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Abstract The connectivity of wireless networks is commonly analyzed us-
ing static geometric graphs. However, with half-duplex radios and due to in-
terference, static or instantaneous connectivity cannot be achieved. It is not
necessary, either, since packets take multiple time slots to propagate through
the network. For example, if a packet traverses a link in one time slot, it is
irrelevant if the next link is available in that time slot also, but it is relevant
if the next hope exists in the next time slot.

To account for half-duplex constraints and the dynamic changes in the
transmitting set of nodes due to MAC scheduling and traffic loads, we intro-
duce a random multi-digraph that captures the evolution of the network con-
nectivity in a dynamic fashion. To obtain concrete results, we focus on Poisson
networks, where transmitters form a Poisson point process on the plane at all
time instants. We first provide analytical results for the degree distribution of
the graph and derive the distributional properties of the end-to-end connection
delay using techniques from first-passage percolation and epidemic processes.
Next, we prove that under some assumptions, the delay scales linearly with
the source-destination distance even in the presence of interference. We also
provide simulation results in support of the theoretical results.
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1 Introduction

In a multihop ad hoc network, bits, frames or packets are transferred from a
source to a destination in a multihop fashion with the help of intermediate
nodes. Decoding, storing, and relaying introduces a delay that, measured in
time slots, generally exceeds the number of hops. For example, a five-hop route
does not guarantee a delay of only five time slots. Due to the broadcast nature
of the wireless medium, a large number of paths may form between the source
and the destination, and each path may have taken a different time to form
with the help of different relay nodes. In general, a relay node queues the
packets from other nodes and its own packets and transmits them according
to some scheduling algorithm. If one introduces the concept of queues, the
analysis of the system becomes extremely complicated because of the intricate
spatial and temporal dependencies between the queues. In this paper we take
a different approach. We are concerned only with the physical connections
between nodes, i.e., we do not care when a node i transmits a particular
packet to a node j (which depends on the scheduler), but we analyze how long
it takes until a (physical) connection (maybe over multiple hops) is formed
between the nodes i and j, assuming all nodes have packets buffered. This
delay is a lower bound on the delay with any traffic model and scheduler in
place.

We assume that the transmitting nodes are distributed as a Poisson point
process (PPP) on the plane in each time slot, which implies that the total set
of nodes forms a PPP and slotted ALOHA is used as the MAC scheme. Any
transmitting node can connect to a receiving node when a modified version
of the protocol model criterion introduced in [11] is met. Since at each time
instant, the transmitting and receiving nodes change, the connectivity graph
changes dynamically. We analyze the time required for a causal path to form
between a source and a destination node. The system model is made precise
in Section 2.

This problem is similar to the problem of First-Passage Percolation (FPP)
[15,13,2], and the process of dynamic connectivity also resembles an epidemic
process [7,20,21] on a Euclidean domain. In a spatial epidemic process, an
infected individual infects a certain (maybe random) neighboring population,
and this process continues until the complete population is infected or the
spreading of the disease stops. In the literature cited above, the spreading
time of the epidemic is analyzed for different models of disease spread. We
draw many ideas from this theory of epidemic process and FPP. The main
difference between an epidemic process and the process we consider is that
the spreading (of packets) depends on a subset of the population (due to in-
terference) and is not independent from node to node. In [6], the latency for
a message to propagate in a sensor network is analyzed using similar tools.
They consider a Boolean connectivity model with randomly weighted edges
and derive the properties of first-passage paths on the weighted graph. Their
model does not consider interference and thus allows the use of Kingman’s
subadditive ergodic theorem [16] while ours does not. Percolation in signal-
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to-interference ratio graphs was analyzed in [5] where the nodes are assumed
to be full-duplex. In practice, radios do not transmit and receive at the same
time (at the same frequency), and hence the instantaneous network graph is
always disconnected. In [14,1,17,23] look at sparse disconnected networks and
provide bounds on the speed of information propagation in the network. In
[9][8], we have introduced the concept of dynamic connectivity graphs, and we
proved that the average delay scales linearly with source-destination distance
but the temporal correlation between interference was neglected. A similar
type of dynamic graph was introduced in [3] based on a SINR-based (or phys-
ical) model of connectivity. Without noise, they proved that below a certain
ALOHA parameter p∗, the average delay of connectivity between nodes scales
linearly with the distance. Above this threshold, the average path formation
time becomes infinity. When noise is considered, the average path formation
time is always infinity for finite average transmit power. In this paper we prove
similar results for the protocol model of communication. In contrast to [3], we
show that the time of connectivity scales linearly with the source-destination
distance irrespective of the ALOHA parameter on the giant percolative com-
ponent of the geometric disc graph, where the radius of the disc is proportional
to the thermal noise.

In Section 2, we introduce the system model. In Section 3, we study the
connectivity properties of the random geometric graph formed at any time
instant, the so-called snapshot graph. In Section 4, we derive the properties of
the delay and the average number of paths formed between a source and des-
tination, and we show that the delay increases linearly with increasing source-
destination distance or, equivalently, that the propagation speed is constant,
i.e., the distance of the farthest nodes to which the origin can connect in-
creases linearly with time. Section 5 presents simulation results, and Section
6 concludes the paper.

2 System Model

The locations of the wireless nodes (transceivers) are assumed to form a Pois-
son point process (PPP) φ of intensity λ on the plane. We assume that time is
slotted and the MAC protocol used is slotted ALOHA, so that in every time
slot each node transmits with probability p or remains silent with probabil-
ity 1 − p. Nodes are half-duplex, i.e., they act as receivers only if they are
not transmitting. We use the protocol model [11] to decide if the communica-
tion between a transmitter and a receiver is successful in a given time slot: A
transmitting node located at x can connect to a receiver located at y if and
interference and a noise condition are both met:

1. Interference: The disk B(y, β‖x − y‖), β > 0, does not contain any other
transmitting nodes.

2. Noise: ‖x− y‖ < η.

B(x, r) denotes a disk of radius r centered around x and Bc(x, r) = R2 \
B(x, r). β is a system parameter and captures the resilience of the receiver
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Fig. 1 Illustration of a snapshot graph g for p = 0.2 (left) and p = 0.3 (right) for different
realizations of φ. The squares represent the transmitters and the circles the receivers.

against interference. The standard physical SINR model of communication
can be related to the protocol model easily when there is no fading. A detailed
discussion of the protocol model can be found in [19]. The interference-limited
regime can be modeled by ignoring Condition 2, and the noise-limited scenario
can be modeled by ignoring Condition 1.

We shall use 1(x→ y,∆, η) to represent a random variable that is equal to
one if a transmitter at x is able to connect to a receiver y when the transmitting
set is ∆, i.e., the interfering set is ∆ \ {x}. We will drop ∆ if there is no
ambiguity. At any time instant k, we denote the set of transmitters (decided by
ALOHA) by φt(k) and the set of receivers by φr(k). So we have φt(k)∪φr(k) =
φ and φt(k) ∩ φr(k) = ∅, where ∅ denotes the empty set.

The connectivity at time k is captured by a directed and weighted random
geometric graph g(k) = (φ,Ek) with vertex set φ and edge set

Ek = {(x, y) : 1 (x→ y, φt(k), η) = 1, x ∈ φt(k), y ∈ φr(k)} . (1)

See Figure 1 for an illustration of g(0) and g(1). Each edge in this graph g(k)
has a weight k that represents the time slot in which the edge was formed.
Let G(m,n) denote the weighted directed multigraph (multiple edges with
different time stamps are allowed between two vertices) formed between times
m and n > m, i.e.,

G(m,n) =

(
φ,

m⋃
k=n

Ek

)
. (2)

So G(m,n) is the edge-union of the graphs g(k), m ≤ k ≤ n. See Figure 2.

Definition 1 A directed path x0, e0, x1, e1, . . . , eq−1, xq between the nodes
x0, xq ∈ φ where ei = (xi, xi+1) denotes an edge in the multigraph is said to
be a causal path if the weights of the edges ei are strictly increasing with i.

This means that the edge ei−1 was formed before ei for 0 < i < q. For the
rest of the paper, we always mean causal path when speaking about a path.
We observe that the random graph g(k) is a snapshot of the Poisson network
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Fig. 2 Illustration of G(0, 1), p = 0.2, β = 1.2. Dashed line represent edges in g(0) (edges
with weight 0) and solid lines represent edges in g(1) (edges with weight 1).

at time instant k. The random graph process G(0,m) captures the entire
connectivity history up to time m. In the graph G(0,m) there is a notion of
time and causality, i.e., packets can propagate only along a causal path.

3 Properties of the Snapshot Graph g(k)

In this section, we will analyze the properties of the random graph g(k). We
first observe that the graphs g(k) are identically distributed for all k. So for
this section we will drop the time index unless otherwise indicated. It can be
shown that g is a planar Euclidean graph even with straight lines as edges [10,
Lemma 2]. In Figure 1, realizations of g are shown for p = 0.2 and p = 0.3.
We first characterize the distribution of the in-degree of a receiver node and
the out-degree of a transmit node.

3.1 Node degree distributions

Let Nt(x) denote the number of receivers a transmitter located at x can con-
nect to, i.e., the out-degree of a transmitting node. Similarly, let Nr(x) de-
note the number of transmitters that can connect to a receiver at x, i.e., the
in-degree of a receiving node. We first calculate the average out-degree of a
transmitting node.

Proposition 1 E [Nt(x)] = 1−p
p β−2

(
1− exp

(
−λpπβ2η2

))
.

Proof By stationarity of φ, we have Nt(x)
d
= Nt(o) where

d
= stands for equality

in distribution. So it is sufficient to consider the out-degree of a transmitter
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placed at the origin, which is given by
∑
x∈φr

1(o → x, φt, η). Note that this
process is not an independent thinning of φr, hence the out-degree is not
Poisson. So the average degree is

E[Nt(o)] = E

∑
x∈φr

1(o→ x, φt, η)


(a)
= λ(1− p)

∫
R2

Eφt
[1(o→ x, φt, η)] dx

(b)
= λ(1− p)

∫
B(o,η)

exp
(
−λpπβ2‖x‖2

)
dx

=
1− p
p

β−2
(
1− exp(−λpπβ2η2)

)
,

where (a) follows from Campbell’s theorem [22] and the independence of φr
and φt. Equality (b) follows from the fact that 1(o → x, φt) is equal to one if
and only if the ball B(x, β‖x‖) does not contain any interferers.

The average out-degree in the interference-limited case is obtained by the
limit limη→∞ E [Nt(x)] and is 1−p

p β−2. Similarly the average out-degree in the

noise-limited case is limβ→0 E [Nt(x)] and is equal to λ(1− p)πη2.

Proposition 2 The probability distribution of Nt is given by

P (Nt = m) =

∞∑
k=m

(
k

m

)
(−1)k+m

(
1− p
p

)k
Vk
k!
, (3)

where

Vk =

∫
B(o,
√
λpη)

· · ·
∫
B(o,
√
λpη)

exp

(
−area

(
k⋃
i=1

B(xi, β‖xi‖)

))
dx1 · · · dxk

and V0 = 1. area(A) is the area of A ⊂ R2.

Proof We provide the complete characterization of Nt using the Laplace trans-
form, given by

LNt
(s) = E [exp (−sNt)]

= E

exp

−s ∑
x∈φr

1(o→ x, φt, η)


(a)
= Eφt exp

[
−λ(1− p)

∫
R2

1− exp(−s1(o→ x, φt, η))dx

]
= Eφt

exp

[
−λ(1− p)(1− e−s)

∫
R2

1(o→ x, φt, η)dx

]
(4)

= Eφt exp

[
−λ(1− p)(1− e−s)

∫
B(o,η)

1(o→ x, φt,∞)dx

]
, (5)
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where (a) follows from the probability generating functional of a PPP. Let ν
denote a two dimensional PPP of density 1. Using the scale-invariance property

1(o→ x, φt,∞)
d
= 1(o→ x

√
λp, ν,∞).

we can write

LNt (s) = Eν exp

[
−1− p

p
(1− e−s)

∫
B(o,
√
λpη)

1(o→ x, ν,∞)dx

]
. (6)

Letting a = 1−p
p (1− e−s) and expanding the outer exponential we obtain

LNt
(s) =

∞∑
k=0

(−a)
k

k!
Eν

(∫
B(o,
√
λpη)

1(o→ x, ν,∞)dx

)k
︸ ︷︷ ︸

Lk

.

The expected value Lk can be written as

Lk =

∫
B(o,
√
λpη)

· · ·
∫

B(o,
√
λpη)

Eν(1(o→ x1, ν,∞) · · ·1(o→ xk, ν,∞)) dx1 · · · dxk

= Vk .

The result follows from a comparison of coefficients after replacing e−s with
z.

A lower bound on LNt
(s) from (6) is

LNt
(s)

(a)

≥ exp

[
−1− p

p
(1− e−s)

∫
B(o,
√
λpη)

Eν1(o→ x, ν,∞)dx

]
(b)
= exp

[
−1− p
pβ2

(1− e−s)(1− e−πβ
2λpη2)

]
where (a) follows from Jensen’s inequality and (b) follows since Eν1(o →
x, ν,∞) = exp(−β2π‖x‖2). This is the Laplace transform of a Poisson ran-

dom variable with mean 1−p
pβ2 (1−e−πβ2λpη2), which implies the following lower

bound on the probability of a transmit node being isolated:

P(Nt = 0) ≥ exp

(
−1− p
pβ2

(1− e−πβ
2λpη2)

)
= exp(−E[Nt(o)]).

We next evaluate the in-degree distribution of a receiving node. Since the point
process is stationary, the distribution of Nr(x) is the same for all receivers x.

Proposition 3 The average in-degree E[Nr(x)] of a node in g is β−2(1 −
e−πβ

2λpη2). For β > 1, Nr is a Bernoulli random variable.
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Proof We have Nr(x)
d
= Nr(o) and thus

E[Nr(o)] = E

∑
y∈φ

1φt
(y)1(y → o, φt, η)


= λp

∫
R2

Eφt
[1(y → o, φt, η)] dy

= λp

∫
B(o,η)

exp
(
−λpπβ2‖y‖

)
dy

= β−2(1− e−πβ
2λpη2). (7)

If β > 1, at most one transmitter can connect to any receiver, so Nr is
Bernoulli, with the mean given in (7).

As a sanity check, we can confirm that the average in- and out-degrees are
equal, i.e., pE[Nt(o)] = (1−p)E[Nr(o)]. Observe that these are spatio-temporal
averages, not time averages.

3.2 Average time for single-hop connectivity

A node may require multiple attempts (time slots) before it is able to connect
to any other node. In this subsection we will consider the time it takes for
a node to (opportunistically) connect to some other node. We add a virtual
node at the origin and define the number of time slots required to connect to
any node,

TO = argmin
k

1(o ∈ φt(k))
∏

x∈φr(k)

(1− 1(o→ x, φt(k), η))

 .
Lemma 1 The average single-hop connection time in a Poisson network is
infinite:

ETO =∞.

Proof In the point process φ the probability that the ball B(o, η) is empty is
equal to exp(−λπη2). Hence a typical transmitter at the origin cannot connect
to any node with probability exp(−λπη2) regardless of the number of attempts.
Hence ETO =∞.

From the above lemma we observe that the presence of noise which implies
a finite connectivity radius makes the average single-hop connectivity time
infinite. In a Poisson network this happens because the nearest-neighbor dis-
tance is Rayleigh [12] and there exists a positive fraction of nodes with large
nearest-neighbor distance. We now consider an interference-limited network,
i.e., neglect the finite connectivity radius assumption. Let T̃O denote the op-
portunistic connectivity time with the interference limited assumption. Let T̃N
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denote the time required for a connection to form between the origin and its
nearest neighbor. We then have

T̃O ≤ T̃N .

Lemma 2 The average time for nearest-neighbor connectivity is

ET̃N =

{
(p(1− p)− p2ν(β))−1, p < 1

1+ν(β)

∞, otherwise.

where

ν(β) =

{
β2 − π−1

{
β2 cos−1 β2 + cos−1

(
1− β2

2

)
− β

2

√
4− β2

}
, β < 2

β2 − 1 , β > 2.

Proof Let z denote the nearest neighbor of the origin o. We first condition on
the fact that the node at the origin transmits and the node at z listens. We
have

1(o→ z, φt(k)) =

 ∏
x∈φ∩B(o,‖z‖)c

(1− 1(x ∈ B(z, β‖z‖))1(x ∈ φt(k)))


The probability that T̃N > k is

P(T̃N > k) = E
k∏

m=1

(1− 1(o→ z, φt(m))) . (8)

Let N(o) denote the nearest neighbor of the origin o. Conditioning on the
point process we have

P(T̃N > k | φ,N(o) = z) =

1−
∏

x∈φ∩B(o,‖z‖)c
(1− 1(x ∈ B(z, β‖z‖))p)

k(9)

and thus

E[T̃N | N(o) = z] = E
∞∑
k=0

P(T̃N > k | φ)

= E

 ∏
x∈φ∩B(o,‖z‖)c

(1− 1(x ∈ B(z, β‖z‖))p)

−1

= exp

(
−λ
∫
B(o,‖z‖)c

1− 1

1− 1(x ∈ B(z, β‖z‖))p
dx

)

= exp

(
p

1− p
λπ‖z‖2ν(β)

)
. (10)
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Fig. 3 The ALOHA parameter p above which the average time for nearest-neighbor con-
nectivity ET̃N is infinite as a function of β.

Averaging with respect to the nearest-neighbor distribution yields

ET̃N = 2πλ

∫ ∞
0

z exp(−λπz2) exp

(
p

1− p
λπz2ν(β)

)
dz (11)

=
1

1− p(1− p)−1ν(β)
, p <

1

1 + ν(β)
. (12)

Removing the conditioning on the node at o transmitting and the nearest
neighbor listening, the result follows.

From the above lemma we observe that there exists a cutoff value for the
ALOHA contention parameter above which ET̃O =∞. See Figure 4. We also
observe that the minimum value of ET̃N occurs at p = 0.5/(1 + ν(β)) and is
equal to 4(1 + ν(β)). A similar cut-off phenomena was also observed in the
physical model [3].

We now provide a lower bound to the average time required for oppor-
tunistic communication for β > 1.

Lemma 3 The average time for opportunistic communication is lower bounded
by:
1 < β < 2 :

ET̃O >
(β − 1)2[2 + p+ (β − 1)2]

p(1− p2)

β > 2 :

ET̃O >

{
(p− p2(β − 1)2)−1, p < (β − 1)−2

∞, otherwise.
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Proof We observe that

1(o→ x, φt(k)) ≤ 1(φt(k) ∩B(o, (β − 1)‖x‖) = {o}).

So the event for opportunistic success probability is upper bounded as

1−
∏

x∈φr(k)

[1−1(o→ x, φt(k))] ≤ 1−
∏

x∈φr(k)

[1−1(φt(k)∩B(o, (β−1)‖x‖) = {o})].

(13)
Case 1: 1 < β < 2.
Let z ∈ φr be the nearest receiver to the origin. We then have

B(o, (β − 1)‖z‖) ⊂ B(o, (β − 1)‖x‖) ∀x ∈ φr \ {z}.

Hence the success probability at time instant k is bounded by

P(success | φ) ≤ P(φt(k) ∩B(o, (β − 1)‖z‖) = {o}),

where z is the nearest node of φr(k) to the origin. Let ξ denote the nearest
point of the point process φ. Then the right hand side of the above equation
is equal to the probability that there is at least one receiver among the nodes
in the annulus A centered around the origin and radii ξ and ξ/(β − 1). Let m
denote the number of nodes of φ in A. We then have

P(φt(k) ∩B(o, (β − 1)‖z‖) = {o} | φ) = 1− pm+1.

Hence

P(T̃O > n | φ) = p(m+1)n.

So we have

ET̃O > E
[

1

1− pm+1

]
and thus

ET̃O > E
[

1

1− p
| m = 0

]
+ E

[
1

1− pm+1
| m > 1

]
=

1

(1− p)(A(β) + 1)
+

∞∑
n=0

pnE[pnm | m > 0]

=
1

(1− p)(A(β) + 1)
+ 2A(β)

∞∑
n=0

p2n

(A(β) + 1)(A(β)(1− pn) + 1)

>
1

(1− p)(A(β) + 1)
+

A(β)

(A(β) + 1)2(1− p2)
,

where A(β) = (β − 1)−2 − 1. Multiplying with the average time for the origin
at o to be a transmitter, we have the result.
Case 2: β > 2. For β > 2, we observe that the right hand side of (13) is
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Fig. 4 The lower and upper bounds for ET̃O as a function of p for different values of β.
The upper bound corresponds to the average connectivity delay for the nearest-neighbor
connectivity ET̃N .

equal to 1 if and only if the closest point of φ to the origin ξ is a receiver and
B(o, (β − 1)ξ) is devoid of any transmitters. So we have

P(Success) < (1− p)m+1,

where m is the number of points of φ in the annulus of radii ‖ξ‖ and (1−β)‖ξ‖.
Hence we have

ET̃O > E(1− p)−m−1

= (1− p)−1E exp(λπ((β − 1)2 − 1)ξ2p(1− p)−1)

= (1− p)−12πλ

∫ ∞
0

x exp(λπ((β − 1)2 − 1)x2p(1− p)−1 − πλx2)dx.

If p < (β− 1)−2 the last integral converges. Removing the conditioning on the
origin being a transmitter we obtain the result.

4 The Time Evolution Graph G(0, n)

In the previous section we analyzed the snapshot connectivity graph formed
at a particular time instant. In this section we will consider the superposition
of these snapshot graphs and study how the connectivity evolves over time.
Recall that the time evolution graph G(0, n) is defined in (2).

4.1 Asymptotic analysis of G(0, n)

We first define the connection time between two nodes. For x, y ∈ φ, we denote
the path formation time between x and y as

T (x, y) = min {k : G(0, k) has a path from x to y} .
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For general x, y ∈ R2, define T (x, y) = T (x∗, y∗) where x∗ (resp. y∗) is the
point in φ closest to x (resp. y), with some fixed deterministic rule for breaking
ties (there are no ties almost surely). Since the point process is isotropic, it is
sufficient for most cases to consider destinations along a given direction. For
notational convenience we define for y ∈ R, T (x, y) = T (x, (y, 0)).

This path formation time is the minimum time required for a packet to
propagate from a source x to its destination y in a Poisson network. In this
section we show that this propagation delay increases linearly with the source-
destination distance. Similar to T (x, y) we define

Tn(x, y) = min
k>n
{k − n : G(n, k) has a path from x to y} .

The evolution of the graph G(0, n) is similar to the growth of an epidemic on
the plane, and one can relate the spread of information on the graph G(0, n)
to the theory of Markovian contact processes [21] which was used to analyze
the growth of epidemics. We now provide bounds on the path formation time
between two points.

In the following arguments we rely on the spatial subadditivity of T (o, x)
to analyze the asymptotic properties. Subadditivity of random variables is a
powerful tool which is often used to prove results in percolation and geometric
graph theory. The problem of finding the minimum-delay path is similar to the
problem of first-passage percolation. From the definition of T (o, y), we observe
that

T (o, y) ≤ T (o, x) + TT (o,x)(x, y). (14)

We also have that TT (o,n)(x, y)
d
= T (x, y) from the way the graph process

is defined. Observe that (14) resembles the triangle inequality (especially if
TT (o,y)(x, y) was T (x, y)) and thus provides a pseudo-metric, which holds in
FPP problems and is the reason that the shortest paths in FPP are called
geodesics. In the next two lemmata we show that the average time for a path
to form between two nodes scales linearly with the distance between them.

Lemma 4 The time constant defined by

µ = lim
x→∞

ET (o, x)

x

exists.

Proof From (14), we have

T (o, y + x) ≤ T (o, y) + TT (o,y)(y, y + x). (15)

From the definition of the graph, the edge set Ek does not depend on Ei, i < k.
Hence TT (o,y)(y, y + x) has the same distribution as T (y, y + x). Also from

the invariance of the point process φ, we have T (y, y + x)
d
= T (o, x). Taking

expectations of (15), we obtain

ET (o, y + x) ≤ ET (o, y) + ET (o, x),

and the result follows from the basic properties of subadditive functions.
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Consistent with the FPP terminology we will call µ the time constant of the
process.

Lemma 5 The time constant for the disc model is infinite,

µ =∞.

Proof Follows from Lemma 1.

The time constant is infinite because of noise. Because of the finite connectivity
radius a positive fraction of the nodes will not be able to connect to any other
node and hence the time constant is infinite. But if η >

√
1.435/λ [4] the disc

graph with radius η and node set φ percolates. Hence there is a giant connected
component that corresponds to the disc graph formed by just considering the
noise and not the interference. We denote this giant connected component by
Ψη.

4.2 Finiteness and positivity of the time constant µ

We now prove that the any two nodes in this giant component can commu-
nicate in a time that scales linearly with the distance in between. Similar to
G(0, n) we define G(0, n, η) as the dynamic graph on Ψη. We can similarly
define for x, y ∈ Ψη.

T (x, y, η) = min{k : G(0, k, η) has a path from x to y},

and for x, y ∈ R2, T (x, y, η) = T (x∗, y∗, η) where x∗ and y∗ are the points in
Ψη closest to x and y. The following Lemma has been proven in [18].

Lemma 6 For x, y ∈ R2 and ‖x− y‖ <∞, ‖x∗ − y∗‖ <∞ almost surely.

We also have the following lemma from [18] which deals with the lengths of
the shortest path in terms of the number of hops.

Lemma 7 For x, y ∈ Ψη, let L(x, y) denote the length (in terms of number of
hops) of the shortest path of the disc graph. If ‖x−y‖ <∞, then L(x, y) <∞.

We now prove that the time constant is finite and positive on the giant con-
nected component.

Lemma 8 For any two nodes in Ψη, the average path formation time scales
linearly with the distance, i.e.,

0 < µ <∞,

if 0 < p < 1.
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Proof Upper bound: Let n denote the point (n, 0). By subadditivity and ho-
mogenity we have

ET (o, n, η) ≤ nET (o, 1, η),

and hence it is sufficient to show that ET (o, 1, η) < ∞ to prove µ < ∞. By
Lemmata 6 and 7 we have L(o∗, 1∗) < ∞ almost surely. Hence the shortest
path that connects 0∗ and 1∗ in the disc graph has a finite number of edges.
Denote the edges by ei, 1 ≤ i ≤ L(o∗, 1∗) and its corresponding Euclidean
length by |ei|. By the protocol model |ei| < η. Let Ti denote the average time
for a direct connection to form on the edge ei. Since the transmitting set of
the giant component at time instant k is a subset of φt(k), the number of
interfering nodes (nodes that affect the formation of edge ei) is smaller. Hence
the average time obtained in (10) with z = η upper-bounds Ti. Hence we have

Ti ≤ exp

(
p

1− p
λπη2ν(β)

)
.

So

ET (o, 1, η) <

L(o∗,1∗)∑
i=1

Ti < L(o∗, 1∗) exp

(
p

1− p
λπη2ν(β)

)
,

which is finite when p < 1, and hence µ <∞.
Lower bound: By the protocol model any path between o and n should have
at least n/η hops and hence the average time is always greater than n/η and
hence µ > 0.

Hence the information propagation time on the giant component scales linearly
with distance. The fraction of nodes in the giant component increases as the
maximum connectivity distance η increases, and hence the set of nodes for
which µ <∞ increases with increasing η.

5 Simulation Results

In this section we illustrate the results using simulation results. For the purpose
of simulation we consider a PPP of unit density in the square [−50, 50]2. For
most of the simulations, we use β = 1.2, and we average over 200 independent
realizations of the point process. In Figure 5, ET (o, x) is plotted with respect
to x for different values of p. The time constant µ is plotted as a function of
p in Figure 6. We make the following observations:

1. The time constant increases with the ALOHA parameter p.
2. In Figure 5, we observe that ET (o, x) ≈ µ(p)x + C(p), where C(p) is

a decreasing function of p and µ(p) is increasing. For smaller values of
p, the time taken for a node to become a transmitter is large, but the
probability of a successful transmission is also high because of the low
density of transmitters. This results in a large C(p) and smaller µ(p) for
small p.
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Fig. 5 ET (o, x) as a function of x, for β = 1.2. We first observe the linear scaling of
ET (o, x) with the distance x and that the slope increases with p. Also for small values of x
we observe that ET (o, x) ≈ p−1 since for small x the path delay time is dominated by the
MAC contention time. For small values of p, once the source is a transmitter, long edges
form due to the low interference.

3. Figure 5 also implies that the presence of interfering transmitters causes
the delay to increase when the packet has to be transmitted over longer
distances. So when the packet transmission distance is large, it is beneficial
to decrease the density of contending transmitters.

4. For each x, there is an optimal p which minimizes the delay, and the opti-
mum p is a decreasing function of x.

For two nodes located at o and x and ‖x‖ large, there will in general be many
paths between o and x which form by time µ‖x‖. From such an ensemble of
delay-optimal paths, we will consider paths which have the minimum number
of hops and call them fastest paths. In Figure 7, we show the average number
of hops in these paths. We observe that for a given p, the average hop length
decreases as the source-destination distance x increases. This shows that for
larger source-destination distance, it is beneficial to use shorter hops since
they are more reliable and form faster than longer hops. Also from Figure 6,
we observe that for larger x, it is beneficial to be less aggressive in terms of
spatial reuse and use a smaller p.

6 Conclusions

Connectivity in a wireless network is dynamic and directed because of the
MAC scheduler and the half-duplex radios. Since these properties are not
captured in static graph models that are usually used, we have introduced
a dynamic connectivity graph and applied it to analyze properties of Poisson
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Fig. 6 The time constant µ as a function of p, for β = 1.2

0 5 10 15 20 25 30 35 40
1

1.5

2

2.5

x

A
v
e

ra
g

e
 h

o
p

 l
e

n
g

th

λ=1,β=1.2

 

 

p=0.1

p=0.2

p=0.3

Fig. 7 Average hop length in the fastest path versus the source-destination distance.

network. We have shown that the time taken for a causal path to form between
a source and a destination on this dynamic digraph scales linearly with the
source-destination distance for a large fraction of nodes. The fraction of nodes
for which the time-constant is finite increases with increasing power. So we can
state the following: Networks are inherently noise-limited (or power-limited)
as given sufficient time, the MAC protocol can induce enough randomness or
diversity to deal with the interference. By simulations we showed that it is
beneficial to use higher values of the ALOHA contention parameter for smaller
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source-destination distances and lower values for large distances, and that the
average hop length of the fastest path first increases rapidly but then decreases
slowly as a function of the source-destination distance. These observations
provide some insight how to choose the hop length for efficient routing in ad
hoc networks.
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