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Abstract— For multihop wireless networks, a fundamental
question is whether it is advantageous to route over many short
hops (short-hop routing) or over a smaller number of longer hops
(long-hop routing). Short-hop routing gained a lot of support, and
its proponents mainly produce two arguments: reduced energy
consumption and less interference. Both arguments stem from an
oversimplified analysis that is based on inaccurate channel models
and neglects delay, end-to-end relability, bias power consumption,
the impact of channel coding, mobility, and routing overhead. In
this paper, we shed more light on these issues by listing twelve
reasons why short-hop routing is not as beneficial as it seems to
be. The conclusion is that for many networks, long-hop routing
is in every aspect a very competitive strategy.

I. INTRODUCTION

For certain wireless networks, such as ad hoc and sensor
networks, a fundamental question is whether it is advantageous
to route over many short hops (short-hop routing or, in the
extreme case, nearest-neighbor routing) or over a smaller
number of longer hops (long-hop routing). Recently, this
debate extended to multihop extensions of WLANs [1] and
multihop cellular networks [2]. Short-hop routing gained a lot
of support, and its proponents mainly produce the following
two arguments:

1. Energy consumption. If a long hop of distance d is divided
into n hops of distance d/n, the energy benefit is often
assumed to be nα−1, where α is the path loss exponent.

2. Capacity. The shorter the hops, the higher the transport
capacity in an interference-limited network [3].
The first argument stems from an oversimplified analysis of
the energy consumption and neglects important issues such as
delay, end-to-end reliability, and bias power consumption. The
second argument is only valid as long as the connectivity of
the network is guaranteed; it was derived for an increasingly
dense network that takes advantage of the singularity of the
attenuation d−α at d = 0, which may lead to the unrealis-
tic situation that the received power exceeds the transmitter
power; and it neglects delay, too. In this paper, we shed more
light on these issues by listing twelve reasons why short-hop
routing is not as beneficial as it seems to be. Some of the
reasons have been mentioned in other work, but this is, to the

best of our knowledge, the first comprehensive collection.
Often, a disk model1 is used for the analysis of wireless

networks, where a transmission is either 100% successful
or fails completely, depending on whether the distance is
smaller or larger than the so-called transmission radius. More
realistic is the threshold model2, where a certain signal-to-
noise-and-interference ratio (SINR) is needed for successful
transmission. Still, for AWGN channels, the threshold model
yields 0% or 100% probability and should therefore be used
with great care. To get accurate results, reception probabilities
should be based on bit, block, and packet errors rates, taking
into account the error correction capabilities of the channel
code.

We will demonstrate that by discarding the disk model and
directly focusing on SINR levels, many advantages of long-
hop routing become apparent.

II. NETWORK AND LINK MODEL

Part of our discussion applies to many types and classes of
networks and wireless channels. However, to be concrete, we
often focus on networks with random node distribution and
Rayleigh fading channels.

A. Node Distribution and Generic Routing

The analytical results are derived for networks whose nodes
constitute a Poisson point process in the plane. Note that for
infinite networks, the Poisson point process corresponds to a
uniform distribution [4], [5], and for large networks, the two
distributions are equivalent for all practical purposes.

Many different routing algorithms exist for ad hoc networks
[6], [7], but common to all of them is the fact that at each hop,
progress shall be made towards the destination. This generic
routing strategy is illustrated in Fig. 1. If the nearest neighbor
within a certain sector of the source-destination axis is chosen
as the next relay, this is certainly an instance of short-hop
routing. If many nearby neighbors are skipped and a node

1Also called protocol model [3].
2Also denoted as physical model [3].
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Fig. 1. Part of a Rayleigh network with the source at the origin and the
x-axis pointing towards the destination node. R denotes the distance to the
nearest neighbor with in a sector φ around x, and ψ is its argument. Hence
(R,ψ) are the polar coordinates of the nearest neighbor within a sector φ,
and (X, Y ) are its Cartesian coordinates.

transmits directly to a more distant neighbor, we speak of
long-hop routing.

Note that the distance to the n-th nearest neighbor that lies
within the desired sector can easily be determined from the
Poisson assumption. The probability density of the distance to
the n-th neighbor in a sector φ is [8]

pRn(r) = r2n−1

(
φ

2

)n
2

(n− 1)!
e−r2φ/2 (1)

Since pRn is a Rayleigh distribution for n = 1, it can
be considered a generalized Rayleigh distribution. Similarly,
in one dimension, the Erlang distribution is a generalized
exponential distribution. So, the transition from one dimension
to two dimensions simply entails a multiplication by rφ (that
comes from the inner derivative of the exponential part) in the
distributions of the node distances.

B. Link Model

Although some of the reasons listed in the next section also
pertain to the disk model, we will mostly use a Rayleigh block
fading channel model. Assuming that a certain SINR level
Θ is required for successful reception (threshold model), the
reception probability of successful packet reception can be
expressed as [8]
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, (2)

where N is the noise power, P0 the transmit power of the
desired transmitter, Pi, i > 0 the transmit powers of the k

interferers (who transmit in the same time slot), d0 the distance
from the receiver to the desired transmitter, and di, i > 0, the

distance to the interfering transmitters. α is the large-scale path
loss exponent. In the expression (2), we can identify two parts:
pN

r , which is the reception probability in an interference-free
network since it only depends on the noise, and pI

r , which is
the reception probability in a noise-free network since it only
depends on the interference. This property of the Rayleigh
fading channel enables the separate analysis of noise and
interference effects.

III. THE TWELVE REASONS

Clearly, the most compelling reason against short-hop rout-
ing is the end-to-end delay. However, we do not consider
delay in itself an argument for long-hop routing, since energy
and delay can be traded off against each other. So, for a
fair comparison, both schemes shall satisfy the same energy
and delay requirements. We may fix the energy consumption
and search for the protocol with the smallest delay, or we
may impose a delay constraint and determine which protocol
consumes the least amount of energy.

A. Interference

According to [9], “It is unclear whether more interference
is caused by a single transmission at higher power or multiple
transmissions at lower power”. Indeed, a shorter transmission
at higher power may permit more efficient reuse of the
communication channel. If the total radiated energy (product
of power and duration) of is a good indicator for interference,
this boils down to an energy consumption problem. However,
it must not be forgotten that the SIR does not depend on
absolute power levels. If all nodes scale their power by the
same factor q > 1, all the SIR levels remain constant, but
the SINR levels will increase, which can be easily seen from
(2). So, increasing all transmit power levels does not have
a negative impact on any packet reception probability in the
network (on the contrary), in stark contrast to what is predicted
by the disk model. This indicates that long-hop transmission
does not inherently cause more interference.

B. End-to-end Reliability

Under the disk model, reception probabilities are either
100% or 0%. If every receiver is in its desired transmitter’s
disk, the end-to-end reliability is always 100%, which is
clearly not realistic, since packet errors or bit errors accu-
mulate. In the Rayleigh block fading case, the end-to-end
reception probability pn over an n-hop route follows from
(2):

pn =
n∏

i=1

e−Θ/γ̄i = e
−Θ

∑
n
i=1

1

γ̄i (3)

where γ̄i denotes the mean SNR at link i. So, to achieve a
desired end-to-end reliability with short-hop routing, the relay
nodes need to transmit at a higher power. This compensates,
at least partially, for the loss in SNR.



Consider the case of a one-dimensional chain of equidis-
tant nodes with distance d (this is the optimum scenario
for short-hop routing). Let E0 be the energy required for
a transmission over distance d with probability PEE , i.e.,
E0 := −dαΘN/ lnPEE . Covering the total distance in one
single hop requires an energy of E1 = nαE0. In the multihop
case with n hops, a reception probability pr = n

√
PEE is

required at each hop. Since lnPEE = n ln pr, the total energy
in this case is En = n ·nE0. So, for α = 2, there is no benefit
in multihop routing.

If the same end-to-end delay is permitted, a number of trans-
mission (at lower power) are possible in the long-hop case. For
the block fading channel, this results in a time diversity benefit,
and the energy advantage of short-hop routing vanishes also
for higher path loss exponents, in particular for high end-to-
end reliabilities or when channel state information is available
at the transmitter.

C. Capacity and Channel Coding

For optimum coding in AWGN channels, a change from a
nominal capacity C0 := log2(1 +P0/N)/2 to C0/q results in
an energy consumption of E(q) = qP (q) = qN(22C0/q − 1),
which is strictly monotonically decreasing in q.3 Note that
C0/q =: R is the information theoretic rate (bits/symbol), and
that the gain from using longer codes is higher for higher rates.

Assume that a (normalized) distance 1 is covered by an
n-hop route for some small n, say 1 6 n 6 5. In this case,
spatial reuse is not possible, so a simple TDMA MAC scheme
will perform optimally. Since there is no interference in this
case, the analysis is based on AWGN channels. Let R denote
the bandwidth-normalized end-to-end rate for the n-hop route.
We find

R =
1

n
log2

(

1 +
Es

N0
nα

)

, (4)

where Es = EbR is the energy per symbol and N0 is the
noise spectral density. By dividing the distance into hops of
length 1/n, the SNR increases by nα. On the other hand, the
end-to-end rate is reduced by a factor of n. Conversely, the
n-hop scheme needs to transmit at a per-hop rate of nR to
achieve the same end-to-end rate. The question is which is
the optimum n given a certain desired end-to-end rate. This
problem is addressed in some detail in [10]. Here we note
that since the rate loss in (4) is linear while the gain from the
increased SNR is only proportional to log2(n), there exists a
certain rate Rn at which the bit-energy-to-noise ratio Eb/N0

is the same for n-hop and n+1-hop routing. Above Rn, n-hop
routing performs better, and below Rn, (n+1)-hop routing is
better. Focusing on the case of single-hop and two-hop routing,
we find from (4) that R1 = log2(2

α−1) < α. So, as a simple

3The increase in transmission length is only linear in q, while the power
can be reduced exponentially.

rule of thumb, we can say that whenever the desired rate is
higher than the path loss exponent, single-hop routing achieves
the highest capacity.

More generally, it can be shown that for R → 0, there exists
an asymptotic per-hop spectral efficiency

S := lim
R→0

Rnopt(R) (5)

that only depends on α. It is given by

S =
W(−αe−α) + α

ln 2
/
α(1 − e−α)

ln 2
, (6)

where W(·) denotes the (principal branch of the) Lambert W
function and the bound stems from the first order Taylor ex-
pansion. The primary use of this asymptotic spectral efficiency
is to determine the optimum hop number: It can be shown that
with good accuracy

nopt(α,R) ≈ [S(α)/R] , (7)

where [x] denotes the nearest positive integer to x. Using the
upper bound (6), we find

nopt(α,R) 6

[
α(1 − e−α)

R ln 2

]

, (8)

which conveniently yields the optimum number of hops for
any R and α.

If channel coding is taken into account, multihop is further
penalized due to the necessary encoding and decoding at each
hop.

D. Total Energy Consumption

It is often assumed that a reduction of the transmit energy
yields a proportional reduction of the total energy consump-
tion. Even without taking into account receive energy, this
is not true for any practical power amplifier. In particular in
low-power transceivers, the local oscillators and bias circuitry
will dominate, so that short-hop routing does not yield any
energy benefit if a more distant relay node can be reached with
sufficient reliability [11]. For random networks, relatively high
peak power levels are necessary to keep the network connected
[12], and short-hop routing would require a substantial backoff
on the average, resulting in poor power efficiency.

E. Path Efficiency in Random Networks

Routes in random networks cannot follow straight lines. The
path efficiency, defined as the ratio of Euclidean distance of
the end nodes and the travelled distance, is higher if longer
hops are used. Consider the generic routing strategy in Fig. 1.
For nearest-neighbor routing in a sector φ the expected path
efficiency η for a long connection is E[cos Ψ], so

η(φ) = E[cosΨ] =
2

φ

∫ φ/2

0

cosψ dψ (9)

=
2

φ
sin

(φ

2

)

≈ 1 − φ2

24
, (10)



where the approximation is the second-order Taylor expan-
sion. Now assume that this nearest-neighbor path has been
established, and that, instead of routing through every node,
a long-hop strategy is applied where only every n-th node is
used as a relay. With increasing n, the argument Ψ from the
origin to the n-th node tends to be Gaussian distributed with
variance V (φ, n). Since the support of the pdf of Ψ is always
[−φ/2, φ/2],4 the variance decreases inversely proportional to
n, i.e., V (φ, n) ≈ φ2

12n . So, for large n, we get5

ηn(φ) = E[cosΨ] (11)

≈
√

6n

φ
√
π
·
∫

∞

−∞

cosψ e−6n(ψφ )2

dψ (12)

= e−
φ2

24n (13)

≈ 1 − φ2

24n
, (14)

which shows that the path efficiency grows monotonically with
n and goes to 1 for large n. The energy penalty caused by
deviations from the optimum path is

1

ηn(φ)α
≈ 1 +

αφ2

24n
. (15)

This shows that the energy penalty can be made independent
of α, if only every n = α-th node is used.

F. Sleep Modi or Cooperation

If neighboring nodes are not used as relays, they can
either be put to sleep, or they can assist the transmission
by cooperation [13], [14] or retransmission (e.g., if an ACK
packet is not received by the source).

G. Routing Overhead and Route Maintenance

In [9], it is pointed out that (when we replace a larger
number of short hops by a smaller number of long hops)
“It is far from clear what happens to the overall transmission
energy, since to implement a nearest-neighbor policy, signifi-
cantly augmented overhead control traffic will be required to
coordinate the establishment of the routing paths and access
control protocols across the entire network.”

In a first order approximation, the control traffic for routing
and route maintenance is proportional to the number of nodes
in the route. Also, the probability of a route break due to
energy depletion and node failure clearly increases with the
number of nodes involved, as well as the memory requirements
for the routing tables.

4Hence, after every convolution, the support needs to be scaled, which
results in a reduction of the variance.

5The Gaussian approximation is very accurate even for small n. For φ =
π/2 and n = 1, e.g., the precise value is 2

√
2/π ≈ 0.9003, whereas this

approximation yields e−π2/96 ≈ 0.9023, so the error is only 0.2%. The
second order Taylor expansions are identical, even for n = 1.

critical nodesBS

Fig. 2. The critical area of a sensor network is determined by the nodes that
can reach the base station in a single hop. If it consists of only a few nearest
neighbors of the base station, these nodes will severely limit the lifetime of
the network since they have to relay the whole traffic.

H. Route Longevity in Mobile Environments

The SNR of short-hop routes is more quickly affected by
moving nodes. For example, if a node at distance 1 moves
away by 1 unit, the SNR change is 2α, which causes the link
to break (unless an unreasonably high SNR margin is applied).
On the other hand, if a relay node is 3 units away moves by
the same distance, the SNR change is only (4/3)α, which can
probably be tolerated.

In general, the lifetime of a link is proportional to its (orig-
inal) length. To show this, assume that routes are established
with a certain SNR margin MΘ, such that for a link of initial
distance d, we have P0

dαN = ΘMΘ. At the critical distance
d+∆d when the link breaks, we have P0

(d+∆d)αN = Θ. Solving
for ∆d, we find

∆d = d(M
1/α
Θ − 1) . (16)

For a given mobility pattern, ∆d determines the lifetime of a
link, so indeed longer links live proportionally longer.

I. Traffic Accumulation and Energy Balancing

For certain multihop networks such as sensor networks or
multihop cellular networks, traffic accumulation around a base
station (BS) or access point is a big problem. With strict short-
hop routing, the relaying burden cannot be distributed among
a high enough number of nodes, leading to a critical area
around the BS whose nodes suffer from a short lifetime (see
Fig. 2) The more nodes can reach the BS directly, the better
distributed the load can be [15].

J. Variance in Hop Length

In random networks, due to the variance in hop length,
the variance in energy consumption is large when nearest-
neighbor schemes are used, causing substantial imbalance
in the energy consumption. Assuming that a power control
scheme is used that adapts the transmit power to maintain
a certain reception probability pN

r (see (2)). For an n-hop
route, we are interested in the power consumption at the node



that has to transmit over the largest distance, since this node
determines the lifetime of the route. From (1) we know that
the distance to the nearest neighbor is Rayleigh distributed.
So, for a path loss exponent α = 2, the power level is
given by an exponential distribution, and we need to determine
the expected maximum of n exponentially distributed random
variables. The same problem appears in selection combining
of multiple transmission in fading channels, so we can apply
the result from [16, p.316] that this maximum is given by the
harmonic sum, i.e.,

E[max{R1, . . . , RM}2] =

M∑

k=1

1

k
' ln(M) + γem , (17)

where γem ≈ 0.577 is the Euler-Mascheroni constant. The
bound ln(M) + γem is tight already for moderate M , so
the expected maximum E[max{R1, . . . , RM}2] is sharply
lowerbounded by E[R2](lnM+γem). For α > 2, with Jensen’s
inequality, we have E[(X2)α/2] > E[X2]α/2 and thus

E[max{R1, . . . , RM}α] >
(
E[max{R1, . . . , RM}2]

)α/2

(18)

'
(
E[R2](lnM + γem)

)α/2
,

or, since E[R2] = (4/π)E[R]2,

E[max{R1, . . . , RM}α] '

(
2√
π

E[R]

)α

(lnM + γem)α/2 .

(19)
For α = 1 (the distance itself), we have the upper bound

E[max{R1, . . . , RM}] /
√

E[R2](lnM + γem) . (20)

This shows that the maximum energy consumption over M
nearest-neighbor hops grows with at least lnM in networks
with random node distribtution. If longer hops are permitted,
the distances and thus the power consumption can be better
equalized among the nodes in a route.

K. Bounded Attenuation

As pointed out in the introduction, a path loss model with
a singularity at distance d = 0 is not realistic for networks
with high density. Clearly, there is a bound on the received
power. If we assume that this bound is achieved for distances
0 < d < R, then there is no benefit of using shorter hops than
R, since the interference remains constant and the received
power does not increase if the distance is decreased further.
This problem is particularly relevant in dense networks [17].

L. Multicast Advantage

So far, we have only addressed unicast routing. For multi-
cast, other tradeoffs between short-hop and long-hop routing
exist. In particular, as discussed in [9], it is often advantageous
for a source to transmit at high power levels to reach a
maximum number of nodes in the multicast group.

IV. CONCLUSION

We have listed twelve compelling reasons why the tradeoff
between routing over many short hops and routing over fewer
longer hops is not as clear as it is often assumed. Not all
reasons apply to all types of networks, of course, but several
of them will be relevant for most networks. The conclusion is
that routing as far as possible is a very competitive strategy in
many cases. Conversely, from a design perspective, the peak
transmit power should be chosen such that a node can reach
well beyond nearest neighbors.
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