (46)

The statement readily follows by substituting (45) into the
above equation.
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