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Abstract—This paper focuses on the success probability (or,
equivalently, the signal-to-interference-plus-noise ratio (SINR)
distribution) at the typical receiver in millimeter wave (mm-
wave) device-to-device (D2D) networks. Unlike earlier works,
we consider a more general and realistic case where devices in
the network are equipped with heterogeneous antenna arrays so
that the concurrent transmission beams are varying in width.
Specifically, we first establish a general and tractable framework
for the target network with Nakagami fading and directional
beamforming. Next, we investigate the interactions among beams
with different widths and their sensitivities to the adopted model
for the antenna pattern. In addition, to show the impact of
heterogeneous antenna arrays on the link performance, we derive
the success probability of the typical receiver as well as its bounds
to get deep insights on the performance of the network.

I. INTRODUCTION

The proliferation of high-speed multi-media applications

and high-end devices exacerbates the demand for high data

rate services. According to the latest visual network index

(VNI) report from Cisco [1], the global mobile data traffic will

increase nearly sevenfold between 2016 and 2021, reaching

49.0 exabytes per month by 2021, wherein more than three-

fourths will be video. The need for greater capacity, and

hence greater spectrum utilization, has very recently led to

the advent of millimeter wave (mm-wave) device-to-device

(D2D) communications to efficiently use the large bandwidth

(multiple gigahertz).

However, this emerging technology is still in its infancy, and

it is unclear what benefits and challenges it will bring. It is

clear that mm-wave D2D communication is more complicated

than sub-6 GHz D2D and mm-wave cellular communications.

Firstly, the narrow beam width of mm-wave and the relatively

low antenna height (compared with that of BSs) render the

mm-wave D2D communication even more vulnerable to block-

ages. Secondly (and more importantly), different from the cel-

lular BSs that are usually equipped with homogeneous antenna

arrays (namely the same number of antennas), the devices

have their inherent diverse properties and random locations,

which means devices in the network cannot be expected to

be equipped with the same number of antennas and located

in a well-planned manner. Therefore, in this paper, we will

present a comprehensive investigation on the heterogeneous

mm-wave D2D networks and obtain useful insights for the

further development of mm-wave D2D communications.

Although mm-wave devices offer several potential advan-

tages for D2D networks, there has been limited application

of stochastic geometry to study the potential performance of

mm-wave D2D networks incorporating key features of the

mm-wave band. The primary related works are [2] and [3]:

the former approximated the directional beamforming by a

sectored model with the assumption of homogeneous antenna

arrays and blockage effects but considered a finite number of

interferers in a finite network region; while the latter proposed

two more accurate antenna pattern models with the same

assumption in [2]. In contrast, our prior work in [4] used

stochastic geometry to provide a fine-grained performance

analysis of mm-wave D2D networks in terms of the meta
distribution, and it also considered the simplified sectored

model for the antenna pattern with uniform antenna array.

To the best of our knowledge, the effect of the heterogeneity

of the antenna arrays on the potential performance of mm-

wave D2D networks has not been studied in conjunction with

accurate approximations for the actual antenna pattern. In this

work, we will fill this gap with new analytical results of the

success probability in a stochastic geometry framework.

II. NETWORK MODEL

It is assumed that the transmitters belonging to the k-th

tier are distributed uniformly in the two-dimensional Euclidean

space R
2 according to a homogeneous PPP Φk of density

λk and operate at a constant transmit power μk. For all j �=
i, Φj and Φi are independent. The ALOHA channel access

scheme is adopted, i.e., in each time slot, D2D transmitters in

Φk independently transmit with probability qk. Accordingly,

the distribution of the devices in mm-wave D2D networks is

defined as Φ =
⋃K

k=1 Φk with density λ =
∑K

k=1 λk. Each

transmitter is assumed to have a dedicated receiver at distance

r0 in a random orientation, i.e., the D2D users form a K-

tier Poisson bipolar network [5, Def. 5.8]. Without loss of

generality, we consider a receiver at the origin that attempts

to receive from an additional transmitter located at (r0, 0). Due

to Slivnyak’s theorem [5, Thm. 8.10], this receiver becomes

the typical receiver under expectation over the (overall) PPP.

To analyze the typical D2D receiver belonging to the k-th tier,

we further condition on that receiver at the origin to belong to



the k-th tier with parameters (such as transmit power, number

of antennas, etc.) chosen from that tier.

A. Blockage and Propagation Model

The signal path can be either LOS/unblocked or

NLOS/blocked, each with a different path loss exponent.

The generalized LOS ball model [6] is adopted to capture

the blockage effect in mm-wave communication, which was

verified to be as accurate as the empirical 3GPP blockage

model by experiments in [7]. Specifically, the LOS probability

of the signal path between two nodes with separation d is

PLOS(d) = pL1(d < R), (1)

where 1(·) is the indicator function, R is the maximum length

of a LOS channel, and pL ∈ [0, 1] is the LOS probability if

d ≤ R. Let αk,L and αk,N denote the path loss exponents of

LOS and NLOS paths belonging to the k-th tier, respectively.

Typical values for mm-wave path loss exponents can be found

in [8] with approximated ranges of αk,L ∈ [1.9, 2.5] and

αk,N ∈ [2.5, 4.7].

B. Directional Beamforming Model

We assume that the transmitters belonging to k-th tier are

equipped with a uniform linear array (ULA) composed of

Nk antenna elements to perform directional beamforming and

their corresponding receivers have a single antenna. It is also

assumed that the transmitter knows the direction to the receiver

so that it can point its AoD at its receiver perfectly to obtain

the maximum power gain. Recently, an accurate approximation

termed cosine antenna pattern was proposed in [3], which is

shown to constitute a desirable trade-off between accuracy and

tractability in the performance analysis of mm-wave networks.

This antenna pattern approximation is based on the cosine

function with the antenna gain function

Gk(ϕ) =

{
Nk cos

2
(
πNk

2 ϕ
)

if |ϕ| ≤ 1/Nk

0 otherwise,
(2)

where ϕ = dt

� cosφ is the cosine direction corresponding to

the AoD φ of the transmit signal, which is termed as the spatial
AoD, with dt and � representing the antenna spacing and

wavelength, respectively. The antenna spacing dt is usually

set to be half-wavelength to enhance the directionality of

the beam and avoid grating lobes; the spatial AoD ϕ is

assumed to be uniformly distributed in [−0.5, 0.5], and thus

the spatial AoD from an interferer to the typical receiver is

also uniformly distributed in [−0.5, 0.5], as proven in [3].

While for the mostly used sectored antenna pattern, the array

gains within the half-power beamwidth are assumed to be the

maximum power gain, and the array gains corresponding to

the remaining AoDs are approximated to be the first minor

maximum gain of the actual antenna pattern. Although this

simple approximation is highly tractable, it causes significant

deviations from the actual performance, especially when there

are differences in the number of antennas among different

devices in the network.
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Fig. 1. Visualization of three different antenna patterns for N = 4
and N = 64.

In Fig. 1, we compare the cosine antenna pattern, the

sectored antenna pattern, as well as the actual antenna pattern

[9]. From the actual antenna pattern, we can observe that the

first side lobe gain of N = 64 is within 1 dB of the main lobe

gain of N = 4 but limited in a quite small range of AoDs,

which means the side lobe leakage causes high interference

to other devices in a very narrow range of directions. For

the sectored pattern, the array gains corresponding to all the

directions outside the main lobe are assumed to be equal to the

first side lobe gain of the actual pattern. Obviously, this ap-

proximation leads to deviation from the actual antenna pattern

and exaggerates the effect of side lobe leakage. The larger the

number of antennas, the greater the deviations. It is even worse

for networks where different kinds of devices are likely to

be equipped with different numbers of antennas. Thus, taking

both accuracy and tractability into consideration, the cosine

antenna pattern is adopted in the following analysis, which

makes it possible to investigate the impact of heterogeneous

antenna arrays on the performance.

C. SINR Analysis

We assume that the desired link between the transmitter-

receiver pair is in the LOS condition with deterministic path

loss r
−αk,L

0 given that the typical receiver belongs to the k-

th tier. In fact, if the receiver was associated with a NLOS

transmitter, the link would quite likely be in outage due to

the severe propagation loss and high noise power at mm-wave

bands as well as the fact that the interferers can be arbitrarily

close to the receiver. Different path loss exponents are applied

to the cases of LOS and NLOS paths. We denote by �k(x)
the random path loss function associated with the interfering

transmitter location x ∈ Φk, given by

�k(x) =

{
(max{d0, |x|})−αk,L w.p. PLOS(|x|)
(max{d0, |x|})−αk,N w.p. 1− PLOS(|x|), (3)



where all �k(x)x∈Φk
are independent. In addition to the

distance-dependent path loss, we assume independent Nak-

agami fading for each path, which is a sensible model given

the LOS-dependent mm-wave scenarios. Different Nakagami

fading parameters Mk,L and Mk,N are assumed for LOS and

NLOS paths in the k-th tier, where Mk,L and Mk,N are positive

integers. The power fading coefficient between node x ∈ Φk

and the origin is denoted by hx, which follows a gamma

distribution Gamma(M, 1
M ) with M ∈ {Mk,L, Mk,N}, and

all hx are mutually independent and also independent of the

point process. For the typical receiver, the interferers outside

the LOS ball are NLOS and thus can be ignored due to the

severe path loss over the large distance (at least R). As a result,

the analysis for the network originally composed by the multi-

tier PPPs reduces to the analysis of a finite network region,

namely the disk of radius R centered at the origin.
Based on this model, the interference from tier k at the

origin is

Ik =
∑
x∈Φk

μkGk(ϕx)hx�k(x)Bk(x), (4)

where Gk(ϕx) is the directional antenna gain function with

spatial AoD ϕx following (2), and Bk(x) is a Bernoulli

variable with parameter qk to indicate whether x transmits

a message to its receiver. Due to the incorporation of the

blockages, the LOS transmitters belonging to the k-th tier with

LOS propagation to the typical receiver form a PPP Φk,L with

density pLλk, while Φk,N with density pNλk is the transmitter

set with NLOS propagation, where pL + pN = 1 such that

Φk = Φk,L ∪ Φk,N. Then, the interference from tier k can be

rewritten as

Ik = Ik,L + Ik,N

=
∑

s∈{L,N}

∑
x∈Φk,s

μkGk(ϕx)hx�k(x)Bk(x). (5)

Without loss of generality, the noise power is set to one.

Conditioning on that the typical receiver belongs to the k-

th tier, the corresponding receiver SINR, denoted as SINRk,

is then given by

SINRk � Sk

1+I
=

μkNkhx0r
−αk,L

0

1+
∑

i∈[K]

∑
x∈Φi

μiGi(ϕx)hx�i(x)Bi(x)
, (6)

where [K] � {1, 2, ...,K}.

III. ANALYSIS OF SUCCESS PROBABILITY

A. Exact Results
Our first result in this section is an exact expression for the

success probability P(SINR > θ) conditioning on the typical

receiver belonging to tier k.

Theorem 1. Letting εk =
Mk,Lr

αk,L
0

μkNk
, the link success prob-

ability of the typical active device belonging to the k-th tier
equipped with Nk antennas, denoted by Pk(θ), is given by

Pk(θ) =

Mk,L−1∑
m=0

(−u)m

m!
L(m)(u)|u=θεk , (7)

where L(u) = exp(η(u)), the superscript ‘(m)’ stands for the
m-th derivative of L(u), and

η(u)=−u−
∑
i∈[K]

∑
s∈{L, N}

psλiqi
2

Ni

(
πR2

−
R∫
0

π
2∫

0

M
Mi,s

i,s 4rdxdr(
Mi,s+uμiNi cos2 xmax{r, d0}−αi,s

)Mi,s

)
. (8)

L(m)(u) is given recursively by

L(m)(u) =
m−1∑
n=0

(
m−1

n

)
η(m−n)(u)L(n)(u), (9)

where the n-th derivative of η(u) follows

η(n)(u)=−1(n = 1)+
∑
i∈[K]

∑
s∈{L, N}

psλiqi
8Γ(Mi,s+n)M

Mi,s

i,s

NiΓ(Mi,s)

×
R∫
0

π
2∫

0

(−μiNi cos
2 xmax{r, d0}−αi,s)nrdxdr(

Mi,s+uμiNi cos2 xmax{r, d0}−αi,s
)Mi,s+n

. (10)

Proof: See Appendix A.

According to the proposed model, devices in different tiers

differ in the number of antennas and follow multiple mutually

independent homogeneous PPPs. Therefore, the total SINR

distribution of the mm-wave D2D network can be computed

using the law of total probability as follows.

Corollary 1. For the overall active user, the link success
probability is

P (θ) =
∑

k∈[K]

λkqk∑
i∈[K] λiqi

Pk(θ). (11)

Proof: Let us consider the point process of all active

receivers (those who have active transmitters) and focus on

the typical receiver of this point process. Based on Theorem

1, which gives the link success probability conditioned on

this typical receiver belonging to the k-th tier, the overall link

success probability is obtained as

P (θ) =
∑

k∈[K]
P(x ∈ Φk)Pk(θ), (12)

where P(x ∈ Φk) is the probability that the typical receiver

belongs to the k-th tier. Since P(x ∈ Φk) =
λkqk∑

i∈[K] λiqi
, we

obtain (11).

B. Bounds on Success Probability

Note that though the Laplace transform of the aggregate

interference can be easily evaluated by numerical integration,

the corresponding n-th derivative needs tedious and extensive

computations, which makes the exact calculation inefficient.

Thus, we obtain upper and lower bounds for the exact results

by using bounds of the incomplete gamma functions.
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Fig. 2. The success probability for different configurations of
antenna arrays.

Fig. 3. The success probability for different LOS probabilities.

Theorem 2. Let βk = [Γ(1 +Mk,L)]
−1/Mk,L and

P̂k(θ) =

Mk,L∑
m=1

(
Mk,L

m

)
(−1)m+1L(u)∣∣

u=mθβkεk
. (13)

For K-tier Poisson mm-wave D2D communication networks,
the link success probability of the active device belonging to
the k-th tier Pk(θ) is upper bounded by P̂k(θ), while a lower
bound on Pk(θ), denoted by P̌k(θ), is achieved by setting
βk = 1 in (13).

Proof: It is known from [10] that

1−[1−exp(−x)]M ≤ Γ̃(M,x) ≤ 1−[1−exp(−βx)]M , (14)

where β = [Γ(1+M)]−1/M , Γ̃(M,x) = Γ(M,x)/Γ(M), and

the equality holds only if M = 1. Based on this inequality,

the lower and upper bounds on the link success probability

are obtained as follows. Letting βk = [Γ(1 +Mk,L)]
−1/Mk,L

and P̂k(θ) be the upper bound on Pk(θ), we have

P̂k(θ) = 1− E

[(
1− exp

(− θβkεk(1 + I)
))Mk,L

]

=

Mk,L∑
m=1

(
Mk,L

m

)
(−1)m+1

E

[
exp

(−mθβkεk(1 + I)
)]

=

Mk,L∑
m=1

(
Mk,L

m

)
(−1)m+1L(u)∣∣

u=mθβkεk
. (15)

By substituting (8) into (15), we obtain the upper bound for

the link success probability. From (14), the lower bound for

the link success probability P̌k(θ) is then obtained by setting

βk = 1 in (15).

Remark 1. Compared with the exact results for the SINR
distribution, both bounds give much simpler expressions with-
out requiring the derivatives for L(u) at u �= 0, where
L(u) is the product of multiple exponential functions with

integral expressions in the exponents. Thus the effort for the
computation of the SINR distribution is significantly reduced.

Similar to the exact results, we can obtain bounds for the

overall link success probability by Corollary 1.

IV. NUMERICAL RESULTS

In this section, we give some numerical results of the

success probability for the heterogeneous mm-wave D2D

networks, where K = 3, λi = 0.1, μi = 20, qi = 1,

αi,L = 2.5, αi,N = 4, Mi,L = 4, Mi,N = 2, i ∈ [K], r0 = 2,

d0 = 1, R = 200 are default values.

Fig. 2 illustrates the success probability as a function of

θ for different configurations of antenna arrays in a 3-tier

mm-wave D2D network. It can be seen that the upper bound

(13) derived for the success probability is quite tight, and

the horizontal gap between the bounds and the exact curve

is nearly constant, with the upper bound less than 0.5 dB

and the lower bound about 2.2 dB away. Moreover, it is

also observed that the configuration with larger antenna arrays

performs better in terms of the success probability, since

larger antenna arrays produce narrower transmission beams,

which limit the interference signal to a certain direction,

causing less interference to the receivers. Comparing the

curves corresponding to the combinations of antenna arrays

[4, 64, 256] and [16, 64, 256], there is a critical point at θ = 10
dB, where the success probability with [4, 64, 256] is quite

close to but smaller than that with [16, 64, 256]. This is because

when the SINR threshold is large, the successful transmissions

mostly occur at the transmitters with larger antenna arrays

(e.g., N3 = 256). In this case, the desired signal between

two cases is almost at the same level while the interference

suffered in the case of N = [4 64 256] is more severe than

that in the case of N = [16 64 256].
Fig. 3 shows the impact of LOS probability pL on the

success probability in a 3-tier mm-wave D2D network, where

N1 = 4, N2 = 16, and N3 = 64. It is observed that the link



success probability deteriorates with the increase of pL. The

reason is that a high LOS probability means the propagation

environment suffers from less blockage and, accordingly, the

interfering signal experiences less propagation loss than that

in the blocked case. As a result, the aggregate interference

at receivers will become more severe, thereby decreasing the

success probability.

V. CONCLUSION

In this paper, we analyzed the performance of mm-wave

D2D networks where devices are diversified in their directional

antenna arrays. Interestingly, we found that the first side lobe

gain of a larger antenna array can be close to the main lobe

gain of a smaller one merely in a limited spatial direction,

and demonstrated that the mostly used sectored model cannot

reflect this very important feature and thus is not suitable for

mm-wave networks composed of increasingly diverse devices.

In contrast, the cosine antenna pattern has superior accuracy

and similar analytical tractability. By adopting this consine

antenna pattern, we derived the success probability of the

typical receiver and provided tight bounds to simplify the exact

results. It was observed that the introduction of large antenna

arrays in mm-wave networks bring immense benefits in terms

of the success probability (reliability), which can not only

improve the desired signal but also significantly reduce the

interference. Overall, the results provide valuable engineering

insights to help network operators deploy mm-wave D2D

networks that satisfy stringent reliability requirements.
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APPENDIX

A. Proof of Theorem 1
Proof: The link success probability of a device belonging

to the k-th tier, denoted by Pk(θ), is expressed as

Pk(θ) = E

[
Γ̃

(
Mk,L, θεk(1 + I)

)]

=

Mk,L−1∑
m=0

E

[
e−θεk(1+I) (θεk(1 + I))m

m!

]

=

Mk,L−1∑
m=0

(−u)m

m!
L(m)(u)|u=θεk

where Γ̃(x, y) = Γ(x, y)/Γ(x) is the normalized incomplete

gamma function, L(u) = E[e−u(I+1)] is the Laplace transform

of the interference and noise, and the superscript (m) stands

for the m-th derivative of L(u). Due to the independence of

the K tiers, we have

L(u) = e−u
∏

i∈[K]

∏
s∈{L, N}

LIi,s(u), (16)

where LIi,s(u) follows as

LIi,s(u) = E[exp(−uIi,s)]

=E

[ ∏
x∈Φi,s

(
qi(

1+uμiGi(ϕx)�i(x)/Mi,s

)Mi,s
+1−qi

)]

=exp

(
−psλiqi

2

Ni

(
πR2

−
R∫
0

π
2∫

0

4M
Mi,s

i,s rdxdr(
Mi,s+uμiNi cos2 xmax{r, d0}−αi,s

)Mi,s

))
.(17)

Letting L(u) = exp(η(u)) and thus L(1)(u) = η(1)(u)L(u),
L(m)(u) can be calculated recursively according to the formula

of Leibniz for the higher-order derivative of the product of two

functions, given by

L(m)(u) =
dm−1

du
L(1)(u) =

m−1∑
n=0

(
m−1

n

)
η(m−n)(u)L(n)(u),

(18)

where the n-th derivative of η(u) is easily given by (10).
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